kernel-ark/net/lapb/lapb_in.c
Tejun Heo 5a0e3ad6af include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h
percpu.h is included by sched.h and module.h and thus ends up being
included when building most .c files.  percpu.h includes slab.h which
in turn includes gfp.h making everything defined by the two files
universally available and complicating inclusion dependencies.

percpu.h -> slab.h dependency is about to be removed.  Prepare for
this change by updating users of gfp and slab facilities include those
headers directly instead of assuming availability.  As this conversion
needs to touch large number of source files, the following script is
used as the basis of conversion.

  http://userweb.kernel.org/~tj/misc/slabh-sweep.py

The script does the followings.

* Scan files for gfp and slab usages and update includes such that
  only the necessary includes are there.  ie. if only gfp is used,
  gfp.h, if slab is used, slab.h.

* When the script inserts a new include, it looks at the include
  blocks and try to put the new include such that its order conforms
  to its surrounding.  It's put in the include block which contains
  core kernel includes, in the same order that the rest are ordered -
  alphabetical, Christmas tree, rev-Xmas-tree or at the end if there
  doesn't seem to be any matching order.

* If the script can't find a place to put a new include (mostly
  because the file doesn't have fitting include block), it prints out
  an error message indicating which .h file needs to be added to the
  file.

The conversion was done in the following steps.

1. The initial automatic conversion of all .c files updated slightly
   over 4000 files, deleting around 700 includes and adding ~480 gfp.h
   and ~3000 slab.h inclusions.  The script emitted errors for ~400
   files.

2. Each error was manually checked.  Some didn't need the inclusion,
   some needed manual addition while adding it to implementation .h or
   embedding .c file was more appropriate for others.  This step added
   inclusions to around 150 files.

3. The script was run again and the output was compared to the edits
   from #2 to make sure no file was left behind.

4. Several build tests were done and a couple of problems were fixed.
   e.g. lib/decompress_*.c used malloc/free() wrappers around slab
   APIs requiring slab.h to be added manually.

5. The script was run on all .h files but without automatically
   editing them as sprinkling gfp.h and slab.h inclusions around .h
   files could easily lead to inclusion dependency hell.  Most gfp.h
   inclusion directives were ignored as stuff from gfp.h was usually
   wildly available and often used in preprocessor macros.  Each
   slab.h inclusion directive was examined and added manually as
   necessary.

6. percpu.h was updated not to include slab.h.

7. Build test were done on the following configurations and failures
   were fixed.  CONFIG_GCOV_KERNEL was turned off for all tests (as my
   distributed build env didn't work with gcov compiles) and a few
   more options had to be turned off depending on archs to make things
   build (like ipr on powerpc/64 which failed due to missing writeq).

   * x86 and x86_64 UP and SMP allmodconfig and a custom test config.
   * powerpc and powerpc64 SMP allmodconfig
   * sparc and sparc64 SMP allmodconfig
   * ia64 SMP allmodconfig
   * s390 SMP allmodconfig
   * alpha SMP allmodconfig
   * um on x86_64 SMP allmodconfig

8. percpu.h modifications were reverted so that it could be applied as
   a separate patch and serve as bisection point.

Given the fact that I had only a couple of failures from tests on step
6, I'm fairly confident about the coverage of this conversion patch.
If there is a breakage, it's likely to be something in one of the arch
headers which should be easily discoverable easily on most builds of
the specific arch.

Signed-off-by: Tejun Heo <tj@kernel.org>
Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-30 22:02:32 +09:00

725 lines
18 KiB
C

/*
* LAPB release 002
*
* This code REQUIRES 2.1.15 or higher/ NET3.038
*
* This module:
* This module is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*
* History
* LAPB 001 Jonathan Naulor Started Coding
* LAPB 002 Jonathan Naylor New timer architecture.
* 2000-10-29 Henner Eisen lapb_data_indication() return status.
*/
#include <linux/errno.h>
#include <linux/types.h>
#include <linux/socket.h>
#include <linux/in.h>
#include <linux/kernel.h>
#include <linux/timer.h>
#include <linux/string.h>
#include <linux/sockios.h>
#include <linux/net.h>
#include <linux/inet.h>
#include <linux/netdevice.h>
#include <linux/skbuff.h>
#include <linux/slab.h>
#include <net/sock.h>
#include <asm/uaccess.h>
#include <asm/system.h>
#include <linux/fcntl.h>
#include <linux/mm.h>
#include <linux/interrupt.h>
#include <net/lapb.h>
/*
* State machine for state 0, Disconnected State.
* The handling of the timer(s) is in file lapb_timer.c.
*/
static void lapb_state0_machine(struct lapb_cb *lapb, struct sk_buff *skb,
struct lapb_frame *frame)
{
switch (frame->type) {
case LAPB_SABM:
#if LAPB_DEBUG > 1
printk(KERN_DEBUG "lapb: (%p) S0 RX SABM(%d)\n",
lapb->dev, frame->pf);
#endif
if (lapb->mode & LAPB_EXTENDED) {
#if LAPB_DEBUG > 1
printk(KERN_DEBUG "lapb: (%p) S0 TX DM(%d)\n",
lapb->dev, frame->pf);
#endif
lapb_send_control(lapb, LAPB_DM, frame->pf,
LAPB_RESPONSE);
} else {
#if LAPB_DEBUG > 1
printk(KERN_DEBUG "lapb: (%p) S0 TX UA(%d)\n",
lapb->dev, frame->pf);
#endif
#if LAPB_DEBUG > 0
printk(KERN_DEBUG "lapb: (%p) S0 -> S3\n",
lapb->dev);
#endif
lapb_send_control(lapb, LAPB_UA, frame->pf,
LAPB_RESPONSE);
lapb_stop_t1timer(lapb);
lapb_stop_t2timer(lapb);
lapb->state = LAPB_STATE_3;
lapb->condition = 0x00;
lapb->n2count = 0;
lapb->vs = 0;
lapb->vr = 0;
lapb->va = 0;
lapb_connect_indication(lapb, LAPB_OK);
}
break;
case LAPB_SABME:
#if LAPB_DEBUG > 1
printk(KERN_DEBUG "lapb: (%p) S0 RX SABME(%d)\n",
lapb->dev, frame->pf);
#endif
if (lapb->mode & LAPB_EXTENDED) {
#if LAPB_DEBUG > 1
printk(KERN_DEBUG "lapb: (%p) S0 TX UA(%d)\n",
lapb->dev, frame->pf);
#endif
#if LAPB_DEBUG > 0
printk(KERN_DEBUG "lapb: (%p) S0 -> S3\n",
lapb->dev);
#endif
lapb_send_control(lapb, LAPB_UA, frame->pf,
LAPB_RESPONSE);
lapb_stop_t1timer(lapb);
lapb_stop_t2timer(lapb);
lapb->state = LAPB_STATE_3;
lapb->condition = 0x00;
lapb->n2count = 0;
lapb->vs = 0;
lapb->vr = 0;
lapb->va = 0;
lapb_connect_indication(lapb, LAPB_OK);
} else {
#if LAPB_DEBUG > 1
printk(KERN_DEBUG "lapb: (%p) S0 TX DM(%d)\n",
lapb->dev, frame->pf);
#endif
lapb_send_control(lapb, LAPB_DM, frame->pf,
LAPB_RESPONSE);
}
break;
case LAPB_DISC:
#if LAPB_DEBUG > 1
printk(KERN_DEBUG "lapb: (%p) S0 RX DISC(%d)\n",
lapb->dev, frame->pf);
printk(KERN_DEBUG "lapb: (%p) S0 TX UA(%d)\n",
lapb->dev, frame->pf);
#endif
lapb_send_control(lapb, LAPB_UA, frame->pf,
LAPB_RESPONSE);
break;
default:
break;
}
kfree_skb(skb);
}
/*
* State machine for state 1, Awaiting Connection State.
* The handling of the timer(s) is in file lapb_timer.c.
*/
static void lapb_state1_machine(struct lapb_cb *lapb, struct sk_buff *skb,
struct lapb_frame *frame)
{
switch (frame->type) {
case LAPB_SABM:
#if LAPB_DEBUG > 1
printk(KERN_DEBUG "lapb: (%p) S1 RX SABM(%d)\n",
lapb->dev, frame->pf);
#endif
if (lapb->mode & LAPB_EXTENDED) {
#if LAPB_DEBUG > 1
printk(KERN_DEBUG "lapb: (%p) S1 TX DM(%d)\n",
lapb->dev, frame->pf);
#endif
lapb_send_control(lapb, LAPB_DM, frame->pf,
LAPB_RESPONSE);
} else {
#if LAPB_DEBUG > 1
printk(KERN_DEBUG "lapb: (%p) S1 TX UA(%d)\n",
lapb->dev, frame->pf);
#endif
lapb_send_control(lapb, LAPB_UA, frame->pf,
LAPB_RESPONSE);
}
break;
case LAPB_SABME:
#if LAPB_DEBUG > 1
printk(KERN_DEBUG "lapb: (%p) S1 RX SABME(%d)\n",
lapb->dev, frame->pf);
#endif
if (lapb->mode & LAPB_EXTENDED) {
#if LAPB_DEBUG > 1
printk(KERN_DEBUG "lapb: (%p) S1 TX UA(%d)\n",
lapb->dev, frame->pf);
#endif
lapb_send_control(lapb, LAPB_UA, frame->pf,
LAPB_RESPONSE);
} else {
#if LAPB_DEBUG > 1
printk(KERN_DEBUG "lapb: (%p) S1 TX DM(%d)\n",
lapb->dev, frame->pf);
#endif
lapb_send_control(lapb, LAPB_DM, frame->pf,
LAPB_RESPONSE);
}
break;
case LAPB_DISC:
#if LAPB_DEBUG > 1
printk(KERN_DEBUG "lapb: (%p) S1 RX DISC(%d)\n",
lapb->dev, frame->pf);
printk(KERN_DEBUG "lapb: (%p) S1 TX DM(%d)\n",
lapb->dev, frame->pf);
#endif
lapb_send_control(lapb, LAPB_DM, frame->pf,
LAPB_RESPONSE);
break;
case LAPB_UA:
#if LAPB_DEBUG > 1
printk(KERN_DEBUG "lapb: (%p) S1 RX UA(%d)\n",
lapb->dev, frame->pf);
#endif
if (frame->pf) {
#if LAPB_DEBUG > 0
printk(KERN_DEBUG "lapb: (%p) S1 -> S3\n",
lapb->dev);
#endif
lapb_stop_t1timer(lapb);
lapb_stop_t2timer(lapb);
lapb->state = LAPB_STATE_3;
lapb->condition = 0x00;
lapb->n2count = 0;
lapb->vs = 0;
lapb->vr = 0;
lapb->va = 0;
lapb_connect_confirmation(lapb, LAPB_OK);
}
break;
case LAPB_DM:
#if LAPB_DEBUG > 1
printk(KERN_DEBUG "lapb: (%p) S1 RX DM(%d)\n",
lapb->dev, frame->pf);
#endif
if (frame->pf) {
#if LAPB_DEBUG > 0
printk(KERN_DEBUG "lapb: (%p) S1 -> S0\n",
lapb->dev);
#endif
lapb_clear_queues(lapb);
lapb->state = LAPB_STATE_0;
lapb_start_t1timer(lapb);
lapb_stop_t2timer(lapb);
lapb_disconnect_indication(lapb, LAPB_REFUSED);
}
break;
}
kfree_skb(skb);
}
/*
* State machine for state 2, Awaiting Release State.
* The handling of the timer(s) is in file lapb_timer.c
*/
static void lapb_state2_machine(struct lapb_cb *lapb, struct sk_buff *skb,
struct lapb_frame *frame)
{
switch (frame->type) {
case LAPB_SABM:
case LAPB_SABME:
#if LAPB_DEBUG > 1
printk(KERN_DEBUG "lapb: (%p) S2 RX {SABM,SABME}(%d)\n",
lapb->dev, frame->pf);
printk(KERN_DEBUG "lapb: (%p) S2 TX DM(%d)\n",
lapb->dev, frame->pf);
#endif
lapb_send_control(lapb, LAPB_DM, frame->pf,
LAPB_RESPONSE);
break;
case LAPB_DISC:
#if LAPB_DEBUG > 1
printk(KERN_DEBUG "lapb: (%p) S2 RX DISC(%d)\n",
lapb->dev, frame->pf);
printk(KERN_DEBUG "lapb: (%p) S2 TX UA(%d)\n",
lapb->dev, frame->pf);
#endif
lapb_send_control(lapb, LAPB_UA, frame->pf,
LAPB_RESPONSE);
break;
case LAPB_UA:
#if LAPB_DEBUG > 1
printk(KERN_DEBUG "lapb: (%p) S2 RX UA(%d)\n",
lapb->dev, frame->pf);
#endif
if (frame->pf) {
#if LAPB_DEBUG > 0
printk(KERN_DEBUG "lapb: (%p) S2 -> S0\n",
lapb->dev);
#endif
lapb->state = LAPB_STATE_0;
lapb_start_t1timer(lapb);
lapb_stop_t2timer(lapb);
lapb_disconnect_confirmation(lapb, LAPB_OK);
}
break;
case LAPB_DM:
#if LAPB_DEBUG > 1
printk(KERN_DEBUG "lapb: (%p) S2 RX DM(%d)\n",
lapb->dev, frame->pf);
#endif
if (frame->pf) {
#if LAPB_DEBUG > 0
printk(KERN_DEBUG "lapb: (%p) S2 -> S0\n",
lapb->dev);
#endif
lapb->state = LAPB_STATE_0;
lapb_start_t1timer(lapb);
lapb_stop_t2timer(lapb);
lapb_disconnect_confirmation(lapb,
LAPB_NOTCONNECTED);
}
break;
case LAPB_I:
case LAPB_REJ:
case LAPB_RNR:
case LAPB_RR:
#if LAPB_DEBUG > 1
printk(KERN_DEBUG "lapb: (%p) S2 RX {I,REJ,RNR,RR}"
"(%d)\n", lapb->dev, frame->pf);
printk(KERN_DEBUG "lapb: (%p) S2 RX DM(%d)\n",
lapb->dev, frame->pf);
#endif
if (frame->pf)
lapb_send_control(lapb, LAPB_DM, frame->pf,
LAPB_RESPONSE);
break;
}
kfree_skb(skb);
}
/*
* State machine for state 3, Connected State.
* The handling of the timer(s) is in file lapb_timer.c
*/
static void lapb_state3_machine(struct lapb_cb *lapb, struct sk_buff *skb,
struct lapb_frame *frame)
{
int queued = 0;
int modulus = (lapb->mode & LAPB_EXTENDED) ? LAPB_EMODULUS :
LAPB_SMODULUS;
switch (frame->type) {
case LAPB_SABM:
#if LAPB_DEBUG > 1
printk(KERN_DEBUG "lapb: (%p) S3 RX SABM(%d)\n",
lapb->dev, frame->pf);
#endif
if (lapb->mode & LAPB_EXTENDED) {
#if LAPB_DEBUG > 1
printk(KERN_DEBUG "lapb: (%p) S3 TX DM(%d)\n",
lapb->dev, frame->pf);
#endif
lapb_send_control(lapb, LAPB_DM, frame->pf,
LAPB_RESPONSE);
} else {
#if LAPB_DEBUG > 1
printk(KERN_DEBUG "lapb: (%p) S3 TX UA(%d)\n",
lapb->dev, frame->pf);
#endif
lapb_send_control(lapb, LAPB_UA, frame->pf,
LAPB_RESPONSE);
lapb_stop_t1timer(lapb);
lapb_stop_t2timer(lapb);
lapb->condition = 0x00;
lapb->n2count = 0;
lapb->vs = 0;
lapb->vr = 0;
lapb->va = 0;
lapb_requeue_frames(lapb);
}
break;
case LAPB_SABME:
#if LAPB_DEBUG > 1
printk(KERN_DEBUG "lapb: (%p) S3 RX SABME(%d)\n",
lapb->dev, frame->pf);
#endif
if (lapb->mode & LAPB_EXTENDED) {
#if LAPB_DEBUG > 1
printk(KERN_DEBUG "lapb: (%p) S3 TX UA(%d)\n",
lapb->dev, frame->pf);
#endif
lapb_send_control(lapb, LAPB_UA, frame->pf,
LAPB_RESPONSE);
lapb_stop_t1timer(lapb);
lapb_stop_t2timer(lapb);
lapb->condition = 0x00;
lapb->n2count = 0;
lapb->vs = 0;
lapb->vr = 0;
lapb->va = 0;
lapb_requeue_frames(lapb);
} else {
#if LAPB_DEBUG > 1
printk(KERN_DEBUG "lapb: (%p) S3 TX DM(%d)\n",
lapb->dev, frame->pf);
#endif
lapb_send_control(lapb, LAPB_DM, frame->pf,
LAPB_RESPONSE);
}
break;
case LAPB_DISC:
#if LAPB_DEBUG > 1
printk(KERN_DEBUG "lapb: (%p) S3 RX DISC(%d)\n",
lapb->dev, frame->pf);
#endif
#if LAPB_DEBUG > 0
printk(KERN_DEBUG "lapb: (%p) S3 -> S0\n",
lapb->dev);
#endif
lapb_clear_queues(lapb);
lapb_send_control(lapb, LAPB_UA, frame->pf,
LAPB_RESPONSE);
lapb_start_t1timer(lapb);
lapb_stop_t2timer(lapb);
lapb->state = LAPB_STATE_0;
lapb_disconnect_indication(lapb, LAPB_OK);
break;
case LAPB_DM:
#if LAPB_DEBUG > 1
printk(KERN_DEBUG "lapb: (%p) S3 RX DM(%d)\n",
lapb->dev, frame->pf);
#endif
#if LAPB_DEBUG > 0
printk(KERN_DEBUG "lapb: (%p) S3 -> S0\n",
lapb->dev);
#endif
lapb_clear_queues(lapb);
lapb->state = LAPB_STATE_0;
lapb_start_t1timer(lapb);
lapb_stop_t2timer(lapb);
lapb_disconnect_indication(lapb, LAPB_NOTCONNECTED);
break;
case LAPB_RNR:
#if LAPB_DEBUG > 1
printk(KERN_DEBUG "lapb: (%p) S3 RX RNR(%d) R%d\n",
lapb->dev, frame->pf, frame->nr);
#endif
lapb->condition |= LAPB_PEER_RX_BUSY_CONDITION;
lapb_check_need_response(lapb, frame->cr, frame->pf);
if (lapb_validate_nr(lapb, frame->nr)) {
lapb_check_iframes_acked(lapb, frame->nr);
} else {
lapb->frmr_data = *frame;
lapb->frmr_type = LAPB_FRMR_Z;
lapb_transmit_frmr(lapb);
#if LAPB_DEBUG > 0
printk(KERN_DEBUG "lapb: (%p) S3 -> S4\n",
lapb->dev);
#endif
lapb_start_t1timer(lapb);
lapb_stop_t2timer(lapb);
lapb->state = LAPB_STATE_4;
lapb->n2count = 0;
}
break;
case LAPB_RR:
#if LAPB_DEBUG > 1
printk(KERN_DEBUG "lapb: (%p) S3 RX RR(%d) R%d\n",
lapb->dev, frame->pf, frame->nr);
#endif
lapb->condition &= ~LAPB_PEER_RX_BUSY_CONDITION;
lapb_check_need_response(lapb, frame->cr, frame->pf);
if (lapb_validate_nr(lapb, frame->nr)) {
lapb_check_iframes_acked(lapb, frame->nr);
} else {
lapb->frmr_data = *frame;
lapb->frmr_type = LAPB_FRMR_Z;
lapb_transmit_frmr(lapb);
#if LAPB_DEBUG > 0
printk(KERN_DEBUG "lapb: (%p) S3 -> S4\n",
lapb->dev);
#endif
lapb_start_t1timer(lapb);
lapb_stop_t2timer(lapb);
lapb->state = LAPB_STATE_4;
lapb->n2count = 0;
}
break;
case LAPB_REJ:
#if LAPB_DEBUG > 1
printk(KERN_DEBUG "lapb: (%p) S3 RX REJ(%d) R%d\n",
lapb->dev, frame->pf, frame->nr);
#endif
lapb->condition &= ~LAPB_PEER_RX_BUSY_CONDITION;
lapb_check_need_response(lapb, frame->cr, frame->pf);
if (lapb_validate_nr(lapb, frame->nr)) {
lapb_frames_acked(lapb, frame->nr);
lapb_stop_t1timer(lapb);
lapb->n2count = 0;
lapb_requeue_frames(lapb);
} else {
lapb->frmr_data = *frame;
lapb->frmr_type = LAPB_FRMR_Z;
lapb_transmit_frmr(lapb);
#if LAPB_DEBUG > 0
printk(KERN_DEBUG "lapb: (%p) S3 -> S4\n",
lapb->dev);
#endif
lapb_start_t1timer(lapb);
lapb_stop_t2timer(lapb);
lapb->state = LAPB_STATE_4;
lapb->n2count = 0;
}
break;
case LAPB_I:
#if LAPB_DEBUG > 1
printk(KERN_DEBUG "lapb: (%p) S3 RX I(%d) S%d R%d\n",
lapb->dev, frame->pf, frame->ns, frame->nr);
#endif
if (!lapb_validate_nr(lapb, frame->nr)) {
lapb->frmr_data = *frame;
lapb->frmr_type = LAPB_FRMR_Z;
lapb_transmit_frmr(lapb);
#if LAPB_DEBUG > 0
printk(KERN_DEBUG "lapb: (%p) S3 -> S4\n",
lapb->dev);
#endif
lapb_start_t1timer(lapb);
lapb_stop_t2timer(lapb);
lapb->state = LAPB_STATE_4;
lapb->n2count = 0;
break;
}
if (lapb->condition & LAPB_PEER_RX_BUSY_CONDITION)
lapb_frames_acked(lapb, frame->nr);
else
lapb_check_iframes_acked(lapb, frame->nr);
if (frame->ns == lapb->vr) {
int cn;
cn = lapb_data_indication(lapb, skb);
queued = 1;
/*
* If upper layer has dropped the frame, we
* basically ignore any further protocol
* processing. This will cause the peer
* to re-transmit the frame later like
* a frame lost on the wire.
*/
if (cn == NET_RX_DROP) {
printk(KERN_DEBUG
"LAPB: rx congestion\n");
break;
}
lapb->vr = (lapb->vr + 1) % modulus;
lapb->condition &= ~LAPB_REJECT_CONDITION;
if (frame->pf)
lapb_enquiry_response(lapb);
else {
if (!(lapb->condition &
LAPB_ACK_PENDING_CONDITION)) {
lapb->condition |= LAPB_ACK_PENDING_CONDITION;
lapb_start_t2timer(lapb);
}
}
} else {
if (lapb->condition & LAPB_REJECT_CONDITION) {
if (frame->pf)
lapb_enquiry_response(lapb);
} else {
#if LAPB_DEBUG > 1
printk(KERN_DEBUG
"lapb: (%p) S3 TX REJ(%d) R%d\n",
lapb->dev, frame->pf, lapb->vr);
#endif
lapb->condition |= LAPB_REJECT_CONDITION;
lapb_send_control(lapb, LAPB_REJ,
frame->pf,
LAPB_RESPONSE);
lapb->condition &= ~LAPB_ACK_PENDING_CONDITION;
}
}
break;
case LAPB_FRMR:
#if LAPB_DEBUG > 1
printk(KERN_DEBUG "lapb: (%p) S3 RX FRMR(%d) %02X "
"%02X %02X %02X %02X\n", lapb->dev, frame->pf,
skb->data[0], skb->data[1], skb->data[2],
skb->data[3], skb->data[4]);
#endif
lapb_establish_data_link(lapb);
#if LAPB_DEBUG > 0
printk(KERN_DEBUG "lapb: (%p) S3 -> S1\n",
lapb->dev);
#endif
lapb_requeue_frames(lapb);
lapb->state = LAPB_STATE_1;
break;
case LAPB_ILLEGAL:
#if LAPB_DEBUG > 1
printk(KERN_DEBUG "lapb: (%p) S3 RX ILLEGAL(%d)\n",
lapb->dev, frame->pf);
#endif
lapb->frmr_data = *frame;
lapb->frmr_type = LAPB_FRMR_W;
lapb_transmit_frmr(lapb);
#if LAPB_DEBUG > 0
printk(KERN_DEBUG "lapb: (%p) S3 -> S4\n", lapb->dev);
#endif
lapb_start_t1timer(lapb);
lapb_stop_t2timer(lapb);
lapb->state = LAPB_STATE_4;
lapb->n2count = 0;
break;
}
if (!queued)
kfree_skb(skb);
}
/*
* State machine for state 4, Frame Reject State.
* The handling of the timer(s) is in file lapb_timer.c.
*/
static void lapb_state4_machine(struct lapb_cb *lapb, struct sk_buff *skb,
struct lapb_frame *frame)
{
switch (frame->type) {
case LAPB_SABM:
#if LAPB_DEBUG > 1
printk(KERN_DEBUG "lapb: (%p) S4 RX SABM(%d)\n",
lapb->dev, frame->pf);
#endif
if (lapb->mode & LAPB_EXTENDED) {
#if LAPB_DEBUG > 1
printk(KERN_DEBUG "lapb: (%p) S4 TX DM(%d)\n",
lapb->dev, frame->pf);
#endif
lapb_send_control(lapb, LAPB_DM, frame->pf,
LAPB_RESPONSE);
} else {
#if LAPB_DEBUG > 1
printk(KERN_DEBUG "lapb: (%p) S4 TX UA(%d)\n",
lapb->dev, frame->pf);
#endif
#if LAPB_DEBUG > 0
printk(KERN_DEBUG "lapb: (%p) S4 -> S3\n",
lapb->dev);
#endif
lapb_send_control(lapb, LAPB_UA, frame->pf,
LAPB_RESPONSE);
lapb_stop_t1timer(lapb);
lapb_stop_t2timer(lapb);
lapb->state = LAPB_STATE_3;
lapb->condition = 0x00;
lapb->n2count = 0;
lapb->vs = 0;
lapb->vr = 0;
lapb->va = 0;
lapb_connect_indication(lapb, LAPB_OK);
}
break;
case LAPB_SABME:
#if LAPB_DEBUG > 1
printk(KERN_DEBUG "lapb: (%p) S4 RX SABME(%d)\n",
lapb->dev, frame->pf);
#endif
if (lapb->mode & LAPB_EXTENDED) {
#if LAPB_DEBUG > 1
printk(KERN_DEBUG "lapb: (%p) S4 TX UA(%d)\n",
lapb->dev, frame->pf);
#endif
#if LAPB_DEBUG > 0
printk(KERN_DEBUG "lapb: (%p) S4 -> S3\n",
lapb->dev);
#endif
lapb_send_control(lapb, LAPB_UA, frame->pf,
LAPB_RESPONSE);
lapb_stop_t1timer(lapb);
lapb_stop_t2timer(lapb);
lapb->state = LAPB_STATE_3;
lapb->condition = 0x00;
lapb->n2count = 0;
lapb->vs = 0;
lapb->vr = 0;
lapb->va = 0;
lapb_connect_indication(lapb, LAPB_OK);
} else {
#if LAPB_DEBUG > 1
printk(KERN_DEBUG "lapb: (%p) S4 TX DM(%d)\n",
lapb->dev, frame->pf);
#endif
lapb_send_control(lapb, LAPB_DM, frame->pf,
LAPB_RESPONSE);
}
break;
}
kfree_skb(skb);
}
/*
* Process an incoming LAPB frame
*/
void lapb_data_input(struct lapb_cb *lapb, struct sk_buff *skb)
{
struct lapb_frame frame;
if (lapb_decode(lapb, skb, &frame) < 0) {
kfree_skb(skb);
return;
}
switch (lapb->state) {
case LAPB_STATE_0:
lapb_state0_machine(lapb, skb, &frame); break;
case LAPB_STATE_1:
lapb_state1_machine(lapb, skb, &frame); break;
case LAPB_STATE_2:
lapb_state2_machine(lapb, skb, &frame); break;
case LAPB_STATE_3:
lapb_state3_machine(lapb, skb, &frame); break;
case LAPB_STATE_4:
lapb_state4_machine(lapb, skb, &frame); break;
}
lapb_kick(lapb);
}