ede2ccc517
Commit 46ee278652f4cbd51013471b64c7897ba9bcd1b1 causes Solaris 10 to hang on boot. Assuming that PIT counter reads should return 0 for an expired timer is wrong: when it is active, the counter never stops (see comment on __kpit_elapsed). Also arm a one shot timer for mode 0. Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com> Signed-off-by: Avi Kivity <avi@redhat.com>
682 lines
17 KiB
C
682 lines
17 KiB
C
/*
|
|
* 8253/8254 interval timer emulation
|
|
*
|
|
* Copyright (c) 2003-2004 Fabrice Bellard
|
|
* Copyright (c) 2006 Intel Corporation
|
|
* Copyright (c) 2007 Keir Fraser, XenSource Inc
|
|
* Copyright (c) 2008 Intel Corporation
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
* of this software and associated documentation files (the "Software"), to deal
|
|
* in the Software without restriction, including without limitation the rights
|
|
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
* copies of the Software, and to permit persons to whom the Software is
|
|
* furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be included in
|
|
* all copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
|
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
|
* THE SOFTWARE.
|
|
*
|
|
* Authors:
|
|
* Sheng Yang <sheng.yang@intel.com>
|
|
* Based on QEMU and Xen.
|
|
*/
|
|
|
|
#include <linux/kvm_host.h>
|
|
|
|
#include "irq.h"
|
|
#include "i8254.h"
|
|
|
|
#ifndef CONFIG_X86_64
|
|
#define mod_64(x, y) ((x) - (y) * div64_u64(x, y))
|
|
#else
|
|
#define mod_64(x, y) ((x) % (y))
|
|
#endif
|
|
|
|
#define RW_STATE_LSB 1
|
|
#define RW_STATE_MSB 2
|
|
#define RW_STATE_WORD0 3
|
|
#define RW_STATE_WORD1 4
|
|
|
|
/* Compute with 96 bit intermediate result: (a*b)/c */
|
|
static u64 muldiv64(u64 a, u32 b, u32 c)
|
|
{
|
|
union {
|
|
u64 ll;
|
|
struct {
|
|
u32 low, high;
|
|
} l;
|
|
} u, res;
|
|
u64 rl, rh;
|
|
|
|
u.ll = a;
|
|
rl = (u64)u.l.low * (u64)b;
|
|
rh = (u64)u.l.high * (u64)b;
|
|
rh += (rl >> 32);
|
|
res.l.high = div64_u64(rh, c);
|
|
res.l.low = div64_u64(((mod_64(rh, c) << 32) + (rl & 0xffffffff)), c);
|
|
return res.ll;
|
|
}
|
|
|
|
static void pit_set_gate(struct kvm *kvm, int channel, u32 val)
|
|
{
|
|
struct kvm_kpit_channel_state *c =
|
|
&kvm->arch.vpit->pit_state.channels[channel];
|
|
|
|
WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
|
|
|
|
switch (c->mode) {
|
|
default:
|
|
case 0:
|
|
case 4:
|
|
/* XXX: just disable/enable counting */
|
|
break;
|
|
case 1:
|
|
case 2:
|
|
case 3:
|
|
case 5:
|
|
/* Restart counting on rising edge. */
|
|
if (c->gate < val)
|
|
c->count_load_time = ktime_get();
|
|
break;
|
|
}
|
|
|
|
c->gate = val;
|
|
}
|
|
|
|
static int pit_get_gate(struct kvm *kvm, int channel)
|
|
{
|
|
WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
|
|
|
|
return kvm->arch.vpit->pit_state.channels[channel].gate;
|
|
}
|
|
|
|
static s64 __kpit_elapsed(struct kvm *kvm)
|
|
{
|
|
s64 elapsed;
|
|
ktime_t remaining;
|
|
struct kvm_kpit_state *ps = &kvm->arch.vpit->pit_state;
|
|
|
|
/*
|
|
* The Counter does not stop when it reaches zero. In
|
|
* Modes 0, 1, 4, and 5 the Counter ``wraps around'' to
|
|
* the highest count, either FFFF hex for binary counting
|
|
* or 9999 for BCD counting, and continues counting.
|
|
* Modes 2 and 3 are periodic; the Counter reloads
|
|
* itself with the initial count and continues counting
|
|
* from there.
|
|
*/
|
|
remaining = hrtimer_expires_remaining(&ps->pit_timer.timer);
|
|
elapsed = ps->pit_timer.period - ktime_to_ns(remaining);
|
|
elapsed = mod_64(elapsed, ps->pit_timer.period);
|
|
|
|
return elapsed;
|
|
}
|
|
|
|
static s64 kpit_elapsed(struct kvm *kvm, struct kvm_kpit_channel_state *c,
|
|
int channel)
|
|
{
|
|
if (channel == 0)
|
|
return __kpit_elapsed(kvm);
|
|
|
|
return ktime_to_ns(ktime_sub(ktime_get(), c->count_load_time));
|
|
}
|
|
|
|
static int pit_get_count(struct kvm *kvm, int channel)
|
|
{
|
|
struct kvm_kpit_channel_state *c =
|
|
&kvm->arch.vpit->pit_state.channels[channel];
|
|
s64 d, t;
|
|
int counter;
|
|
|
|
WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
|
|
|
|
t = kpit_elapsed(kvm, c, channel);
|
|
d = muldiv64(t, KVM_PIT_FREQ, NSEC_PER_SEC);
|
|
|
|
switch (c->mode) {
|
|
case 0:
|
|
case 1:
|
|
case 4:
|
|
case 5:
|
|
counter = (c->count - d) & 0xffff;
|
|
break;
|
|
case 3:
|
|
/* XXX: may be incorrect for odd counts */
|
|
counter = c->count - (mod_64((2 * d), c->count));
|
|
break;
|
|
default:
|
|
counter = c->count - mod_64(d, c->count);
|
|
break;
|
|
}
|
|
return counter;
|
|
}
|
|
|
|
static int pit_get_out(struct kvm *kvm, int channel)
|
|
{
|
|
struct kvm_kpit_channel_state *c =
|
|
&kvm->arch.vpit->pit_state.channels[channel];
|
|
s64 d, t;
|
|
int out;
|
|
|
|
WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
|
|
|
|
t = kpit_elapsed(kvm, c, channel);
|
|
d = muldiv64(t, KVM_PIT_FREQ, NSEC_PER_SEC);
|
|
|
|
switch (c->mode) {
|
|
default:
|
|
case 0:
|
|
out = (d >= c->count);
|
|
break;
|
|
case 1:
|
|
out = (d < c->count);
|
|
break;
|
|
case 2:
|
|
out = ((mod_64(d, c->count) == 0) && (d != 0));
|
|
break;
|
|
case 3:
|
|
out = (mod_64(d, c->count) < ((c->count + 1) >> 1));
|
|
break;
|
|
case 4:
|
|
case 5:
|
|
out = (d == c->count);
|
|
break;
|
|
}
|
|
|
|
return out;
|
|
}
|
|
|
|
static void pit_latch_count(struct kvm *kvm, int channel)
|
|
{
|
|
struct kvm_kpit_channel_state *c =
|
|
&kvm->arch.vpit->pit_state.channels[channel];
|
|
|
|
WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
|
|
|
|
if (!c->count_latched) {
|
|
c->latched_count = pit_get_count(kvm, channel);
|
|
c->count_latched = c->rw_mode;
|
|
}
|
|
}
|
|
|
|
static void pit_latch_status(struct kvm *kvm, int channel)
|
|
{
|
|
struct kvm_kpit_channel_state *c =
|
|
&kvm->arch.vpit->pit_state.channels[channel];
|
|
|
|
WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
|
|
|
|
if (!c->status_latched) {
|
|
/* TODO: Return NULL COUNT (bit 6). */
|
|
c->status = ((pit_get_out(kvm, channel) << 7) |
|
|
(c->rw_mode << 4) |
|
|
(c->mode << 1) |
|
|
c->bcd);
|
|
c->status_latched = 1;
|
|
}
|
|
}
|
|
|
|
int pit_has_pending_timer(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct kvm_pit *pit = vcpu->kvm->arch.vpit;
|
|
|
|
if (pit && vcpu->vcpu_id == 0 && pit->pit_state.irq_ack)
|
|
return atomic_read(&pit->pit_state.pit_timer.pending);
|
|
return 0;
|
|
}
|
|
|
|
static void kvm_pit_ack_irq(struct kvm_irq_ack_notifier *kian)
|
|
{
|
|
struct kvm_kpit_state *ps = container_of(kian, struct kvm_kpit_state,
|
|
irq_ack_notifier);
|
|
spin_lock(&ps->inject_lock);
|
|
if (atomic_dec_return(&ps->pit_timer.pending) < 0)
|
|
atomic_inc(&ps->pit_timer.pending);
|
|
ps->irq_ack = 1;
|
|
spin_unlock(&ps->inject_lock);
|
|
}
|
|
|
|
void __kvm_migrate_pit_timer(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct kvm_pit *pit = vcpu->kvm->arch.vpit;
|
|
struct hrtimer *timer;
|
|
|
|
if (vcpu->vcpu_id != 0 || !pit)
|
|
return;
|
|
|
|
timer = &pit->pit_state.pit_timer.timer;
|
|
if (hrtimer_cancel(timer))
|
|
hrtimer_start_expires(timer, HRTIMER_MODE_ABS);
|
|
}
|
|
|
|
static void destroy_pit_timer(struct kvm_timer *pt)
|
|
{
|
|
pr_debug("pit: execute del timer!\n");
|
|
hrtimer_cancel(&pt->timer);
|
|
}
|
|
|
|
static bool kpit_is_periodic(struct kvm_timer *ktimer)
|
|
{
|
|
struct kvm_kpit_state *ps = container_of(ktimer, struct kvm_kpit_state,
|
|
pit_timer);
|
|
return ps->is_periodic;
|
|
}
|
|
|
|
static struct kvm_timer_ops kpit_ops = {
|
|
.is_periodic = kpit_is_periodic,
|
|
};
|
|
|
|
static void create_pit_timer(struct kvm_kpit_state *ps, u32 val, int is_period)
|
|
{
|
|
struct kvm_timer *pt = &ps->pit_timer;
|
|
s64 interval;
|
|
|
|
interval = muldiv64(val, NSEC_PER_SEC, KVM_PIT_FREQ);
|
|
|
|
pr_debug("pit: create pit timer, interval is %llu nsec\n", interval);
|
|
|
|
/* TODO The new value only affected after the retriggered */
|
|
hrtimer_cancel(&pt->timer);
|
|
pt->period = interval;
|
|
ps->is_periodic = is_period;
|
|
|
|
pt->timer.function = kvm_timer_fn;
|
|
pt->t_ops = &kpit_ops;
|
|
pt->kvm = ps->pit->kvm;
|
|
pt->vcpu_id = 0;
|
|
|
|
atomic_set(&pt->pending, 0);
|
|
ps->irq_ack = 1;
|
|
|
|
hrtimer_start(&pt->timer, ktime_add_ns(ktime_get(), interval),
|
|
HRTIMER_MODE_ABS);
|
|
}
|
|
|
|
static void pit_load_count(struct kvm *kvm, int channel, u32 val)
|
|
{
|
|
struct kvm_kpit_state *ps = &kvm->arch.vpit->pit_state;
|
|
|
|
WARN_ON(!mutex_is_locked(&ps->lock));
|
|
|
|
pr_debug("pit: load_count val is %d, channel is %d\n", val, channel);
|
|
|
|
/*
|
|
* The largest possible initial count is 0; this is equivalent
|
|
* to 216 for binary counting and 104 for BCD counting.
|
|
*/
|
|
if (val == 0)
|
|
val = 0x10000;
|
|
|
|
ps->channels[channel].count = val;
|
|
|
|
if (channel != 0) {
|
|
ps->channels[channel].count_load_time = ktime_get();
|
|
return;
|
|
}
|
|
|
|
/* Two types of timer
|
|
* mode 1 is one shot, mode 2 is period, otherwise del timer */
|
|
switch (ps->channels[0].mode) {
|
|
case 0:
|
|
case 1:
|
|
/* FIXME: enhance mode 4 precision */
|
|
case 4:
|
|
create_pit_timer(ps, val, 0);
|
|
break;
|
|
case 2:
|
|
case 3:
|
|
create_pit_timer(ps, val, 1);
|
|
break;
|
|
default:
|
|
destroy_pit_timer(&ps->pit_timer);
|
|
}
|
|
}
|
|
|
|
void kvm_pit_load_count(struct kvm *kvm, int channel, u32 val)
|
|
{
|
|
mutex_lock(&kvm->arch.vpit->pit_state.lock);
|
|
pit_load_count(kvm, channel, val);
|
|
mutex_unlock(&kvm->arch.vpit->pit_state.lock);
|
|
}
|
|
|
|
static void pit_ioport_write(struct kvm_io_device *this,
|
|
gpa_t addr, int len, const void *data)
|
|
{
|
|
struct kvm_pit *pit = (struct kvm_pit *)this->private;
|
|
struct kvm_kpit_state *pit_state = &pit->pit_state;
|
|
struct kvm *kvm = pit->kvm;
|
|
int channel, access;
|
|
struct kvm_kpit_channel_state *s;
|
|
u32 val = *(u32 *) data;
|
|
|
|
val &= 0xff;
|
|
addr &= KVM_PIT_CHANNEL_MASK;
|
|
|
|
mutex_lock(&pit_state->lock);
|
|
|
|
if (val != 0)
|
|
pr_debug("pit: write addr is 0x%x, len is %d, val is 0x%x\n",
|
|
(unsigned int)addr, len, val);
|
|
|
|
if (addr == 3) {
|
|
channel = val >> 6;
|
|
if (channel == 3) {
|
|
/* Read-Back Command. */
|
|
for (channel = 0; channel < 3; channel++) {
|
|
s = &pit_state->channels[channel];
|
|
if (val & (2 << channel)) {
|
|
if (!(val & 0x20))
|
|
pit_latch_count(kvm, channel);
|
|
if (!(val & 0x10))
|
|
pit_latch_status(kvm, channel);
|
|
}
|
|
}
|
|
} else {
|
|
/* Select Counter <channel>. */
|
|
s = &pit_state->channels[channel];
|
|
access = (val >> 4) & KVM_PIT_CHANNEL_MASK;
|
|
if (access == 0) {
|
|
pit_latch_count(kvm, channel);
|
|
} else {
|
|
s->rw_mode = access;
|
|
s->read_state = access;
|
|
s->write_state = access;
|
|
s->mode = (val >> 1) & 7;
|
|
if (s->mode > 5)
|
|
s->mode -= 4;
|
|
s->bcd = val & 1;
|
|
}
|
|
}
|
|
} else {
|
|
/* Write Count. */
|
|
s = &pit_state->channels[addr];
|
|
switch (s->write_state) {
|
|
default:
|
|
case RW_STATE_LSB:
|
|
pit_load_count(kvm, addr, val);
|
|
break;
|
|
case RW_STATE_MSB:
|
|
pit_load_count(kvm, addr, val << 8);
|
|
break;
|
|
case RW_STATE_WORD0:
|
|
s->write_latch = val;
|
|
s->write_state = RW_STATE_WORD1;
|
|
break;
|
|
case RW_STATE_WORD1:
|
|
pit_load_count(kvm, addr, s->write_latch | (val << 8));
|
|
s->write_state = RW_STATE_WORD0;
|
|
break;
|
|
}
|
|
}
|
|
|
|
mutex_unlock(&pit_state->lock);
|
|
}
|
|
|
|
static void pit_ioport_read(struct kvm_io_device *this,
|
|
gpa_t addr, int len, void *data)
|
|
{
|
|
struct kvm_pit *pit = (struct kvm_pit *)this->private;
|
|
struct kvm_kpit_state *pit_state = &pit->pit_state;
|
|
struct kvm *kvm = pit->kvm;
|
|
int ret, count;
|
|
struct kvm_kpit_channel_state *s;
|
|
|
|
addr &= KVM_PIT_CHANNEL_MASK;
|
|
s = &pit_state->channels[addr];
|
|
|
|
mutex_lock(&pit_state->lock);
|
|
|
|
if (s->status_latched) {
|
|
s->status_latched = 0;
|
|
ret = s->status;
|
|
} else if (s->count_latched) {
|
|
switch (s->count_latched) {
|
|
default:
|
|
case RW_STATE_LSB:
|
|
ret = s->latched_count & 0xff;
|
|
s->count_latched = 0;
|
|
break;
|
|
case RW_STATE_MSB:
|
|
ret = s->latched_count >> 8;
|
|
s->count_latched = 0;
|
|
break;
|
|
case RW_STATE_WORD0:
|
|
ret = s->latched_count & 0xff;
|
|
s->count_latched = RW_STATE_MSB;
|
|
break;
|
|
}
|
|
} else {
|
|
switch (s->read_state) {
|
|
default:
|
|
case RW_STATE_LSB:
|
|
count = pit_get_count(kvm, addr);
|
|
ret = count & 0xff;
|
|
break;
|
|
case RW_STATE_MSB:
|
|
count = pit_get_count(kvm, addr);
|
|
ret = (count >> 8) & 0xff;
|
|
break;
|
|
case RW_STATE_WORD0:
|
|
count = pit_get_count(kvm, addr);
|
|
ret = count & 0xff;
|
|
s->read_state = RW_STATE_WORD1;
|
|
break;
|
|
case RW_STATE_WORD1:
|
|
count = pit_get_count(kvm, addr);
|
|
ret = (count >> 8) & 0xff;
|
|
s->read_state = RW_STATE_WORD0;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (len > sizeof(ret))
|
|
len = sizeof(ret);
|
|
memcpy(data, (char *)&ret, len);
|
|
|
|
mutex_unlock(&pit_state->lock);
|
|
}
|
|
|
|
static int pit_in_range(struct kvm_io_device *this, gpa_t addr,
|
|
int len, int is_write)
|
|
{
|
|
return ((addr >= KVM_PIT_BASE_ADDRESS) &&
|
|
(addr < KVM_PIT_BASE_ADDRESS + KVM_PIT_MEM_LENGTH));
|
|
}
|
|
|
|
static void speaker_ioport_write(struct kvm_io_device *this,
|
|
gpa_t addr, int len, const void *data)
|
|
{
|
|
struct kvm_pit *pit = (struct kvm_pit *)this->private;
|
|
struct kvm_kpit_state *pit_state = &pit->pit_state;
|
|
struct kvm *kvm = pit->kvm;
|
|
u32 val = *(u32 *) data;
|
|
|
|
mutex_lock(&pit_state->lock);
|
|
pit_state->speaker_data_on = (val >> 1) & 1;
|
|
pit_set_gate(kvm, 2, val & 1);
|
|
mutex_unlock(&pit_state->lock);
|
|
}
|
|
|
|
static void speaker_ioport_read(struct kvm_io_device *this,
|
|
gpa_t addr, int len, void *data)
|
|
{
|
|
struct kvm_pit *pit = (struct kvm_pit *)this->private;
|
|
struct kvm_kpit_state *pit_state = &pit->pit_state;
|
|
struct kvm *kvm = pit->kvm;
|
|
unsigned int refresh_clock;
|
|
int ret;
|
|
|
|
/* Refresh clock toggles at about 15us. We approximate as 2^14ns. */
|
|
refresh_clock = ((unsigned int)ktime_to_ns(ktime_get()) >> 14) & 1;
|
|
|
|
mutex_lock(&pit_state->lock);
|
|
ret = ((pit_state->speaker_data_on << 1) | pit_get_gate(kvm, 2) |
|
|
(pit_get_out(kvm, 2) << 5) | (refresh_clock << 4));
|
|
if (len > sizeof(ret))
|
|
len = sizeof(ret);
|
|
memcpy(data, (char *)&ret, len);
|
|
mutex_unlock(&pit_state->lock);
|
|
}
|
|
|
|
static int speaker_in_range(struct kvm_io_device *this, gpa_t addr,
|
|
int len, int is_write)
|
|
{
|
|
return (addr == KVM_SPEAKER_BASE_ADDRESS);
|
|
}
|
|
|
|
void kvm_pit_reset(struct kvm_pit *pit)
|
|
{
|
|
int i;
|
|
struct kvm_kpit_channel_state *c;
|
|
|
|
mutex_lock(&pit->pit_state.lock);
|
|
for (i = 0; i < 3; i++) {
|
|
c = &pit->pit_state.channels[i];
|
|
c->mode = 0xff;
|
|
c->gate = (i != 2);
|
|
pit_load_count(pit->kvm, i, 0);
|
|
}
|
|
mutex_unlock(&pit->pit_state.lock);
|
|
|
|
atomic_set(&pit->pit_state.pit_timer.pending, 0);
|
|
pit->pit_state.irq_ack = 1;
|
|
}
|
|
|
|
static void pit_mask_notifer(struct kvm_irq_mask_notifier *kimn, bool mask)
|
|
{
|
|
struct kvm_pit *pit = container_of(kimn, struct kvm_pit, mask_notifier);
|
|
|
|
if (!mask) {
|
|
atomic_set(&pit->pit_state.pit_timer.pending, 0);
|
|
pit->pit_state.irq_ack = 1;
|
|
}
|
|
}
|
|
|
|
struct kvm_pit *kvm_create_pit(struct kvm *kvm)
|
|
{
|
|
struct kvm_pit *pit;
|
|
struct kvm_kpit_state *pit_state;
|
|
|
|
pit = kzalloc(sizeof(struct kvm_pit), GFP_KERNEL);
|
|
if (!pit)
|
|
return NULL;
|
|
|
|
pit->irq_source_id = kvm_request_irq_source_id(kvm);
|
|
if (pit->irq_source_id < 0) {
|
|
kfree(pit);
|
|
return NULL;
|
|
}
|
|
|
|
mutex_init(&pit->pit_state.lock);
|
|
mutex_lock(&pit->pit_state.lock);
|
|
spin_lock_init(&pit->pit_state.inject_lock);
|
|
|
|
/* Initialize PIO device */
|
|
pit->dev.read = pit_ioport_read;
|
|
pit->dev.write = pit_ioport_write;
|
|
pit->dev.in_range = pit_in_range;
|
|
pit->dev.private = pit;
|
|
kvm_io_bus_register_dev(&kvm->pio_bus, &pit->dev);
|
|
|
|
pit->speaker_dev.read = speaker_ioport_read;
|
|
pit->speaker_dev.write = speaker_ioport_write;
|
|
pit->speaker_dev.in_range = speaker_in_range;
|
|
pit->speaker_dev.private = pit;
|
|
kvm_io_bus_register_dev(&kvm->pio_bus, &pit->speaker_dev);
|
|
|
|
kvm->arch.vpit = pit;
|
|
pit->kvm = kvm;
|
|
|
|
pit_state = &pit->pit_state;
|
|
pit_state->pit = pit;
|
|
hrtimer_init(&pit_state->pit_timer.timer,
|
|
CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
|
|
pit_state->irq_ack_notifier.gsi = 0;
|
|
pit_state->irq_ack_notifier.irq_acked = kvm_pit_ack_irq;
|
|
kvm_register_irq_ack_notifier(kvm, &pit_state->irq_ack_notifier);
|
|
pit_state->pit_timer.reinject = true;
|
|
mutex_unlock(&pit->pit_state.lock);
|
|
|
|
kvm_pit_reset(pit);
|
|
|
|
pit->mask_notifier.func = pit_mask_notifer;
|
|
kvm_register_irq_mask_notifier(kvm, 0, &pit->mask_notifier);
|
|
|
|
return pit;
|
|
}
|
|
|
|
void kvm_free_pit(struct kvm *kvm)
|
|
{
|
|
struct hrtimer *timer;
|
|
|
|
if (kvm->arch.vpit) {
|
|
kvm_unregister_irq_mask_notifier(kvm, 0,
|
|
&kvm->arch.vpit->mask_notifier);
|
|
mutex_lock(&kvm->arch.vpit->pit_state.lock);
|
|
timer = &kvm->arch.vpit->pit_state.pit_timer.timer;
|
|
hrtimer_cancel(timer);
|
|
kvm_free_irq_source_id(kvm, kvm->arch.vpit->irq_source_id);
|
|
mutex_unlock(&kvm->arch.vpit->pit_state.lock);
|
|
kfree(kvm->arch.vpit);
|
|
}
|
|
}
|
|
|
|
static void __inject_pit_timer_intr(struct kvm *kvm)
|
|
{
|
|
struct kvm_vcpu *vcpu;
|
|
int i;
|
|
|
|
mutex_lock(&kvm->lock);
|
|
kvm_set_irq(kvm, kvm->arch.vpit->irq_source_id, 0, 1);
|
|
kvm_set_irq(kvm, kvm->arch.vpit->irq_source_id, 0, 0);
|
|
mutex_unlock(&kvm->lock);
|
|
|
|
/*
|
|
* Provides NMI watchdog support via Virtual Wire mode.
|
|
* The route is: PIT -> PIC -> LVT0 in NMI mode.
|
|
*
|
|
* Note: Our Virtual Wire implementation is simplified, only
|
|
* propagating PIT interrupts to all VCPUs when they have set
|
|
* LVT0 to NMI delivery. Other PIC interrupts are just sent to
|
|
* VCPU0, and only if its LVT0 is in EXTINT mode.
|
|
*/
|
|
if (kvm->arch.vapics_in_nmi_mode > 0)
|
|
for (i = 0; i < KVM_MAX_VCPUS; ++i) {
|
|
vcpu = kvm->vcpus[i];
|
|
if (vcpu)
|
|
kvm_apic_nmi_wd_deliver(vcpu);
|
|
}
|
|
}
|
|
|
|
void kvm_inject_pit_timer_irqs(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct kvm_pit *pit = vcpu->kvm->arch.vpit;
|
|
struct kvm *kvm = vcpu->kvm;
|
|
struct kvm_kpit_state *ps;
|
|
|
|
if (vcpu && pit) {
|
|
int inject = 0;
|
|
ps = &pit->pit_state;
|
|
|
|
/* Try to inject pending interrupts when
|
|
* last one has been acked.
|
|
*/
|
|
spin_lock(&ps->inject_lock);
|
|
if (atomic_read(&ps->pit_timer.pending) && ps->irq_ack) {
|
|
ps->irq_ack = 0;
|
|
inject = 1;
|
|
}
|
|
spin_unlock(&ps->inject_lock);
|
|
if (inject)
|
|
__inject_pit_timer_intr(kvm);
|
|
}
|
|
}
|