24ee0a6d7b
Some of the SN code & #defines related to compact nodes & IO discovery have gotten stale over the years. This patch attempts to clean them up. Some of the various SN MAX_xxx #defines were also unclear & misused. The primary changes are: - use MAX_NUMNODES. This is the generic linux #define for the number of nodes that are known to the generic kernel. Arrays & loops for constructs that are 1:1 with linux-defined nodes should use the linux #define - not an SN equivalent. - use MAX_COMPACT_NODES for MAX_NUMNODES + NUM_TIOS. This is the number of nodes in the SSI system. Compact nodes are a hack to get around the IA64 architectural limit of 256 nodes. Large SGI systems have more than 256 nodes. When we upgrade to ACPI3.0, I _hope_ that all nodes will be real nodes that are known to the generic kernel. That will allow us to delete the notion of "compact nodes". - add MAX_NUMALINK_NODES for the total number of nodes that are in the numalink domain - all partitions. - simplified (understandable) scan_for_ionodes() - small amount of cleanup related to cnodes Signed-off-by: Jack Steiner <steiner@sgi.com> Signed-off-by: Tony Luck <tony.luck@intel.com>
992 lines
22 KiB
C
992 lines
22 KiB
C
/*
|
|
* This file is subject to the terms and conditions of the GNU General Public
|
|
* License. See the file "COPYING" in the main directory of this archive
|
|
* for more details.
|
|
*
|
|
* Copyright (C) 2004-2005 Silicon Graphics, Inc. All rights reserved.
|
|
*
|
|
* SGI Altix topology and hardware performance monitoring API.
|
|
* Mark Goodwin <markgw@sgi.com>.
|
|
*
|
|
* Creates /proc/sgi_sn/sn_topology (read-only) to export
|
|
* info about Altix nodes, routers, CPUs and NumaLink
|
|
* interconnection/topology.
|
|
*
|
|
* Also creates a dynamic misc device named "sn_hwperf"
|
|
* that supports an ioctl interface to call down into SAL
|
|
* to discover hw objects, topology and to read/write
|
|
* memory mapped registers, e.g. for performance monitoring.
|
|
* The "sn_hwperf" device is registered only after the procfs
|
|
* file is first opened, i.e. only if/when it's needed.
|
|
*
|
|
* This API is used by SGI Performance Co-Pilot and other
|
|
* tools, see http://oss.sgi.com/projects/pcp
|
|
*/
|
|
|
|
#include <linux/fs.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/vmalloc.h>
|
|
#include <linux/seq_file.h>
|
|
#include <linux/miscdevice.h>
|
|
#include <linux/utsname.h>
|
|
#include <linux/cpumask.h>
|
|
#include <linux/smp_lock.h>
|
|
#include <linux/nodemask.h>
|
|
#include <asm/processor.h>
|
|
#include <asm/topology.h>
|
|
#include <asm/smp.h>
|
|
#include <asm/semaphore.h>
|
|
#include <asm/uaccess.h>
|
|
#include <asm/sal.h>
|
|
#include <asm/sn/io.h>
|
|
#include <asm/sn/sn_sal.h>
|
|
#include <asm/sn/module.h>
|
|
#include <asm/sn/geo.h>
|
|
#include <asm/sn/sn2/sn_hwperf.h>
|
|
#include <asm/sn/addrs.h>
|
|
|
|
static void *sn_hwperf_salheap = NULL;
|
|
static int sn_hwperf_obj_cnt = 0;
|
|
static nasid_t sn_hwperf_master_nasid = INVALID_NASID;
|
|
static int sn_hwperf_init(void);
|
|
static DECLARE_MUTEX(sn_hwperf_init_mutex);
|
|
|
|
static int sn_hwperf_enum_objects(int *nobj, struct sn_hwperf_object_info **ret)
|
|
{
|
|
int e;
|
|
u64 sz;
|
|
struct sn_hwperf_object_info *objbuf = NULL;
|
|
|
|
if ((e = sn_hwperf_init()) < 0) {
|
|
printk(KERN_ERR "sn_hwperf_init failed: err %d\n", e);
|
|
goto out;
|
|
}
|
|
|
|
sz = sn_hwperf_obj_cnt * sizeof(struct sn_hwperf_object_info);
|
|
if ((objbuf = (struct sn_hwperf_object_info *) vmalloc(sz)) == NULL) {
|
|
printk("sn_hwperf_enum_objects: vmalloc(%d) failed\n", (int)sz);
|
|
e = -ENOMEM;
|
|
goto out;
|
|
}
|
|
|
|
e = ia64_sn_hwperf_op(sn_hwperf_master_nasid, SN_HWPERF_ENUM_OBJECTS,
|
|
0, sz, (u64) objbuf, 0, 0, NULL);
|
|
if (e != SN_HWPERF_OP_OK) {
|
|
e = -EINVAL;
|
|
vfree(objbuf);
|
|
}
|
|
|
|
out:
|
|
*nobj = sn_hwperf_obj_cnt;
|
|
*ret = objbuf;
|
|
return e;
|
|
}
|
|
|
|
static int sn_hwperf_location_to_bpos(char *location,
|
|
int *rack, int *bay, int *slot, int *slab)
|
|
{
|
|
char type;
|
|
|
|
/* first scan for an old style geoid string */
|
|
if (sscanf(location, "%03d%c%02d#%d",
|
|
rack, &type, bay, slab) == 4)
|
|
*slot = 0;
|
|
else /* scan for a new bladed geoid string */
|
|
if (sscanf(location, "%03d%c%02d^%02d#%d",
|
|
rack, &type, bay, slot, slab) != 5)
|
|
return -1;
|
|
/* success */
|
|
return 0;
|
|
}
|
|
|
|
static int sn_hwperf_geoid_to_cnode(char *location)
|
|
{
|
|
int cnode;
|
|
geoid_t geoid;
|
|
moduleid_t module_id;
|
|
int rack, bay, slot, slab;
|
|
int this_rack, this_bay, this_slot, this_slab;
|
|
|
|
if (sn_hwperf_location_to_bpos(location, &rack, &bay, &slot, &slab))
|
|
return -1;
|
|
|
|
for_each_node(cnode) {
|
|
geoid = cnodeid_get_geoid(cnode);
|
|
module_id = geo_module(geoid);
|
|
this_rack = MODULE_GET_RACK(module_id);
|
|
this_bay = MODULE_GET_BPOS(module_id);
|
|
this_slot = geo_slot(geoid);
|
|
this_slab = geo_slab(geoid);
|
|
if (rack == this_rack && bay == this_bay &&
|
|
slot == this_slot && slab == this_slab) {
|
|
break;
|
|
}
|
|
}
|
|
|
|
return node_possible(cnode) ? cnode : -1;
|
|
}
|
|
|
|
static int sn_hwperf_obj_to_cnode(struct sn_hwperf_object_info * obj)
|
|
{
|
|
if (!SN_HWPERF_IS_NODE(obj) && !SN_HWPERF_IS_IONODE(obj))
|
|
BUG();
|
|
if (!obj->sn_hwp_this_part)
|
|
return -1;
|
|
return sn_hwperf_geoid_to_cnode(obj->location);
|
|
}
|
|
|
|
static int sn_hwperf_generic_ordinal(struct sn_hwperf_object_info *obj,
|
|
struct sn_hwperf_object_info *objs)
|
|
{
|
|
int ordinal;
|
|
struct sn_hwperf_object_info *p;
|
|
|
|
for (ordinal=0, p=objs; p != obj; p++) {
|
|
if (SN_HWPERF_FOREIGN(p))
|
|
continue;
|
|
if (SN_HWPERF_SAME_OBJTYPE(p, obj))
|
|
ordinal++;
|
|
}
|
|
|
|
return ordinal;
|
|
}
|
|
|
|
static const char *slabname_node = "node"; /* SHub asic */
|
|
static const char *slabname_ionode = "ionode"; /* TIO asic */
|
|
static const char *slabname_router = "router"; /* NL3R or NL4R */
|
|
static const char *slabname_other = "other"; /* unknown asic */
|
|
|
|
static const char *sn_hwperf_get_slabname(struct sn_hwperf_object_info *obj,
|
|
struct sn_hwperf_object_info *objs, int *ordinal)
|
|
{
|
|
int isnode;
|
|
const char *slabname = slabname_other;
|
|
|
|
if ((isnode = SN_HWPERF_IS_NODE(obj)) || SN_HWPERF_IS_IONODE(obj)) {
|
|
slabname = isnode ? slabname_node : slabname_ionode;
|
|
*ordinal = sn_hwperf_obj_to_cnode(obj);
|
|
}
|
|
else {
|
|
*ordinal = sn_hwperf_generic_ordinal(obj, objs);
|
|
if (SN_HWPERF_IS_ROUTER(obj))
|
|
slabname = slabname_router;
|
|
}
|
|
|
|
return slabname;
|
|
}
|
|
|
|
static void print_pci_topology(struct seq_file *s)
|
|
{
|
|
char *p;
|
|
size_t sz;
|
|
int e;
|
|
|
|
for (sz = PAGE_SIZE; sz < 16 * PAGE_SIZE; sz += PAGE_SIZE) {
|
|
if (!(p = (char *)kmalloc(sz, GFP_KERNEL)))
|
|
break;
|
|
e = ia64_sn_ioif_get_pci_topology(__pa(p), sz);
|
|
if (e == SALRET_OK)
|
|
seq_puts(s, p);
|
|
kfree(p);
|
|
if (e == SALRET_OK || e == SALRET_NOT_IMPLEMENTED)
|
|
break;
|
|
}
|
|
}
|
|
|
|
static inline int sn_hwperf_has_cpus(cnodeid_t node)
|
|
{
|
|
return node_online(node) && nr_cpus_node(node);
|
|
}
|
|
|
|
static inline int sn_hwperf_has_mem(cnodeid_t node)
|
|
{
|
|
return node_online(node) && NODE_DATA(node)->node_present_pages;
|
|
}
|
|
|
|
static struct sn_hwperf_object_info *
|
|
sn_hwperf_findobj_id(struct sn_hwperf_object_info *objbuf,
|
|
int nobj, int id)
|
|
{
|
|
int i;
|
|
struct sn_hwperf_object_info *p = objbuf;
|
|
|
|
for (i=0; i < nobj; i++, p++) {
|
|
if (p->id == id)
|
|
return p;
|
|
}
|
|
|
|
return NULL;
|
|
|
|
}
|
|
|
|
static int sn_hwperf_get_nearest_node_objdata(struct sn_hwperf_object_info *objbuf,
|
|
int nobj, cnodeid_t node, cnodeid_t *near_mem_node, cnodeid_t *near_cpu_node)
|
|
{
|
|
int e;
|
|
struct sn_hwperf_object_info *nodeobj = NULL;
|
|
struct sn_hwperf_object_info *op;
|
|
struct sn_hwperf_object_info *dest;
|
|
struct sn_hwperf_object_info *router;
|
|
struct sn_hwperf_port_info ptdata[16];
|
|
int sz, i, j;
|
|
cnodeid_t c;
|
|
int found_mem = 0;
|
|
int found_cpu = 0;
|
|
|
|
if (!node_possible(node))
|
|
return -EINVAL;
|
|
|
|
if (sn_hwperf_has_cpus(node)) {
|
|
if (near_cpu_node)
|
|
*near_cpu_node = node;
|
|
found_cpu++;
|
|
}
|
|
|
|
if (sn_hwperf_has_mem(node)) {
|
|
if (near_mem_node)
|
|
*near_mem_node = node;
|
|
found_mem++;
|
|
}
|
|
|
|
if (found_cpu && found_mem)
|
|
return 0; /* trivially successful */
|
|
|
|
/* find the argument node object */
|
|
for (i=0, op=objbuf; i < nobj; i++, op++) {
|
|
if (!SN_HWPERF_IS_NODE(op) && !SN_HWPERF_IS_IONODE(op))
|
|
continue;
|
|
if (node == sn_hwperf_obj_to_cnode(op)) {
|
|
nodeobj = op;
|
|
break;
|
|
}
|
|
}
|
|
if (!nodeobj) {
|
|
e = -ENOENT;
|
|
goto err;
|
|
}
|
|
|
|
/* get it's interconnect topology */
|
|
sz = op->ports * sizeof(struct sn_hwperf_port_info);
|
|
if (sz > sizeof(ptdata))
|
|
BUG();
|
|
e = ia64_sn_hwperf_op(sn_hwperf_master_nasid,
|
|
SN_HWPERF_ENUM_PORTS, nodeobj->id, sz,
|
|
(u64)&ptdata, 0, 0, NULL);
|
|
if (e != SN_HWPERF_OP_OK) {
|
|
e = -EINVAL;
|
|
goto err;
|
|
}
|
|
|
|
/* find nearest node with cpus and nearest memory */
|
|
for (router=NULL, j=0; j < op->ports; j++) {
|
|
dest = sn_hwperf_findobj_id(objbuf, nobj, ptdata[j].conn_id);
|
|
if (!dest || SN_HWPERF_FOREIGN(dest) ||
|
|
!SN_HWPERF_IS_NODE(dest) || SN_HWPERF_IS_IONODE(dest)) {
|
|
continue;
|
|
}
|
|
c = sn_hwperf_obj_to_cnode(dest);
|
|
if (!found_cpu && sn_hwperf_has_cpus(c)) {
|
|
if (near_cpu_node)
|
|
*near_cpu_node = c;
|
|
found_cpu++;
|
|
}
|
|
if (!found_mem && sn_hwperf_has_mem(c)) {
|
|
if (near_mem_node)
|
|
*near_mem_node = c;
|
|
found_mem++;
|
|
}
|
|
if (SN_HWPERF_IS_ROUTER(dest))
|
|
router = dest;
|
|
}
|
|
|
|
if (router && (!found_cpu || !found_mem)) {
|
|
/* search for a node connected to the same router */
|
|
sz = router->ports * sizeof(struct sn_hwperf_port_info);
|
|
if (sz > sizeof(ptdata))
|
|
BUG();
|
|
e = ia64_sn_hwperf_op(sn_hwperf_master_nasid,
|
|
SN_HWPERF_ENUM_PORTS, router->id, sz,
|
|
(u64)&ptdata, 0, 0, NULL);
|
|
if (e != SN_HWPERF_OP_OK) {
|
|
e = -EINVAL;
|
|
goto err;
|
|
}
|
|
for (j=0; j < router->ports; j++) {
|
|
dest = sn_hwperf_findobj_id(objbuf, nobj,
|
|
ptdata[j].conn_id);
|
|
if (!dest || dest->id == node ||
|
|
SN_HWPERF_FOREIGN(dest) ||
|
|
!SN_HWPERF_IS_NODE(dest) ||
|
|
SN_HWPERF_IS_IONODE(dest)) {
|
|
continue;
|
|
}
|
|
c = sn_hwperf_obj_to_cnode(dest);
|
|
if (!found_cpu && sn_hwperf_has_cpus(c)) {
|
|
if (near_cpu_node)
|
|
*near_cpu_node = c;
|
|
found_cpu++;
|
|
}
|
|
if (!found_mem && sn_hwperf_has_mem(c)) {
|
|
if (near_mem_node)
|
|
*near_mem_node = c;
|
|
found_mem++;
|
|
}
|
|
if (found_cpu && found_mem)
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (!found_cpu || !found_mem) {
|
|
/* resort to _any_ node with CPUs and memory */
|
|
for (i=0, op=objbuf; i < nobj; i++, op++) {
|
|
if (SN_HWPERF_FOREIGN(op) ||
|
|
SN_HWPERF_IS_IONODE(op) ||
|
|
!SN_HWPERF_IS_NODE(op)) {
|
|
continue;
|
|
}
|
|
c = sn_hwperf_obj_to_cnode(op);
|
|
if (!found_cpu && sn_hwperf_has_cpus(c)) {
|
|
if (near_cpu_node)
|
|
*near_cpu_node = c;
|
|
found_cpu++;
|
|
}
|
|
if (!found_mem && sn_hwperf_has_mem(c)) {
|
|
if (near_mem_node)
|
|
*near_mem_node = c;
|
|
found_mem++;
|
|
}
|
|
if (found_cpu && found_mem)
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (!found_cpu || !found_mem)
|
|
e = -ENODATA;
|
|
|
|
err:
|
|
return e;
|
|
}
|
|
|
|
|
|
static int sn_topology_show(struct seq_file *s, void *d)
|
|
{
|
|
int sz;
|
|
int pt;
|
|
int e = 0;
|
|
int i;
|
|
int j;
|
|
const char *slabname;
|
|
int ordinal;
|
|
cpumask_t cpumask;
|
|
char slice;
|
|
struct cpuinfo_ia64 *c;
|
|
struct sn_hwperf_port_info *ptdata;
|
|
struct sn_hwperf_object_info *p;
|
|
struct sn_hwperf_object_info *obj = d; /* this object */
|
|
struct sn_hwperf_object_info *objs = s->private; /* all objects */
|
|
u8 shubtype;
|
|
u8 system_size;
|
|
u8 sharing_size;
|
|
u8 partid;
|
|
u8 coher;
|
|
u8 nasid_shift;
|
|
u8 region_size;
|
|
u16 nasid_mask;
|
|
int nasid_msb;
|
|
|
|
if (obj == objs) {
|
|
seq_printf(s, "# sn_topology version 2\n");
|
|
seq_printf(s, "# objtype ordinal location partition"
|
|
" [attribute value [, ...]]\n");
|
|
|
|
if (ia64_sn_get_sn_info(0,
|
|
&shubtype, &nasid_mask, &nasid_shift, &system_size,
|
|
&sharing_size, &partid, &coher, ®ion_size))
|
|
BUG();
|
|
for (nasid_msb=63; nasid_msb > 0; nasid_msb--) {
|
|
if (((u64)nasid_mask << nasid_shift) & (1ULL << nasid_msb))
|
|
break;
|
|
}
|
|
seq_printf(s, "partition %u %s local "
|
|
"shubtype %s, "
|
|
"nasid_mask 0x%016lx, "
|
|
"nasid_bits %d:%d, "
|
|
"system_size %d, "
|
|
"sharing_size %d, "
|
|
"coherency_domain %d, "
|
|
"region_size %d\n",
|
|
|
|
partid, system_utsname.nodename,
|
|
shubtype ? "shub2" : "shub1",
|
|
(u64)nasid_mask << nasid_shift, nasid_msb, nasid_shift,
|
|
system_size, sharing_size, coher, region_size);
|
|
|
|
print_pci_topology(s);
|
|
}
|
|
|
|
if (SN_HWPERF_FOREIGN(obj)) {
|
|
/* private in another partition: not interesting */
|
|
return 0;
|
|
}
|
|
|
|
for (i = 0; i < SN_HWPERF_MAXSTRING && obj->name[i]; i++) {
|
|
if (obj->name[i] == ' ')
|
|
obj->name[i] = '_';
|
|
}
|
|
|
|
slabname = sn_hwperf_get_slabname(obj, objs, &ordinal);
|
|
seq_printf(s, "%s %d %s %s asic %s", slabname, ordinal, obj->location,
|
|
obj->sn_hwp_this_part ? "local" : "shared", obj->name);
|
|
|
|
if (!SN_HWPERF_IS_NODE(obj) && !SN_HWPERF_IS_IONODE(obj))
|
|
seq_putc(s, '\n');
|
|
else {
|
|
cnodeid_t near_mem = -1;
|
|
cnodeid_t near_cpu = -1;
|
|
|
|
seq_printf(s, ", nasid 0x%x", cnodeid_to_nasid(ordinal));
|
|
|
|
if (sn_hwperf_get_nearest_node_objdata(objs, sn_hwperf_obj_cnt,
|
|
ordinal, &near_mem, &near_cpu) == 0) {
|
|
seq_printf(s, ", near_mem_nodeid %d, near_cpu_nodeid %d",
|
|
near_mem, near_cpu);
|
|
}
|
|
|
|
if (!SN_HWPERF_IS_IONODE(obj)) {
|
|
for_each_online_node(i) {
|
|
seq_printf(s, i ? ":%d" : ", dist %d",
|
|
node_distance(ordinal, i));
|
|
}
|
|
}
|
|
|
|
seq_putc(s, '\n');
|
|
|
|
/*
|
|
* CPUs on this node, if any
|
|
*/
|
|
cpumask = node_to_cpumask(ordinal);
|
|
for_each_online_cpu(i) {
|
|
if (cpu_isset(i, cpumask)) {
|
|
slice = 'a' + cpuid_to_slice(i);
|
|
c = cpu_data(i);
|
|
seq_printf(s, "cpu %d %s%c local"
|
|
" freq %luMHz, arch ia64",
|
|
i, obj->location, slice,
|
|
c->proc_freq / 1000000);
|
|
for_each_online_cpu(j) {
|
|
seq_printf(s, j ? ":%d" : ", dist %d",
|
|
node_distance(
|
|
cpu_to_node(i),
|
|
cpu_to_node(j)));
|
|
}
|
|
seq_putc(s, '\n');
|
|
}
|
|
}
|
|
}
|
|
|
|
if (obj->ports) {
|
|
/*
|
|
* numalink ports
|
|
*/
|
|
sz = obj->ports * sizeof(struct sn_hwperf_port_info);
|
|
if ((ptdata = vmalloc(sz)) == NULL)
|
|
return -ENOMEM;
|
|
e = ia64_sn_hwperf_op(sn_hwperf_master_nasid,
|
|
SN_HWPERF_ENUM_PORTS, obj->id, sz,
|
|
(u64) ptdata, 0, 0, NULL);
|
|
if (e != SN_HWPERF_OP_OK)
|
|
return -EINVAL;
|
|
for (ordinal=0, p=objs; p != obj; p++) {
|
|
if (!SN_HWPERF_FOREIGN(p))
|
|
ordinal += p->ports;
|
|
}
|
|
for (pt = 0; pt < obj->ports; pt++) {
|
|
for (p = objs, i = 0; i < sn_hwperf_obj_cnt; i++, p++) {
|
|
if (ptdata[pt].conn_id == p->id) {
|
|
break;
|
|
}
|
|
}
|
|
seq_printf(s, "numalink %d %s-%d",
|
|
ordinal+pt, obj->location, ptdata[pt].port);
|
|
|
|
if (i >= sn_hwperf_obj_cnt) {
|
|
/* no connection */
|
|
seq_puts(s, " local endpoint disconnected"
|
|
", protocol unknown\n");
|
|
continue;
|
|
}
|
|
|
|
if (obj->sn_hwp_this_part && p->sn_hwp_this_part)
|
|
/* both ends local to this partition */
|
|
seq_puts(s, " local");
|
|
else if (!obj->sn_hwp_this_part && !p->sn_hwp_this_part)
|
|
/* both ends of the link in foreign partiton */
|
|
seq_puts(s, " foreign");
|
|
else
|
|
/* link straddles a partition */
|
|
seq_puts(s, " shared");
|
|
|
|
/*
|
|
* Unlikely, but strictly should query the LLP config
|
|
* registers because an NL4R can be configured to run
|
|
* NL3 protocol, even when not talking to an NL3 router.
|
|
* Ditto for node-node.
|
|
*/
|
|
seq_printf(s, " endpoint %s-%d, protocol %s\n",
|
|
p->location, ptdata[pt].conn_port,
|
|
(SN_HWPERF_IS_NL3ROUTER(obj) ||
|
|
SN_HWPERF_IS_NL3ROUTER(p)) ? "LLP3" : "LLP4");
|
|
}
|
|
vfree(ptdata);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void *sn_topology_start(struct seq_file *s, loff_t * pos)
|
|
{
|
|
struct sn_hwperf_object_info *objs = s->private;
|
|
|
|
if (*pos < sn_hwperf_obj_cnt)
|
|
return (void *)(objs + *pos);
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static void *sn_topology_next(struct seq_file *s, void *v, loff_t * pos)
|
|
{
|
|
++*pos;
|
|
return sn_topology_start(s, pos);
|
|
}
|
|
|
|
static void sn_topology_stop(struct seq_file *m, void *v)
|
|
{
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* /proc/sgi_sn/sn_topology, read-only using seq_file
|
|
*/
|
|
static struct seq_operations sn_topology_seq_ops = {
|
|
.start = sn_topology_start,
|
|
.next = sn_topology_next,
|
|
.stop = sn_topology_stop,
|
|
.show = sn_topology_show
|
|
};
|
|
|
|
struct sn_hwperf_op_info {
|
|
u64 op;
|
|
struct sn_hwperf_ioctl_args *a;
|
|
void *p;
|
|
int *v0;
|
|
int ret;
|
|
};
|
|
|
|
static void sn_hwperf_call_sal(void *info)
|
|
{
|
|
struct sn_hwperf_op_info *op_info = info;
|
|
int r;
|
|
|
|
r = ia64_sn_hwperf_op(sn_hwperf_master_nasid, op_info->op,
|
|
op_info->a->arg, op_info->a->sz,
|
|
(u64) op_info->p, 0, 0, op_info->v0);
|
|
op_info->ret = r;
|
|
}
|
|
|
|
static int sn_hwperf_op_cpu(struct sn_hwperf_op_info *op_info)
|
|
{
|
|
u32 cpu;
|
|
u32 use_ipi;
|
|
int r = 0;
|
|
cpumask_t save_allowed;
|
|
|
|
cpu = (op_info->a->arg & SN_HWPERF_ARG_CPU_MASK) >> 32;
|
|
use_ipi = op_info->a->arg & SN_HWPERF_ARG_USE_IPI_MASK;
|
|
op_info->a->arg &= SN_HWPERF_ARG_OBJID_MASK;
|
|
|
|
if (cpu != SN_HWPERF_ARG_ANY_CPU) {
|
|
if (cpu >= num_online_cpus() || !cpu_online(cpu)) {
|
|
r = -EINVAL;
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
if (cpu == SN_HWPERF_ARG_ANY_CPU || cpu == get_cpu()) {
|
|
/* don't care, or already on correct cpu */
|
|
sn_hwperf_call_sal(op_info);
|
|
}
|
|
else {
|
|
if (use_ipi) {
|
|
/* use an interprocessor interrupt to call SAL */
|
|
smp_call_function_single(cpu, sn_hwperf_call_sal,
|
|
op_info, 1, 1);
|
|
}
|
|
else {
|
|
/* migrate the task before calling SAL */
|
|
save_allowed = current->cpus_allowed;
|
|
set_cpus_allowed(current, cpumask_of_cpu(cpu));
|
|
sn_hwperf_call_sal(op_info);
|
|
set_cpus_allowed(current, save_allowed);
|
|
}
|
|
}
|
|
r = op_info->ret;
|
|
|
|
out:
|
|
return r;
|
|
}
|
|
|
|
/* map SAL hwperf error code to system error code */
|
|
static int sn_hwperf_map_err(int hwperf_err)
|
|
{
|
|
int e;
|
|
|
|
switch(hwperf_err) {
|
|
case SN_HWPERF_OP_OK:
|
|
e = 0;
|
|
break;
|
|
|
|
case SN_HWPERF_OP_NOMEM:
|
|
e = -ENOMEM;
|
|
break;
|
|
|
|
case SN_HWPERF_OP_NO_PERM:
|
|
e = -EPERM;
|
|
break;
|
|
|
|
case SN_HWPERF_OP_IO_ERROR:
|
|
e = -EIO;
|
|
break;
|
|
|
|
case SN_HWPERF_OP_BUSY:
|
|
e = -EBUSY;
|
|
break;
|
|
|
|
case SN_HWPERF_OP_RECONFIGURE:
|
|
e = -EAGAIN;
|
|
break;
|
|
|
|
case SN_HWPERF_OP_INVAL:
|
|
default:
|
|
e = -EINVAL;
|
|
break;
|
|
}
|
|
|
|
return e;
|
|
}
|
|
|
|
/*
|
|
* ioctl for "sn_hwperf" misc device
|
|
*/
|
|
static int
|
|
sn_hwperf_ioctl(struct inode *in, struct file *fp, u32 op, u64 arg)
|
|
{
|
|
struct sn_hwperf_ioctl_args a;
|
|
struct cpuinfo_ia64 *cdata;
|
|
struct sn_hwperf_object_info *objs;
|
|
struct sn_hwperf_object_info *cpuobj;
|
|
struct sn_hwperf_op_info op_info;
|
|
void *p = NULL;
|
|
int nobj;
|
|
char slice;
|
|
int node;
|
|
int r;
|
|
int v0;
|
|
int i;
|
|
int j;
|
|
|
|
unlock_kernel();
|
|
|
|
/* only user requests are allowed here */
|
|
if ((op & SN_HWPERF_OP_MASK) < 10) {
|
|
r = -EINVAL;
|
|
goto error;
|
|
}
|
|
r = copy_from_user(&a, (const void __user *)arg,
|
|
sizeof(struct sn_hwperf_ioctl_args));
|
|
if (r != 0) {
|
|
r = -EFAULT;
|
|
goto error;
|
|
}
|
|
|
|
/*
|
|
* Allocate memory to hold a kernel copy of the user buffer. The
|
|
* buffer contents are either copied in or out (or both) of user
|
|
* space depending on the flags encoded in the requested operation.
|
|
*/
|
|
if (a.ptr) {
|
|
p = vmalloc(a.sz);
|
|
if (!p) {
|
|
r = -ENOMEM;
|
|
goto error;
|
|
}
|
|
}
|
|
|
|
if (op & SN_HWPERF_OP_MEM_COPYIN) {
|
|
r = copy_from_user(p, (const void __user *)a.ptr, a.sz);
|
|
if (r != 0) {
|
|
r = -EFAULT;
|
|
goto error;
|
|
}
|
|
}
|
|
|
|
switch (op) {
|
|
case SN_HWPERF_GET_CPU_INFO:
|
|
if (a.sz == sizeof(u64)) {
|
|
/* special case to get size needed */
|
|
*(u64 *) p = (u64) num_online_cpus() *
|
|
sizeof(struct sn_hwperf_object_info);
|
|
} else
|
|
if (a.sz < num_online_cpus() * sizeof(struct sn_hwperf_object_info)) {
|
|
r = -ENOMEM;
|
|
goto error;
|
|
} else
|
|
if ((r = sn_hwperf_enum_objects(&nobj, &objs)) == 0) {
|
|
memset(p, 0, a.sz);
|
|
for (i = 0; i < nobj; i++) {
|
|
if (!SN_HWPERF_IS_NODE(objs + i))
|
|
continue;
|
|
node = sn_hwperf_obj_to_cnode(objs + i);
|
|
for_each_online_cpu(j) {
|
|
if (node != cpu_to_node(j))
|
|
continue;
|
|
cpuobj = (struct sn_hwperf_object_info *) p + j;
|
|
slice = 'a' + cpuid_to_slice(j);
|
|
cdata = cpu_data(j);
|
|
cpuobj->id = j;
|
|
snprintf(cpuobj->name,
|
|
sizeof(cpuobj->name),
|
|
"CPU %luMHz %s",
|
|
cdata->proc_freq / 1000000,
|
|
cdata->vendor);
|
|
snprintf(cpuobj->location,
|
|
sizeof(cpuobj->location),
|
|
"%s%c", objs[i].location,
|
|
slice);
|
|
}
|
|
}
|
|
|
|
vfree(objs);
|
|
}
|
|
break;
|
|
|
|
case SN_HWPERF_GET_NODE_NASID:
|
|
if (a.sz != sizeof(u64) ||
|
|
(node = a.arg) < 0 || !node_possible(node)) {
|
|
r = -EINVAL;
|
|
goto error;
|
|
}
|
|
*(u64 *)p = (u64)cnodeid_to_nasid(node);
|
|
break;
|
|
|
|
case SN_HWPERF_GET_OBJ_NODE:
|
|
if (a.sz != sizeof(u64) || a.arg < 0) {
|
|
r = -EINVAL;
|
|
goto error;
|
|
}
|
|
if ((r = sn_hwperf_enum_objects(&nobj, &objs)) == 0) {
|
|
if (a.arg >= nobj) {
|
|
r = -EINVAL;
|
|
vfree(objs);
|
|
goto error;
|
|
}
|
|
if (objs[(i = a.arg)].id != a.arg) {
|
|
for (i = 0; i < nobj; i++) {
|
|
if (objs[i].id == a.arg)
|
|
break;
|
|
}
|
|
}
|
|
if (i == nobj) {
|
|
r = -EINVAL;
|
|
vfree(objs);
|
|
goto error;
|
|
}
|
|
|
|
if (!SN_HWPERF_IS_NODE(objs + i) &&
|
|
!SN_HWPERF_IS_IONODE(objs + i)) {
|
|
r = -ENOENT;
|
|
vfree(objs);
|
|
goto error;
|
|
}
|
|
|
|
*(u64 *)p = (u64)sn_hwperf_obj_to_cnode(objs + i);
|
|
vfree(objs);
|
|
}
|
|
break;
|
|
|
|
case SN_HWPERF_GET_MMRS:
|
|
case SN_HWPERF_SET_MMRS:
|
|
case SN_HWPERF_OBJECT_DISTANCE:
|
|
op_info.p = p;
|
|
op_info.a = &a;
|
|
op_info.v0 = &v0;
|
|
op_info.op = op;
|
|
r = sn_hwperf_op_cpu(&op_info);
|
|
if (r) {
|
|
r = sn_hwperf_map_err(r);
|
|
a.v0 = v0;
|
|
goto error;
|
|
}
|
|
break;
|
|
|
|
default:
|
|
/* all other ops are a direct SAL call */
|
|
r = ia64_sn_hwperf_op(sn_hwperf_master_nasid, op,
|
|
a.arg, a.sz, (u64) p, 0, 0, &v0);
|
|
if (r) {
|
|
r = sn_hwperf_map_err(r);
|
|
goto error;
|
|
}
|
|
a.v0 = v0;
|
|
break;
|
|
}
|
|
|
|
if (op & SN_HWPERF_OP_MEM_COPYOUT) {
|
|
r = copy_to_user((void __user *)a.ptr, p, a.sz);
|
|
if (r != 0) {
|
|
r = -EFAULT;
|
|
goto error;
|
|
}
|
|
}
|
|
|
|
error:
|
|
vfree(p);
|
|
|
|
lock_kernel();
|
|
return r;
|
|
}
|
|
|
|
static struct file_operations sn_hwperf_fops = {
|
|
.ioctl = sn_hwperf_ioctl,
|
|
};
|
|
|
|
static struct miscdevice sn_hwperf_dev = {
|
|
MISC_DYNAMIC_MINOR,
|
|
"sn_hwperf",
|
|
&sn_hwperf_fops
|
|
};
|
|
|
|
static int sn_hwperf_init(void)
|
|
{
|
|
u64 v;
|
|
int salr;
|
|
int e = 0;
|
|
|
|
/* single threaded, once-only initialization */
|
|
down(&sn_hwperf_init_mutex);
|
|
|
|
if (sn_hwperf_salheap) {
|
|
up(&sn_hwperf_init_mutex);
|
|
return e;
|
|
}
|
|
|
|
/*
|
|
* The PROM code needs a fixed reference node. For convenience the
|
|
* same node as the console I/O is used.
|
|
*/
|
|
sn_hwperf_master_nasid = (nasid_t) ia64_sn_get_console_nasid();
|
|
|
|
/*
|
|
* Request the needed size and install the PROM scratch area.
|
|
* The PROM keeps various tracking bits in this memory area.
|
|
*/
|
|
salr = ia64_sn_hwperf_op(sn_hwperf_master_nasid,
|
|
(u64) SN_HWPERF_GET_HEAPSIZE, 0,
|
|
(u64) sizeof(u64), (u64) &v, 0, 0, NULL);
|
|
if (salr != SN_HWPERF_OP_OK) {
|
|
e = -EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
if ((sn_hwperf_salheap = vmalloc(v)) == NULL) {
|
|
e = -ENOMEM;
|
|
goto out;
|
|
}
|
|
salr = ia64_sn_hwperf_op(sn_hwperf_master_nasid,
|
|
SN_HWPERF_INSTALL_HEAP, 0, v,
|
|
(u64) sn_hwperf_salheap, 0, 0, NULL);
|
|
if (salr != SN_HWPERF_OP_OK) {
|
|
e = -EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
salr = ia64_sn_hwperf_op(sn_hwperf_master_nasid,
|
|
SN_HWPERF_OBJECT_COUNT, 0,
|
|
sizeof(u64), (u64) &v, 0, 0, NULL);
|
|
if (salr != SN_HWPERF_OP_OK) {
|
|
e = -EINVAL;
|
|
goto out;
|
|
}
|
|
sn_hwperf_obj_cnt = (int)v;
|
|
|
|
out:
|
|
if (e < 0 && sn_hwperf_salheap) {
|
|
vfree(sn_hwperf_salheap);
|
|
sn_hwperf_salheap = NULL;
|
|
sn_hwperf_obj_cnt = 0;
|
|
}
|
|
up(&sn_hwperf_init_mutex);
|
|
return e;
|
|
}
|
|
|
|
int sn_topology_open(struct inode *inode, struct file *file)
|
|
{
|
|
int e;
|
|
struct seq_file *seq;
|
|
struct sn_hwperf_object_info *objbuf;
|
|
int nobj;
|
|
|
|
if ((e = sn_hwperf_enum_objects(&nobj, &objbuf)) == 0) {
|
|
e = seq_open(file, &sn_topology_seq_ops);
|
|
seq = file->private_data;
|
|
seq->private = objbuf;
|
|
}
|
|
|
|
return e;
|
|
}
|
|
|
|
int sn_topology_release(struct inode *inode, struct file *file)
|
|
{
|
|
struct seq_file *seq = file->private_data;
|
|
|
|
vfree(seq->private);
|
|
return seq_release(inode, file);
|
|
}
|
|
|
|
int sn_hwperf_get_nearest_node(cnodeid_t node,
|
|
cnodeid_t *near_mem_node, cnodeid_t *near_cpu_node)
|
|
{
|
|
int e;
|
|
int nobj;
|
|
struct sn_hwperf_object_info *objbuf;
|
|
|
|
if ((e = sn_hwperf_enum_objects(&nobj, &objbuf)) == 0) {
|
|
e = sn_hwperf_get_nearest_node_objdata(objbuf, nobj,
|
|
node, near_mem_node, near_cpu_node);
|
|
vfree(objbuf);
|
|
}
|
|
|
|
return e;
|
|
}
|
|
|
|
static int __devinit sn_hwperf_misc_register_init(void)
|
|
{
|
|
int e;
|
|
|
|
sn_hwperf_init();
|
|
|
|
/*
|
|
* Register a dynamic misc device for hwperf ioctls. Platforms
|
|
* supporting hotplug will create /dev/sn_hwperf, else user
|
|
* can to look up the minor number in /proc/misc.
|
|
*/
|
|
if ((e = misc_register(&sn_hwperf_dev)) != 0) {
|
|
printk(KERN_ERR "sn_hwperf_misc_register_init: failed to "
|
|
"register misc device for \"%s\"\n", sn_hwperf_dev.name);
|
|
}
|
|
|
|
return e;
|
|
}
|
|
|
|
device_initcall(sn_hwperf_misc_register_init); /* after misc_init() */
|
|
EXPORT_SYMBOL(sn_hwperf_get_nearest_node);
|