kernel-ark/arch/mips/mm/tlbex.c
Atsushi Nemoto 656be92f9a [MIPS] Load modules to CKSEG0 if CONFIG_BUILD_ELF64=n
This is a patch to load 64-bit modules to CKSEG0 so that can be
compiled with -msym32 option.  This makes each module ~10% smaller.

* introduce MODULE_START and MODULE_END
* custom module_alloc()
* PGD for modules
* change XTLB refill handler synthesizer
* enable -msym32 for modules again
  (revert ca78b1a5c6a6e70e052d3ea253828e49b5d07c8a)

New XTLB refill handler looks like this:

80000080 dmfc0   k0,C0_BADVADDR
80000084 bltz    k0,800000e4			# goto l_module_alloc
80000088 lui     k1,0x8046			# %high(pgd_current)
8000008c ld      k1,24600(k1)			# %low(pgd_current)
80000090 dsrl    k0,k0,0x1b			# l_vmalloc_done:
80000094 andi    k0,k0,0x1ff8
80000098 daddu   k1,k1,k0
8000009c dmfc0   k0,C0_BADVADDR
800000a0 ld      k1,0(k1)
800000a4 dsrl    k0,k0,0x12
800000a8 andi    k0,k0,0xff8
800000ac daddu   k1,k1,k0
800000b0 dmfc0   k0,C0_XCONTEXT
800000b4 ld      k1,0(k1)
800000b8 andi    k0,k0,0xff0
800000bc daddu   k1,k1,k0
800000c0 ld      k0,0(k1)
800000c4 ld      k1,8(k1)
800000c8 dsrl    k0,k0,0x6
800000cc mtc0    k0,C0_ENTRYLO0
800000d0 dsrl    k1,k1,0x6
800000d4 mtc0    k1,C0_ENTRYL01
800000d8 nop
800000dc tlbwr
800000e0 eret
800000e4 dsll    k1,k0,0x2			# l_module_alloc:
800000e8 bgez    k1,80000008			# goto l_vmalloc
800000ec lui     k1,0xc000
800000f0 dsubu   k0,k0,k1
800000f4 lui     k1,0x8046			# %high(module_pg_dir)
800000f8 beq     zero,zero,80000000
800000fc nop
80000000 beq     zero,zero,80000090		# goto l_vmalloc_done
80000004 daddiu  k1,k1,0x4000
80000008 dsll32  k1,k1,0x0			# l_vmalloc:
8000000c dsubu   k0,k0,k1
80000010 beq     zero,zero,80000090		# goto l_vmalloc_done
80000014 lui     k1,0x8046			# %high(swapper_pg_dir)

Signed-off-by: Atsushi Nemoto <anemo@mba.ocn.ne.jp>
Signed-off-by: Ralf Baechle <ralf@linux-mips.org>
2006-11-30 01:14:44 +00:00

1893 lines
47 KiB
C

/*
* This file is subject to the terms and conditions of the GNU General Public
* License. See the file "COPYING" in the main directory of this archive
* for more details.
*
* Synthesize TLB refill handlers at runtime.
*
* Copyright (C) 2004,2005,2006 by Thiemo Seufer
* Copyright (C) 2005 Maciej W. Rozycki
* Copyright (C) 2006 Ralf Baechle (ralf@linux-mips.org)
*
* ... and the days got worse and worse and now you see
* I've gone completly out of my mind.
*
* They're coming to take me a away haha
* they're coming to take me a away hoho hihi haha
* to the funny farm where code is beautiful all the time ...
*
* (Condolences to Napoleon XIV)
*/
#include <stdarg.h>
#include <linux/mm.h>
#include <linux/kernel.h>
#include <linux/types.h>
#include <linux/string.h>
#include <linux/init.h>
#include <asm/pgtable.h>
#include <asm/cacheflush.h>
#include <asm/mmu_context.h>
#include <asm/inst.h>
#include <asm/elf.h>
#include <asm/smp.h>
#include <asm/war.h>
static __init int __attribute__((unused)) r45k_bvahwbug(void)
{
/* XXX: We should probe for the presence of this bug, but we don't. */
return 0;
}
static __init int __attribute__((unused)) r4k_250MHZhwbug(void)
{
/* XXX: We should probe for the presence of this bug, but we don't. */
return 0;
}
static __init int __attribute__((unused)) bcm1250_m3_war(void)
{
return BCM1250_M3_WAR;
}
static __init int __attribute__((unused)) r10000_llsc_war(void)
{
return R10000_LLSC_WAR;
}
/*
* A little micro-assembler, intended for TLB refill handler
* synthesizing. It is intentionally kept simple, does only support
* a subset of instructions, and does not try to hide pipeline effects
* like branch delay slots.
*/
enum fields
{
RS = 0x001,
RT = 0x002,
RD = 0x004,
RE = 0x008,
SIMM = 0x010,
UIMM = 0x020,
BIMM = 0x040,
JIMM = 0x080,
FUNC = 0x100,
SET = 0x200
};
#define OP_MASK 0x2f
#define OP_SH 26
#define RS_MASK 0x1f
#define RS_SH 21
#define RT_MASK 0x1f
#define RT_SH 16
#define RD_MASK 0x1f
#define RD_SH 11
#define RE_MASK 0x1f
#define RE_SH 6
#define IMM_MASK 0xffff
#define IMM_SH 0
#define JIMM_MASK 0x3ffffff
#define JIMM_SH 0
#define FUNC_MASK 0x2f
#define FUNC_SH 0
#define SET_MASK 0x7
#define SET_SH 0
enum opcode {
insn_invalid,
insn_addu, insn_addiu, insn_and, insn_andi, insn_beq,
insn_beql, insn_bgez, insn_bgezl, insn_bltz, insn_bltzl,
insn_bne, insn_daddu, insn_daddiu, insn_dmfc0, insn_dmtc0,
insn_dsll, insn_dsll32, insn_dsra, insn_dsrl, insn_dsrl32,
insn_dsubu, insn_eret, insn_j, insn_jal, insn_jr, insn_ld,
insn_ll, insn_lld, insn_lui, insn_lw, insn_mfc0, insn_mtc0,
insn_ori, insn_rfe, insn_sc, insn_scd, insn_sd, insn_sll,
insn_sra, insn_srl, insn_subu, insn_sw, insn_tlbp, insn_tlbwi,
insn_tlbwr, insn_xor, insn_xori
};
struct insn {
enum opcode opcode;
u32 match;
enum fields fields;
};
/* This macro sets the non-variable bits of an instruction. */
#define M(a, b, c, d, e, f) \
((a) << OP_SH \
| (b) << RS_SH \
| (c) << RT_SH \
| (d) << RD_SH \
| (e) << RE_SH \
| (f) << FUNC_SH)
static __initdata struct insn insn_table[] = {
{ insn_addiu, M(addiu_op,0,0,0,0,0), RS | RT | SIMM },
{ insn_addu, M(spec_op,0,0,0,0,addu_op), RS | RT | RD },
{ insn_and, M(spec_op,0,0,0,0,and_op), RS | RT | RD },
{ insn_andi, M(andi_op,0,0,0,0,0), RS | RT | UIMM },
{ insn_beq, M(beq_op,0,0,0,0,0), RS | RT | BIMM },
{ insn_beql, M(beql_op,0,0,0,0,0), RS | RT | BIMM },
{ insn_bgez, M(bcond_op,0,bgez_op,0,0,0), RS | BIMM },
{ insn_bgezl, M(bcond_op,0,bgezl_op,0,0,0), RS | BIMM },
{ insn_bltz, M(bcond_op,0,bltz_op,0,0,0), RS | BIMM },
{ insn_bltzl, M(bcond_op,0,bltzl_op,0,0,0), RS | BIMM },
{ insn_bne, M(bne_op,0,0,0,0,0), RS | RT | BIMM },
{ insn_daddiu, M(daddiu_op,0,0,0,0,0), RS | RT | SIMM },
{ insn_daddu, M(spec_op,0,0,0,0,daddu_op), RS | RT | RD },
{ insn_dmfc0, M(cop0_op,dmfc_op,0,0,0,0), RT | RD | SET},
{ insn_dmtc0, M(cop0_op,dmtc_op,0,0,0,0), RT | RD | SET},
{ insn_dsll, M(spec_op,0,0,0,0,dsll_op), RT | RD | RE },
{ insn_dsll32, M(spec_op,0,0,0,0,dsll32_op), RT | RD | RE },
{ insn_dsra, M(spec_op,0,0,0,0,dsra_op), RT | RD | RE },
{ insn_dsrl, M(spec_op,0,0,0,0,dsrl_op), RT | RD | RE },
{ insn_dsrl32, M(spec_op,0,0,0,0,dsrl32_op), RT | RD | RE },
{ insn_dsubu, M(spec_op,0,0,0,0,dsubu_op), RS | RT | RD },
{ insn_eret, M(cop0_op,cop_op,0,0,0,eret_op), 0 },
{ insn_j, M(j_op,0,0,0,0,0), JIMM },
{ insn_jal, M(jal_op,0,0,0,0,0), JIMM },
{ insn_jr, M(spec_op,0,0,0,0,jr_op), RS },
{ insn_ld, M(ld_op,0,0,0,0,0), RS | RT | SIMM },
{ insn_ll, M(ll_op,0,0,0,0,0), RS | RT | SIMM },
{ insn_lld, M(lld_op,0,0,0,0,0), RS | RT | SIMM },
{ insn_lui, M(lui_op,0,0,0,0,0), RT | SIMM },
{ insn_lw, M(lw_op,0,0,0,0,0), RS | RT | SIMM },
{ insn_mfc0, M(cop0_op,mfc_op,0,0,0,0), RT | RD | SET},
{ insn_mtc0, M(cop0_op,mtc_op,0,0,0,0), RT | RD | SET},
{ insn_ori, M(ori_op,0,0,0,0,0), RS | RT | UIMM },
{ insn_rfe, M(cop0_op,cop_op,0,0,0,rfe_op), 0 },
{ insn_sc, M(sc_op,0,0,0,0,0), RS | RT | SIMM },
{ insn_scd, M(scd_op,0,0,0,0,0), RS | RT | SIMM },
{ insn_sd, M(sd_op,0,0,0,0,0), RS | RT | SIMM },
{ insn_sll, M(spec_op,0,0,0,0,sll_op), RT | RD | RE },
{ insn_sra, M(spec_op,0,0,0,0,sra_op), RT | RD | RE },
{ insn_srl, M(spec_op,0,0,0,0,srl_op), RT | RD | RE },
{ insn_subu, M(spec_op,0,0,0,0,subu_op), RS | RT | RD },
{ insn_sw, M(sw_op,0,0,0,0,0), RS | RT | SIMM },
{ insn_tlbp, M(cop0_op,cop_op,0,0,0,tlbp_op), 0 },
{ insn_tlbwi, M(cop0_op,cop_op,0,0,0,tlbwi_op), 0 },
{ insn_tlbwr, M(cop0_op,cop_op,0,0,0,tlbwr_op), 0 },
{ insn_xor, M(spec_op,0,0,0,0,xor_op), RS | RT | RD },
{ insn_xori, M(xori_op,0,0,0,0,0), RS | RT | UIMM },
{ insn_invalid, 0, 0 }
};
#undef M
static __init u32 build_rs(u32 arg)
{
if (arg & ~RS_MASK)
printk(KERN_WARNING "TLB synthesizer field overflow\n");
return (arg & RS_MASK) << RS_SH;
}
static __init u32 build_rt(u32 arg)
{
if (arg & ~RT_MASK)
printk(KERN_WARNING "TLB synthesizer field overflow\n");
return (arg & RT_MASK) << RT_SH;
}
static __init u32 build_rd(u32 arg)
{
if (arg & ~RD_MASK)
printk(KERN_WARNING "TLB synthesizer field overflow\n");
return (arg & RD_MASK) << RD_SH;
}
static __init u32 build_re(u32 arg)
{
if (arg & ~RE_MASK)
printk(KERN_WARNING "TLB synthesizer field overflow\n");
return (arg & RE_MASK) << RE_SH;
}
static __init u32 build_simm(s32 arg)
{
if (arg > 0x7fff || arg < -0x8000)
printk(KERN_WARNING "TLB synthesizer field overflow\n");
return arg & 0xffff;
}
static __init u32 build_uimm(u32 arg)
{
if (arg & ~IMM_MASK)
printk(KERN_WARNING "TLB synthesizer field overflow\n");
return arg & IMM_MASK;
}
static __init u32 build_bimm(s32 arg)
{
if (arg > 0x1ffff || arg < -0x20000)
printk(KERN_WARNING "TLB synthesizer field overflow\n");
if (arg & 0x3)
printk(KERN_WARNING "Invalid TLB synthesizer branch target\n");
return ((arg < 0) ? (1 << 15) : 0) | ((arg >> 2) & 0x7fff);
}
static __init u32 build_jimm(u32 arg)
{
if (arg & ~((JIMM_MASK) << 2))
printk(KERN_WARNING "TLB synthesizer field overflow\n");
return (arg >> 2) & JIMM_MASK;
}
static __init u32 build_func(u32 arg)
{
if (arg & ~FUNC_MASK)
printk(KERN_WARNING "TLB synthesizer field overflow\n");
return arg & FUNC_MASK;
}
static __init u32 build_set(u32 arg)
{
if (arg & ~SET_MASK)
printk(KERN_WARNING "TLB synthesizer field overflow\n");
return arg & SET_MASK;
}
/*
* The order of opcode arguments is implicitly left to right,
* starting with RS and ending with FUNC or IMM.
*/
static void __init build_insn(u32 **buf, enum opcode opc, ...)
{
struct insn *ip = NULL;
unsigned int i;
va_list ap;
u32 op;
for (i = 0; insn_table[i].opcode != insn_invalid; i++)
if (insn_table[i].opcode == opc) {
ip = &insn_table[i];
break;
}
if (!ip)
panic("Unsupported TLB synthesizer instruction %d", opc);
op = ip->match;
va_start(ap, opc);
if (ip->fields & RS) op |= build_rs(va_arg(ap, u32));
if (ip->fields & RT) op |= build_rt(va_arg(ap, u32));
if (ip->fields & RD) op |= build_rd(va_arg(ap, u32));
if (ip->fields & RE) op |= build_re(va_arg(ap, u32));
if (ip->fields & SIMM) op |= build_simm(va_arg(ap, s32));
if (ip->fields & UIMM) op |= build_uimm(va_arg(ap, u32));
if (ip->fields & BIMM) op |= build_bimm(va_arg(ap, s32));
if (ip->fields & JIMM) op |= build_jimm(va_arg(ap, u32));
if (ip->fields & FUNC) op |= build_func(va_arg(ap, u32));
if (ip->fields & SET) op |= build_set(va_arg(ap, u32));
va_end(ap);
**buf = op;
(*buf)++;
}
#define I_u1u2u3(op) \
static inline void __init i##op(u32 **buf, unsigned int a, \
unsigned int b, unsigned int c) \
{ \
build_insn(buf, insn##op, a, b, c); \
}
#define I_u2u1u3(op) \
static inline void __init i##op(u32 **buf, unsigned int a, \
unsigned int b, unsigned int c) \
{ \
build_insn(buf, insn##op, b, a, c); \
}
#define I_u3u1u2(op) \
static inline void __init i##op(u32 **buf, unsigned int a, \
unsigned int b, unsigned int c) \
{ \
build_insn(buf, insn##op, b, c, a); \
}
#define I_u1u2s3(op) \
static inline void __init i##op(u32 **buf, unsigned int a, \
unsigned int b, signed int c) \
{ \
build_insn(buf, insn##op, a, b, c); \
}
#define I_u2s3u1(op) \
static inline void __init i##op(u32 **buf, unsigned int a, \
signed int b, unsigned int c) \
{ \
build_insn(buf, insn##op, c, a, b); \
}
#define I_u2u1s3(op) \
static inline void __init i##op(u32 **buf, unsigned int a, \
unsigned int b, signed int c) \
{ \
build_insn(buf, insn##op, b, a, c); \
}
#define I_u1u2(op) \
static inline void __init i##op(u32 **buf, unsigned int a, \
unsigned int b) \
{ \
build_insn(buf, insn##op, a, b); \
}
#define I_u1s2(op) \
static inline void __init i##op(u32 **buf, unsigned int a, \
signed int b) \
{ \
build_insn(buf, insn##op, a, b); \
}
#define I_u1(op) \
static inline void __init i##op(u32 **buf, unsigned int a) \
{ \
build_insn(buf, insn##op, a); \
}
#define I_0(op) \
static inline void __init i##op(u32 **buf) \
{ \
build_insn(buf, insn##op); \
}
I_u2u1s3(_addiu);
I_u3u1u2(_addu);
I_u2u1u3(_andi);
I_u3u1u2(_and);
I_u1u2s3(_beq);
I_u1u2s3(_beql);
I_u1s2(_bgez);
I_u1s2(_bgezl);
I_u1s2(_bltz);
I_u1s2(_bltzl);
I_u1u2s3(_bne);
I_u1u2u3(_dmfc0);
I_u1u2u3(_dmtc0);
I_u2u1s3(_daddiu);
I_u3u1u2(_daddu);
I_u2u1u3(_dsll);
I_u2u1u3(_dsll32);
I_u2u1u3(_dsra);
I_u2u1u3(_dsrl);
I_u2u1u3(_dsrl32);
I_u3u1u2(_dsubu);
I_0(_eret);
I_u1(_j);
I_u1(_jal);
I_u1(_jr);
I_u2s3u1(_ld);
I_u2s3u1(_ll);
I_u2s3u1(_lld);
I_u1s2(_lui);
I_u2s3u1(_lw);
I_u1u2u3(_mfc0);
I_u1u2u3(_mtc0);
I_u2u1u3(_ori);
I_0(_rfe);
I_u2s3u1(_sc);
I_u2s3u1(_scd);
I_u2s3u1(_sd);
I_u2u1u3(_sll);
I_u2u1u3(_sra);
I_u2u1u3(_srl);
I_u3u1u2(_subu);
I_u2s3u1(_sw);
I_0(_tlbp);
I_0(_tlbwi);
I_0(_tlbwr);
I_u3u1u2(_xor)
I_u2u1u3(_xori);
/*
* handling labels
*/
enum label_id {
label_invalid,
label_second_part,
label_leave,
#ifdef MODULE_START
label_module_alloc,
#endif
label_vmalloc,
label_vmalloc_done,
label_tlbw_hazard,
label_split,
label_nopage_tlbl,
label_nopage_tlbs,
label_nopage_tlbm,
label_smp_pgtable_change,
label_r3000_write_probe_fail,
};
struct label {
u32 *addr;
enum label_id lab;
};
static __init void build_label(struct label **lab, u32 *addr,
enum label_id l)
{
(*lab)->addr = addr;
(*lab)->lab = l;
(*lab)++;
}
#define L_LA(lb) \
static inline void l##lb(struct label **lab, u32 *addr) \
{ \
build_label(lab, addr, label##lb); \
}
L_LA(_second_part)
L_LA(_leave)
#ifdef MODULE_START
L_LA(_module_alloc)
#endif
L_LA(_vmalloc)
L_LA(_vmalloc_done)
L_LA(_tlbw_hazard)
L_LA(_split)
L_LA(_nopage_tlbl)
L_LA(_nopage_tlbs)
L_LA(_nopage_tlbm)
L_LA(_smp_pgtable_change)
L_LA(_r3000_write_probe_fail)
/* convenience macros for instructions */
#ifdef CONFIG_64BIT
# define i_LW(buf, rs, rt, off) i_ld(buf, rs, rt, off)
# define i_SW(buf, rs, rt, off) i_sd(buf, rs, rt, off)
# define i_SLL(buf, rs, rt, sh) i_dsll(buf, rs, rt, sh)
# define i_SRA(buf, rs, rt, sh) i_dsra(buf, rs, rt, sh)
# define i_SRL(buf, rs, rt, sh) i_dsrl(buf, rs, rt, sh)
# define i_MFC0(buf, rt, rd...) i_dmfc0(buf, rt, rd)
# define i_MTC0(buf, rt, rd...) i_dmtc0(buf, rt, rd)
# define i_ADDIU(buf, rs, rt, val) i_daddiu(buf, rs, rt, val)
# define i_ADDU(buf, rs, rt, rd) i_daddu(buf, rs, rt, rd)
# define i_SUBU(buf, rs, rt, rd) i_dsubu(buf, rs, rt, rd)
# define i_LL(buf, rs, rt, off) i_lld(buf, rs, rt, off)
# define i_SC(buf, rs, rt, off) i_scd(buf, rs, rt, off)
#else
# define i_LW(buf, rs, rt, off) i_lw(buf, rs, rt, off)
# define i_SW(buf, rs, rt, off) i_sw(buf, rs, rt, off)
# define i_SLL(buf, rs, rt, sh) i_sll(buf, rs, rt, sh)
# define i_SRA(buf, rs, rt, sh) i_sra(buf, rs, rt, sh)
# define i_SRL(buf, rs, rt, sh) i_srl(buf, rs, rt, sh)
# define i_MFC0(buf, rt, rd...) i_mfc0(buf, rt, rd)
# define i_MTC0(buf, rt, rd...) i_mtc0(buf, rt, rd)
# define i_ADDIU(buf, rs, rt, val) i_addiu(buf, rs, rt, val)
# define i_ADDU(buf, rs, rt, rd) i_addu(buf, rs, rt, rd)
# define i_SUBU(buf, rs, rt, rd) i_subu(buf, rs, rt, rd)
# define i_LL(buf, rs, rt, off) i_ll(buf, rs, rt, off)
# define i_SC(buf, rs, rt, off) i_sc(buf, rs, rt, off)
#endif
#define i_b(buf, off) i_beq(buf, 0, 0, off)
#define i_beqz(buf, rs, off) i_beq(buf, rs, 0, off)
#define i_beqzl(buf, rs, off) i_beql(buf, rs, 0, off)
#define i_bnez(buf, rs, off) i_bne(buf, rs, 0, off)
#define i_bnezl(buf, rs, off) i_bnel(buf, rs, 0, off)
#define i_move(buf, a, b) i_ADDU(buf, a, 0, b)
#define i_nop(buf) i_sll(buf, 0, 0, 0)
#define i_ssnop(buf) i_sll(buf, 0, 0, 1)
#define i_ehb(buf) i_sll(buf, 0, 0, 3)
#ifdef CONFIG_64BIT
static __init int __attribute__((unused)) in_compat_space_p(long addr)
{
/* Is this address in 32bit compat space? */
return (((addr) & 0xffffffff00000000L) == 0xffffffff00000000L);
}
static __init int __attribute__((unused)) rel_highest(long val)
{
return ((((val + 0x800080008000L) >> 48) & 0xffff) ^ 0x8000) - 0x8000;
}
static __init int __attribute__((unused)) rel_higher(long val)
{
return ((((val + 0x80008000L) >> 32) & 0xffff) ^ 0x8000) - 0x8000;
}
#endif
static __init int rel_hi(long val)
{
return ((((val + 0x8000L) >> 16) & 0xffff) ^ 0x8000) - 0x8000;
}
static __init int rel_lo(long val)
{
return ((val & 0xffff) ^ 0x8000) - 0x8000;
}
static __init void i_LA_mostly(u32 **buf, unsigned int rs, long addr)
{
#ifdef CONFIG_64BIT
if (!in_compat_space_p(addr)) {
i_lui(buf, rs, rel_highest(addr));
if (rel_higher(addr))
i_daddiu(buf, rs, rs, rel_higher(addr));
if (rel_hi(addr)) {
i_dsll(buf, rs, rs, 16);
i_daddiu(buf, rs, rs, rel_hi(addr));
i_dsll(buf, rs, rs, 16);
} else
i_dsll32(buf, rs, rs, 0);
} else
#endif
i_lui(buf, rs, rel_hi(addr));
}
static __init void __attribute__((unused)) i_LA(u32 **buf, unsigned int rs,
long addr)
{
i_LA_mostly(buf, rs, addr);
if (rel_lo(addr))
i_ADDIU(buf, rs, rs, rel_lo(addr));
}
/*
* handle relocations
*/
struct reloc {
u32 *addr;
unsigned int type;
enum label_id lab;
};
static __init void r_mips_pc16(struct reloc **rel, u32 *addr,
enum label_id l)
{
(*rel)->addr = addr;
(*rel)->type = R_MIPS_PC16;
(*rel)->lab = l;
(*rel)++;
}
static inline void __resolve_relocs(struct reloc *rel, struct label *lab)
{
long laddr = (long)lab->addr;
long raddr = (long)rel->addr;
switch (rel->type) {
case R_MIPS_PC16:
*rel->addr |= build_bimm(laddr - (raddr + 4));
break;
default:
panic("Unsupported TLB synthesizer relocation %d",
rel->type);
}
}
static __init void resolve_relocs(struct reloc *rel, struct label *lab)
{
struct label *l;
for (; rel->lab != label_invalid; rel++)
for (l = lab; l->lab != label_invalid; l++)
if (rel->lab == l->lab)
__resolve_relocs(rel, l);
}
static __init void move_relocs(struct reloc *rel, u32 *first, u32 *end,
long off)
{
for (; rel->lab != label_invalid; rel++)
if (rel->addr >= first && rel->addr < end)
rel->addr += off;
}
static __init void move_labels(struct label *lab, u32 *first, u32 *end,
long off)
{
for (; lab->lab != label_invalid; lab++)
if (lab->addr >= first && lab->addr < end)
lab->addr += off;
}
static __init void copy_handler(struct reloc *rel, struct label *lab,
u32 *first, u32 *end, u32 *target)
{
long off = (long)(target - first);
memcpy(target, first, (end - first) * sizeof(u32));
move_relocs(rel, first, end, off);
move_labels(lab, first, end, off);
}
static __init int __attribute__((unused)) insn_has_bdelay(struct reloc *rel,
u32 *addr)
{
for (; rel->lab != label_invalid; rel++) {
if (rel->addr == addr
&& (rel->type == R_MIPS_PC16
|| rel->type == R_MIPS_26))
return 1;
}
return 0;
}
/* convenience functions for labeled branches */
static void __init __attribute__((unused))
il_bltz(u32 **p, struct reloc **r, unsigned int reg, enum label_id l)
{
r_mips_pc16(r, *p, l);
i_bltz(p, reg, 0);
}
static void __init __attribute__((unused)) il_b(u32 **p, struct reloc **r,
enum label_id l)
{
r_mips_pc16(r, *p, l);
i_b(p, 0);
}
static void __init il_beqz(u32 **p, struct reloc **r, unsigned int reg,
enum label_id l)
{
r_mips_pc16(r, *p, l);
i_beqz(p, reg, 0);
}
static void __init __attribute__((unused))
il_beqzl(u32 **p, struct reloc **r, unsigned int reg, enum label_id l)
{
r_mips_pc16(r, *p, l);
i_beqzl(p, reg, 0);
}
static void __init il_bnez(u32 **p, struct reloc **r, unsigned int reg,
enum label_id l)
{
r_mips_pc16(r, *p, l);
i_bnez(p, reg, 0);
}
static void __init il_bgezl(u32 **p, struct reloc **r, unsigned int reg,
enum label_id l)
{
r_mips_pc16(r, *p, l);
i_bgezl(p, reg, 0);
}
static void __init __attribute__((unused))
il_bgez(u32 **p, struct reloc **r, unsigned int reg, enum label_id l)
{
r_mips_pc16(r, *p, l);
i_bgez(p, reg, 0);
}
/* The only general purpose registers allowed in TLB handlers. */
#define K0 26
#define K1 27
/* Some CP0 registers */
#define C0_INDEX 0, 0
#define C0_ENTRYLO0 2, 0
#define C0_TCBIND 2, 2
#define C0_ENTRYLO1 3, 0
#define C0_CONTEXT 4, 0
#define C0_BADVADDR 8, 0
#define C0_ENTRYHI 10, 0
#define C0_EPC 14, 0
#define C0_XCONTEXT 20, 0
#ifdef CONFIG_64BIT
# define GET_CONTEXT(buf, reg) i_MFC0(buf, reg, C0_XCONTEXT)
#else
# define GET_CONTEXT(buf, reg) i_MFC0(buf, reg, C0_CONTEXT)
#endif
/* The worst case length of the handler is around 18 instructions for
* R3000-style TLBs and up to 63 instructions for R4000-style TLBs.
* Maximum space available is 32 instructions for R3000 and 64
* instructions for R4000.
*
* We deliberately chose a buffer size of 128, so we won't scribble
* over anything important on overflow before we panic.
*/
static __initdata u32 tlb_handler[128];
/* simply assume worst case size for labels and relocs */
static __initdata struct label labels[128];
static __initdata struct reloc relocs[128];
/*
* The R3000 TLB handler is simple.
*/
static void __init build_r3000_tlb_refill_handler(void)
{
long pgdc = (long)pgd_current;
u32 *p;
int i;
memset(tlb_handler, 0, sizeof(tlb_handler));
p = tlb_handler;
i_mfc0(&p, K0, C0_BADVADDR);
i_lui(&p, K1, rel_hi(pgdc)); /* cp0 delay */
i_lw(&p, K1, rel_lo(pgdc), K1);
i_srl(&p, K0, K0, 22); /* load delay */
i_sll(&p, K0, K0, 2);
i_addu(&p, K1, K1, K0);
i_mfc0(&p, K0, C0_CONTEXT);
i_lw(&p, K1, 0, K1); /* cp0 delay */
i_andi(&p, K0, K0, 0xffc); /* load delay */
i_addu(&p, K1, K1, K0);
i_lw(&p, K0, 0, K1);
i_nop(&p); /* load delay */
i_mtc0(&p, K0, C0_ENTRYLO0);
i_mfc0(&p, K1, C0_EPC); /* cp0 delay */
i_tlbwr(&p); /* cp0 delay */
i_jr(&p, K1);
i_rfe(&p); /* branch delay */
if (p > tlb_handler + 32)
panic("TLB refill handler space exceeded");
pr_info("Synthesized TLB refill handler (%u instructions).\n",
(unsigned int)(p - tlb_handler));
pr_debug("\t.set push\n");
pr_debug("\t.set noreorder\n");
for (i = 0; i < (p - tlb_handler); i++)
pr_debug("\t.word 0x%08x\n", tlb_handler[i]);
pr_debug("\t.set pop\n");
memcpy((void *)ebase, tlb_handler, 0x80);
}
/*
* The R4000 TLB handler is much more complicated. We have two
* consecutive handler areas with 32 instructions space each.
* Since they aren't used at the same time, we can overflow in the
* other one.To keep things simple, we first assume linear space,
* then we relocate it to the final handler layout as needed.
*/
static __initdata u32 final_handler[64];
/*
* Hazards
*
* From the IDT errata for the QED RM5230 (Nevada), processor revision 1.0:
* 2. A timing hazard exists for the TLBP instruction.
*
* stalling_instruction
* TLBP
*
* The JTLB is being read for the TLBP throughout the stall generated by the
* previous instruction. This is not really correct as the stalling instruction
* can modify the address used to access the JTLB. The failure symptom is that
* the TLBP instruction will use an address created for the stalling instruction
* and not the address held in C0_ENHI and thus report the wrong results.
*
* The software work-around is to not allow the instruction preceding the TLBP
* to stall - make it an NOP or some other instruction guaranteed not to stall.
*
* Errata 2 will not be fixed. This errata is also on the R5000.
*
* As if we MIPS hackers wouldn't know how to nop pipelines happy ...
*/
static __init void __attribute__((unused)) build_tlb_probe_entry(u32 **p)
{
switch (current_cpu_data.cputype) {
/* Found by experiment: R4600 v2.0 needs this, too. */
case CPU_R4600:
case CPU_R5000:
case CPU_R5000A:
case CPU_NEVADA:
i_nop(p);
i_tlbp(p);
break;
default:
i_tlbp(p);
break;
}
}
/*
* Write random or indexed TLB entry, and care about the hazards from
* the preceeding mtc0 and for the following eret.
*/
enum tlb_write_entry { tlb_random, tlb_indexed };
static __init void build_tlb_write_entry(u32 **p, struct label **l,
struct reloc **r,
enum tlb_write_entry wmode)
{
void(*tlbw)(u32 **) = NULL;
switch (wmode) {
case tlb_random: tlbw = i_tlbwr; break;
case tlb_indexed: tlbw = i_tlbwi; break;
}
switch (current_cpu_data.cputype) {
case CPU_R4000PC:
case CPU_R4000SC:
case CPU_R4000MC:
case CPU_R4400PC:
case CPU_R4400SC:
case CPU_R4400MC:
/*
* This branch uses up a mtc0 hazard nop slot and saves
* two nops after the tlbw instruction.
*/
il_bgezl(p, r, 0, label_tlbw_hazard);
tlbw(p);
l_tlbw_hazard(l, *p);
i_nop(p);
break;
case CPU_R4600:
case CPU_R4700:
case CPU_R5000:
case CPU_R5000A:
i_nop(p);
tlbw(p);
i_nop(p);
break;
case CPU_R4300:
case CPU_5KC:
case CPU_TX49XX:
case CPU_AU1000:
case CPU_AU1100:
case CPU_AU1500:
case CPU_AU1550:
case CPU_AU1200:
case CPU_PR4450:
i_nop(p);
tlbw(p);
break;
case CPU_R10000:
case CPU_R12000:
case CPU_R14000:
case CPU_4KC:
case CPU_SB1:
case CPU_SB1A:
case CPU_4KSC:
case CPU_20KC:
case CPU_25KF:
tlbw(p);
break;
case CPU_NEVADA:
i_nop(p); /* QED specifies 2 nops hazard */
/*
* This branch uses up a mtc0 hazard nop slot and saves
* a nop after the tlbw instruction.
*/
il_bgezl(p, r, 0, label_tlbw_hazard);
tlbw(p);
l_tlbw_hazard(l, *p);
break;
case CPU_RM7000:
i_nop(p);
i_nop(p);
i_nop(p);
i_nop(p);
tlbw(p);
break;
case CPU_4KEC:
case CPU_24K:
case CPU_34K:
case CPU_74K:
i_ehb(p);
tlbw(p);
break;
case CPU_RM9000:
/*
* When the JTLB is updated by tlbwi or tlbwr, a subsequent
* use of the JTLB for instructions should not occur for 4
* cpu cycles and use for data translations should not occur
* for 3 cpu cycles.
*/
i_ssnop(p);
i_ssnop(p);
i_ssnop(p);
i_ssnop(p);
tlbw(p);
i_ssnop(p);
i_ssnop(p);
i_ssnop(p);
i_ssnop(p);
break;
case CPU_VR4111:
case CPU_VR4121:
case CPU_VR4122:
case CPU_VR4181:
case CPU_VR4181A:
i_nop(p);
i_nop(p);
tlbw(p);
i_nop(p);
i_nop(p);
break;
case CPU_VR4131:
case CPU_VR4133:
case CPU_R5432:
i_nop(p);
i_nop(p);
tlbw(p);
break;
default:
panic("No TLB refill handler yet (CPU type: %d)",
current_cpu_data.cputype);
break;
}
}
#ifdef CONFIG_64BIT
/*
* TMP and PTR are scratch.
* TMP will be clobbered, PTR will hold the pmd entry.
*/
static __init void
build_get_pmde64(u32 **p, struct label **l, struct reloc **r,
unsigned int tmp, unsigned int ptr)
{
long pgdc = (long)pgd_current;
/*
* The vmalloc handling is not in the hotpath.
*/
i_dmfc0(p, tmp, C0_BADVADDR);
#ifdef MODULE_START
il_bltz(p, r, tmp, label_module_alloc);
#else
il_bltz(p, r, tmp, label_vmalloc);
#endif
/* No i_nop needed here, since the next insn doesn't touch TMP. */
#ifdef CONFIG_SMP
# ifdef CONFIG_MIPS_MT_SMTC
/*
* SMTC uses TCBind value as "CPU" index
*/
i_mfc0(p, ptr, C0_TCBIND);
i_dsrl(p, ptr, ptr, 19);
# else
/*
* 64 bit SMP running in XKPHYS has smp_processor_id() << 3
* stored in CONTEXT.
*/
i_dmfc0(p, ptr, C0_CONTEXT);
i_dsrl(p, ptr, ptr, 23);
#endif
i_LA_mostly(p, tmp, pgdc);
i_daddu(p, ptr, ptr, tmp);
i_dmfc0(p, tmp, C0_BADVADDR);
i_ld(p, ptr, rel_lo(pgdc), ptr);
#else
i_LA_mostly(p, ptr, pgdc);
i_ld(p, ptr, rel_lo(pgdc), ptr);
#endif
l_vmalloc_done(l, *p);
if (PGDIR_SHIFT - 3 < 32) /* get pgd offset in bytes */
i_dsrl(p, tmp, tmp, PGDIR_SHIFT-3);
else
i_dsrl32(p, tmp, tmp, PGDIR_SHIFT - 3 - 32);
i_andi(p, tmp, tmp, (PTRS_PER_PGD - 1)<<3);
i_daddu(p, ptr, ptr, tmp); /* add in pgd offset */
i_dmfc0(p, tmp, C0_BADVADDR); /* get faulting address */
i_ld(p, ptr, 0, ptr); /* get pmd pointer */
i_dsrl(p, tmp, tmp, PMD_SHIFT-3); /* get pmd offset in bytes */
i_andi(p, tmp, tmp, (PTRS_PER_PMD - 1)<<3);
i_daddu(p, ptr, ptr, tmp); /* add in pmd offset */
}
/*
* BVADDR is the faulting address, PTR is scratch.
* PTR will hold the pgd for vmalloc.
*/
static __init void
build_get_pgd_vmalloc64(u32 **p, struct label **l, struct reloc **r,
unsigned int bvaddr, unsigned int ptr)
{
long swpd = (long)swapper_pg_dir;
#ifdef MODULE_START
long modd = (long)module_pg_dir;
l_module_alloc(l, *p);
/*
* Assumption:
* VMALLOC_START >= 0xc000000000000000UL
* MODULE_START >= 0xe000000000000000UL
*/
i_SLL(p, ptr, bvaddr, 2);
il_bgez(p, r, ptr, label_vmalloc);
if (in_compat_space_p(MODULE_START) && !rel_lo(MODULE_START)) {
i_lui(p, ptr, rel_hi(MODULE_START)); /* delay slot */
} else {
/* unlikely configuration */
i_nop(p); /* delay slot */
i_LA(p, ptr, MODULE_START);
}
i_dsubu(p, bvaddr, bvaddr, ptr);
if (in_compat_space_p(modd) && !rel_lo(modd)) {
il_b(p, r, label_vmalloc_done);
i_lui(p, ptr, rel_hi(modd));
} else {
i_LA_mostly(p, ptr, modd);
il_b(p, r, label_vmalloc_done);
i_daddiu(p, ptr, ptr, rel_lo(modd));
}
l_vmalloc(l, *p);
if (in_compat_space_p(MODULE_START) && !rel_lo(MODULE_START) &&
MODULE_START << 32 == VMALLOC_START)
i_dsll32(p, ptr, ptr, 0); /* typical case */
else
i_LA(p, ptr, VMALLOC_START);
#else
l_vmalloc(l, *p);
i_LA(p, ptr, VMALLOC_START);
#endif
i_dsubu(p, bvaddr, bvaddr, ptr);
if (in_compat_space_p(swpd) && !rel_lo(swpd)) {
il_b(p, r, label_vmalloc_done);
i_lui(p, ptr, rel_hi(swpd));
} else {
i_LA_mostly(p, ptr, swpd);
il_b(p, r, label_vmalloc_done);
i_daddiu(p, ptr, ptr, rel_lo(swpd));
}
}
#else /* !CONFIG_64BIT */
/*
* TMP and PTR are scratch.
* TMP will be clobbered, PTR will hold the pgd entry.
*/
static __init void __attribute__((unused))
build_get_pgde32(u32 **p, unsigned int tmp, unsigned int ptr)
{
long pgdc = (long)pgd_current;
/* 32 bit SMP has smp_processor_id() stored in CONTEXT. */
#ifdef CONFIG_SMP
#ifdef CONFIG_MIPS_MT_SMTC
/*
* SMTC uses TCBind value as "CPU" index
*/
i_mfc0(p, ptr, C0_TCBIND);
i_LA_mostly(p, tmp, pgdc);
i_srl(p, ptr, ptr, 19);
#else
/*
* smp_processor_id() << 3 is stored in CONTEXT.
*/
i_mfc0(p, ptr, C0_CONTEXT);
i_LA_mostly(p, tmp, pgdc);
i_srl(p, ptr, ptr, 23);
#endif
i_addu(p, ptr, tmp, ptr);
#else
i_LA_mostly(p, ptr, pgdc);
#endif
i_mfc0(p, tmp, C0_BADVADDR); /* get faulting address */
i_lw(p, ptr, rel_lo(pgdc), ptr);
i_srl(p, tmp, tmp, PGDIR_SHIFT); /* get pgd only bits */
i_sll(p, tmp, tmp, PGD_T_LOG2);
i_addu(p, ptr, ptr, tmp); /* add in pgd offset */
}
#endif /* !CONFIG_64BIT */
static __init void build_adjust_context(u32 **p, unsigned int ctx)
{
unsigned int shift = 4 - (PTE_T_LOG2 + 1) + PAGE_SHIFT - 12;
unsigned int mask = (PTRS_PER_PTE / 2 - 1) << (PTE_T_LOG2 + 1);
switch (current_cpu_data.cputype) {
case CPU_VR41XX:
case CPU_VR4111:
case CPU_VR4121:
case CPU_VR4122:
case CPU_VR4131:
case CPU_VR4181:
case CPU_VR4181A:
case CPU_VR4133:
shift += 2;
break;
default:
break;
}
if (shift)
i_SRL(p, ctx, ctx, shift);
i_andi(p, ctx, ctx, mask);
}
static __init void build_get_ptep(u32 **p, unsigned int tmp, unsigned int ptr)
{
/*
* Bug workaround for the Nevada. It seems as if under certain
* circumstances the move from cp0_context might produce a
* bogus result when the mfc0 instruction and its consumer are
* in a different cacheline or a load instruction, probably any
* memory reference, is between them.
*/
switch (current_cpu_data.cputype) {
case CPU_NEVADA:
i_LW(p, ptr, 0, ptr);
GET_CONTEXT(p, tmp); /* get context reg */
break;
default:
GET_CONTEXT(p, tmp); /* get context reg */
i_LW(p, ptr, 0, ptr);
break;
}
build_adjust_context(p, tmp);
i_ADDU(p, ptr, ptr, tmp); /* add in offset */
}
static __init void build_update_entries(u32 **p, unsigned int tmp,
unsigned int ptep)
{
/*
* 64bit address support (36bit on a 32bit CPU) in a 32bit
* Kernel is a special case. Only a few CPUs use it.
*/
#ifdef CONFIG_64BIT_PHYS_ADDR
if (cpu_has_64bits) {
i_ld(p, tmp, 0, ptep); /* get even pte */
i_ld(p, ptep, sizeof(pte_t), ptep); /* get odd pte */
i_dsrl(p, tmp, tmp, 6); /* convert to entrylo0 */
i_mtc0(p, tmp, C0_ENTRYLO0); /* load it */
i_dsrl(p, ptep, ptep, 6); /* convert to entrylo1 */
i_mtc0(p, ptep, C0_ENTRYLO1); /* load it */
} else {
int pte_off_even = sizeof(pte_t) / 2;
int pte_off_odd = pte_off_even + sizeof(pte_t);
/* The pte entries are pre-shifted */
i_lw(p, tmp, pte_off_even, ptep); /* get even pte */
i_mtc0(p, tmp, C0_ENTRYLO0); /* load it */
i_lw(p, ptep, pte_off_odd, ptep); /* get odd pte */
i_mtc0(p, ptep, C0_ENTRYLO1); /* load it */
}
#else
i_LW(p, tmp, 0, ptep); /* get even pte */
i_LW(p, ptep, sizeof(pte_t), ptep); /* get odd pte */
if (r45k_bvahwbug())
build_tlb_probe_entry(p);
i_SRL(p, tmp, tmp, 6); /* convert to entrylo0 */
if (r4k_250MHZhwbug())
i_mtc0(p, 0, C0_ENTRYLO0);
i_mtc0(p, tmp, C0_ENTRYLO0); /* load it */
i_SRL(p, ptep, ptep, 6); /* convert to entrylo1 */
if (r45k_bvahwbug())
i_mfc0(p, tmp, C0_INDEX);
if (r4k_250MHZhwbug())
i_mtc0(p, 0, C0_ENTRYLO1);
i_mtc0(p, ptep, C0_ENTRYLO1); /* load it */
#endif
}
static void __init build_r4000_tlb_refill_handler(void)
{
u32 *p = tlb_handler;
struct label *l = labels;
struct reloc *r = relocs;
u32 *f;
unsigned int final_len;
int i;
memset(tlb_handler, 0, sizeof(tlb_handler));
memset(labels, 0, sizeof(labels));
memset(relocs, 0, sizeof(relocs));
memset(final_handler, 0, sizeof(final_handler));
/*
* create the plain linear handler
*/
if (bcm1250_m3_war()) {
i_MFC0(&p, K0, C0_BADVADDR);
i_MFC0(&p, K1, C0_ENTRYHI);
i_xor(&p, K0, K0, K1);
i_SRL(&p, K0, K0, PAGE_SHIFT + 1);
il_bnez(&p, &r, K0, label_leave);
/* No need for i_nop */
}
#ifdef CONFIG_64BIT
build_get_pmde64(&p, &l, &r, K0, K1); /* get pmd in K1 */
#else
build_get_pgde32(&p, K0, K1); /* get pgd in K1 */
#endif
build_get_ptep(&p, K0, K1);
build_update_entries(&p, K0, K1);
build_tlb_write_entry(&p, &l, &r, tlb_random);
l_leave(&l, p);
i_eret(&p); /* return from trap */
#ifdef CONFIG_64BIT
build_get_pgd_vmalloc64(&p, &l, &r, K0, K1);
#endif
/*
* Overflow check: For the 64bit handler, we need at least one
* free instruction slot for the wrap-around branch. In worst
* case, if the intended insertion point is a delay slot, we
* need three, with the second nop'ed and the third being
* unused.
*/
#ifdef CONFIG_32BIT
if ((p - tlb_handler) > 64)
panic("TLB refill handler space exceeded");
#else
if (((p - tlb_handler) > 63)
|| (((p - tlb_handler) > 61)
&& insn_has_bdelay(relocs, tlb_handler + 29)))
panic("TLB refill handler space exceeded");
#endif
/*
* Now fold the handler in the TLB refill handler space.
*/
#ifdef CONFIG_32BIT
f = final_handler;
/* Simplest case, just copy the handler. */
copy_handler(relocs, labels, tlb_handler, p, f);
final_len = p - tlb_handler;
#else /* CONFIG_64BIT */
f = final_handler + 32;
if ((p - tlb_handler) <= 32) {
/* Just copy the handler. */
copy_handler(relocs, labels, tlb_handler, p, f);
final_len = p - tlb_handler;
} else {
u32 *split = tlb_handler + 30;
/*
* Find the split point.
*/
if (insn_has_bdelay(relocs, split - 1))
split--;
/* Copy first part of the handler. */
copy_handler(relocs, labels, tlb_handler, split, f);
f += split - tlb_handler;
/* Insert branch. */
l_split(&l, final_handler);
il_b(&f, &r, label_split);
if (insn_has_bdelay(relocs, split))
i_nop(&f);
else {
copy_handler(relocs, labels, split, split + 1, f);
move_labels(labels, f, f + 1, -1);
f++;
split++;
}
/* Copy the rest of the handler. */
copy_handler(relocs, labels, split, p, final_handler);
final_len = (f - (final_handler + 32)) + (p - split);
}
#endif /* CONFIG_64BIT */
resolve_relocs(relocs, labels);
pr_info("Synthesized TLB refill handler (%u instructions).\n",
final_len);
f = final_handler;
#ifdef CONFIG_64BIT
if (final_len > 32)
final_len = 64;
else
f = final_handler + 32;
#endif /* CONFIG_64BIT */
pr_debug("\t.set push\n");
pr_debug("\t.set noreorder\n");
for (i = 0; i < final_len; i++)
pr_debug("\t.word 0x%08x\n", f[i]);
pr_debug("\t.set pop\n");
memcpy((void *)ebase, final_handler, 0x100);
}
/*
* TLB load/store/modify handlers.
*
* Only the fastpath gets synthesized at runtime, the slowpath for
* do_page_fault remains normal asm.
*/
extern void tlb_do_page_fault_0(void);
extern void tlb_do_page_fault_1(void);
#define __tlb_handler_align \
__attribute__((__aligned__(1 << CONFIG_MIPS_L1_CACHE_SHIFT)))
/*
* 128 instructions for the fastpath handler is generous and should
* never be exceeded.
*/
#define FASTPATH_SIZE 128
u32 __tlb_handler_align handle_tlbl[FASTPATH_SIZE];
u32 __tlb_handler_align handle_tlbs[FASTPATH_SIZE];
u32 __tlb_handler_align handle_tlbm[FASTPATH_SIZE];
static void __init
iPTE_LW(u32 **p, struct label **l, unsigned int pte, unsigned int ptr)
{
#ifdef CONFIG_SMP
# ifdef CONFIG_64BIT_PHYS_ADDR
if (cpu_has_64bits)
i_lld(p, pte, 0, ptr);
else
# endif
i_LL(p, pte, 0, ptr);
#else
# ifdef CONFIG_64BIT_PHYS_ADDR
if (cpu_has_64bits)
i_ld(p, pte, 0, ptr);
else
# endif
i_LW(p, pte, 0, ptr);
#endif
}
static void __init
iPTE_SW(u32 **p, struct reloc **r, unsigned int pte, unsigned int ptr,
unsigned int mode)
{
#ifdef CONFIG_64BIT_PHYS_ADDR
unsigned int hwmode = mode & (_PAGE_VALID | _PAGE_DIRTY);
#endif
i_ori(p, pte, pte, mode);
#ifdef CONFIG_SMP
# ifdef CONFIG_64BIT_PHYS_ADDR
if (cpu_has_64bits)
i_scd(p, pte, 0, ptr);
else
# endif
i_SC(p, pte, 0, ptr);
if (r10000_llsc_war())
il_beqzl(p, r, pte, label_smp_pgtable_change);
else
il_beqz(p, r, pte, label_smp_pgtable_change);
# ifdef CONFIG_64BIT_PHYS_ADDR
if (!cpu_has_64bits) {
/* no i_nop needed */
i_ll(p, pte, sizeof(pte_t) / 2, ptr);
i_ori(p, pte, pte, hwmode);
i_sc(p, pte, sizeof(pte_t) / 2, ptr);
il_beqz(p, r, pte, label_smp_pgtable_change);
/* no i_nop needed */
i_lw(p, pte, 0, ptr);
} else
i_nop(p);
# else
i_nop(p);
# endif
#else
# ifdef CONFIG_64BIT_PHYS_ADDR
if (cpu_has_64bits)
i_sd(p, pte, 0, ptr);
else
# endif
i_SW(p, pte, 0, ptr);
# ifdef CONFIG_64BIT_PHYS_ADDR
if (!cpu_has_64bits) {
i_lw(p, pte, sizeof(pte_t) / 2, ptr);
i_ori(p, pte, pte, hwmode);
i_sw(p, pte, sizeof(pte_t) / 2, ptr);
i_lw(p, pte, 0, ptr);
}
# endif
#endif
}
/*
* Check if PTE is present, if not then jump to LABEL. PTR points to
* the page table where this PTE is located, PTE will be re-loaded
* with it's original value.
*/
static void __init
build_pte_present(u32 **p, struct label **l, struct reloc **r,
unsigned int pte, unsigned int ptr, enum label_id lid)
{
i_andi(p, pte, pte, _PAGE_PRESENT | _PAGE_READ);
i_xori(p, pte, pte, _PAGE_PRESENT | _PAGE_READ);
il_bnez(p, r, pte, lid);
iPTE_LW(p, l, pte, ptr);
}
/* Make PTE valid, store result in PTR. */
static void __init
build_make_valid(u32 **p, struct reloc **r, unsigned int pte,
unsigned int ptr)
{
unsigned int mode = _PAGE_VALID | _PAGE_ACCESSED;
iPTE_SW(p, r, pte, ptr, mode);
}
/*
* Check if PTE can be written to, if not branch to LABEL. Regardless
* restore PTE with value from PTR when done.
*/
static void __init
build_pte_writable(u32 **p, struct label **l, struct reloc **r,
unsigned int pte, unsigned int ptr, enum label_id lid)
{
i_andi(p, pte, pte, _PAGE_PRESENT | _PAGE_WRITE);
i_xori(p, pte, pte, _PAGE_PRESENT | _PAGE_WRITE);
il_bnez(p, r, pte, lid);
iPTE_LW(p, l, pte, ptr);
}
/* Make PTE writable, update software status bits as well, then store
* at PTR.
*/
static void __init
build_make_write(u32 **p, struct reloc **r, unsigned int pte,
unsigned int ptr)
{
unsigned int mode = (_PAGE_ACCESSED | _PAGE_MODIFIED | _PAGE_VALID
| _PAGE_DIRTY);
iPTE_SW(p, r, pte, ptr, mode);
}
/*
* Check if PTE can be modified, if not branch to LABEL. Regardless
* restore PTE with value from PTR when done.
*/
static void __init
build_pte_modifiable(u32 **p, struct label **l, struct reloc **r,
unsigned int pte, unsigned int ptr, enum label_id lid)
{
i_andi(p, pte, pte, _PAGE_WRITE);
il_beqz(p, r, pte, lid);
iPTE_LW(p, l, pte, ptr);
}
/*
* R3000 style TLB load/store/modify handlers.
*/
/*
* This places the pte into ENTRYLO0 and writes it with tlbwi.
* Then it returns.
*/
static void __init
build_r3000_pte_reload_tlbwi(u32 **p, unsigned int pte, unsigned int tmp)
{
i_mtc0(p, pte, C0_ENTRYLO0); /* cp0 delay */
i_mfc0(p, tmp, C0_EPC); /* cp0 delay */
i_tlbwi(p);
i_jr(p, tmp);
i_rfe(p); /* branch delay */
}
/*
* This places the pte into ENTRYLO0 and writes it with tlbwi
* or tlbwr as appropriate. This is because the index register
* may have the probe fail bit set as a result of a trap on a
* kseg2 access, i.e. without refill. Then it returns.
*/
static void __init
build_r3000_tlb_reload_write(u32 **p, struct label **l, struct reloc **r,
unsigned int pte, unsigned int tmp)
{
i_mfc0(p, tmp, C0_INDEX);
i_mtc0(p, pte, C0_ENTRYLO0); /* cp0 delay */
il_bltz(p, r, tmp, label_r3000_write_probe_fail); /* cp0 delay */
i_mfc0(p, tmp, C0_EPC); /* branch delay */
i_tlbwi(p); /* cp0 delay */
i_jr(p, tmp);
i_rfe(p); /* branch delay */
l_r3000_write_probe_fail(l, *p);
i_tlbwr(p); /* cp0 delay */
i_jr(p, tmp);
i_rfe(p); /* branch delay */
}
static void __init
build_r3000_tlbchange_handler_head(u32 **p, unsigned int pte,
unsigned int ptr)
{
long pgdc = (long)pgd_current;
i_mfc0(p, pte, C0_BADVADDR);
i_lui(p, ptr, rel_hi(pgdc)); /* cp0 delay */
i_lw(p, ptr, rel_lo(pgdc), ptr);
i_srl(p, pte, pte, 22); /* load delay */
i_sll(p, pte, pte, 2);
i_addu(p, ptr, ptr, pte);
i_mfc0(p, pte, C0_CONTEXT);
i_lw(p, ptr, 0, ptr); /* cp0 delay */
i_andi(p, pte, pte, 0xffc); /* load delay */
i_addu(p, ptr, ptr, pte);
i_lw(p, pte, 0, ptr);
i_tlbp(p); /* load delay */
}
static void __init build_r3000_tlb_load_handler(void)
{
u32 *p = handle_tlbl;
struct label *l = labels;
struct reloc *r = relocs;
int i;
memset(handle_tlbl, 0, sizeof(handle_tlbl));
memset(labels, 0, sizeof(labels));
memset(relocs, 0, sizeof(relocs));
build_r3000_tlbchange_handler_head(&p, K0, K1);
build_pte_present(&p, &l, &r, K0, K1, label_nopage_tlbl);
i_nop(&p); /* load delay */
build_make_valid(&p, &r, K0, K1);
build_r3000_tlb_reload_write(&p, &l, &r, K0, K1);
l_nopage_tlbl(&l, p);
i_j(&p, (unsigned long)tlb_do_page_fault_0 & 0x0fffffff);
i_nop(&p);
if ((p - handle_tlbl) > FASTPATH_SIZE)
panic("TLB load handler fastpath space exceeded");
resolve_relocs(relocs, labels);
pr_info("Synthesized TLB load handler fastpath (%u instructions).\n",
(unsigned int)(p - handle_tlbl));
pr_debug("\t.set push\n");
pr_debug("\t.set noreorder\n");
for (i = 0; i < (p - handle_tlbl); i++)
pr_debug("\t.word 0x%08x\n", handle_tlbl[i]);
pr_debug("\t.set pop\n");
}
static void __init build_r3000_tlb_store_handler(void)
{
u32 *p = handle_tlbs;
struct label *l = labels;
struct reloc *r = relocs;
int i;
memset(handle_tlbs, 0, sizeof(handle_tlbs));
memset(labels, 0, sizeof(labels));
memset(relocs, 0, sizeof(relocs));
build_r3000_tlbchange_handler_head(&p, K0, K1);
build_pte_writable(&p, &l, &r, K0, K1, label_nopage_tlbs);
i_nop(&p); /* load delay */
build_make_write(&p, &r, K0, K1);
build_r3000_tlb_reload_write(&p, &l, &r, K0, K1);
l_nopage_tlbs(&l, p);
i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
i_nop(&p);
if ((p - handle_tlbs) > FASTPATH_SIZE)
panic("TLB store handler fastpath space exceeded");
resolve_relocs(relocs, labels);
pr_info("Synthesized TLB store handler fastpath (%u instructions).\n",
(unsigned int)(p - handle_tlbs));
pr_debug("\t.set push\n");
pr_debug("\t.set noreorder\n");
for (i = 0; i < (p - handle_tlbs); i++)
pr_debug("\t.word 0x%08x\n", handle_tlbs[i]);
pr_debug("\t.set pop\n");
}
static void __init build_r3000_tlb_modify_handler(void)
{
u32 *p = handle_tlbm;
struct label *l = labels;
struct reloc *r = relocs;
int i;
memset(handle_tlbm, 0, sizeof(handle_tlbm));
memset(labels, 0, sizeof(labels));
memset(relocs, 0, sizeof(relocs));
build_r3000_tlbchange_handler_head(&p, K0, K1);
build_pte_modifiable(&p, &l, &r, K0, K1, label_nopage_tlbm);
i_nop(&p); /* load delay */
build_make_write(&p, &r, K0, K1);
build_r3000_pte_reload_tlbwi(&p, K0, K1);
l_nopage_tlbm(&l, p);
i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
i_nop(&p);
if ((p - handle_tlbm) > FASTPATH_SIZE)
panic("TLB modify handler fastpath space exceeded");
resolve_relocs(relocs, labels);
pr_info("Synthesized TLB modify handler fastpath (%u instructions).\n",
(unsigned int)(p - handle_tlbm));
pr_debug("\t.set push\n");
pr_debug("\t.set noreorder\n");
for (i = 0; i < (p - handle_tlbm); i++)
pr_debug("\t.word 0x%08x\n", handle_tlbm[i]);
pr_debug("\t.set pop\n");
}
/*
* R4000 style TLB load/store/modify handlers.
*/
static void __init
build_r4000_tlbchange_handler_head(u32 **p, struct label **l,
struct reloc **r, unsigned int pte,
unsigned int ptr)
{
#ifdef CONFIG_64BIT
build_get_pmde64(p, l, r, pte, ptr); /* get pmd in ptr */
#else
build_get_pgde32(p, pte, ptr); /* get pgd in ptr */
#endif
i_MFC0(p, pte, C0_BADVADDR);
i_LW(p, ptr, 0, ptr);
i_SRL(p, pte, pte, PAGE_SHIFT + PTE_ORDER - PTE_T_LOG2);
i_andi(p, pte, pte, (PTRS_PER_PTE - 1) << PTE_T_LOG2);
i_ADDU(p, ptr, ptr, pte);
#ifdef CONFIG_SMP
l_smp_pgtable_change(l, *p);
# endif
iPTE_LW(p, l, pte, ptr); /* get even pte */
build_tlb_probe_entry(p);
}
static void __init
build_r4000_tlbchange_handler_tail(u32 **p, struct label **l,
struct reloc **r, unsigned int tmp,
unsigned int ptr)
{
i_ori(p, ptr, ptr, sizeof(pte_t));
i_xori(p, ptr, ptr, sizeof(pte_t));
build_update_entries(p, tmp, ptr);
build_tlb_write_entry(p, l, r, tlb_indexed);
l_leave(l, *p);
i_eret(p); /* return from trap */
#ifdef CONFIG_64BIT
build_get_pgd_vmalloc64(p, l, r, tmp, ptr);
#endif
}
static void __init build_r4000_tlb_load_handler(void)
{
u32 *p = handle_tlbl;
struct label *l = labels;
struct reloc *r = relocs;
int i;
memset(handle_tlbl, 0, sizeof(handle_tlbl));
memset(labels, 0, sizeof(labels));
memset(relocs, 0, sizeof(relocs));
if (bcm1250_m3_war()) {
i_MFC0(&p, K0, C0_BADVADDR);
i_MFC0(&p, K1, C0_ENTRYHI);
i_xor(&p, K0, K0, K1);
i_SRL(&p, K0, K0, PAGE_SHIFT + 1);
il_bnez(&p, &r, K0, label_leave);
/* No need for i_nop */
}
build_r4000_tlbchange_handler_head(&p, &l, &r, K0, K1);
build_pte_present(&p, &l, &r, K0, K1, label_nopage_tlbl);
build_make_valid(&p, &r, K0, K1);
build_r4000_tlbchange_handler_tail(&p, &l, &r, K0, K1);
l_nopage_tlbl(&l, p);
i_j(&p, (unsigned long)tlb_do_page_fault_0 & 0x0fffffff);
i_nop(&p);
if ((p - handle_tlbl) > FASTPATH_SIZE)
panic("TLB load handler fastpath space exceeded");
resolve_relocs(relocs, labels);
pr_info("Synthesized TLB load handler fastpath (%u instructions).\n",
(unsigned int)(p - handle_tlbl));
pr_debug("\t.set push\n");
pr_debug("\t.set noreorder\n");
for (i = 0; i < (p - handle_tlbl); i++)
pr_debug("\t.word 0x%08x\n", handle_tlbl[i]);
pr_debug("\t.set pop\n");
}
static void __init build_r4000_tlb_store_handler(void)
{
u32 *p = handle_tlbs;
struct label *l = labels;
struct reloc *r = relocs;
int i;
memset(handle_tlbs, 0, sizeof(handle_tlbs));
memset(labels, 0, sizeof(labels));
memset(relocs, 0, sizeof(relocs));
build_r4000_tlbchange_handler_head(&p, &l, &r, K0, K1);
build_pte_writable(&p, &l, &r, K0, K1, label_nopage_tlbs);
build_make_write(&p, &r, K0, K1);
build_r4000_tlbchange_handler_tail(&p, &l, &r, K0, K1);
l_nopage_tlbs(&l, p);
i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
i_nop(&p);
if ((p - handle_tlbs) > FASTPATH_SIZE)
panic("TLB store handler fastpath space exceeded");
resolve_relocs(relocs, labels);
pr_info("Synthesized TLB store handler fastpath (%u instructions).\n",
(unsigned int)(p - handle_tlbs));
pr_debug("\t.set push\n");
pr_debug("\t.set noreorder\n");
for (i = 0; i < (p - handle_tlbs); i++)
pr_debug("\t.word 0x%08x\n", handle_tlbs[i]);
pr_debug("\t.set pop\n");
}
static void __init build_r4000_tlb_modify_handler(void)
{
u32 *p = handle_tlbm;
struct label *l = labels;
struct reloc *r = relocs;
int i;
memset(handle_tlbm, 0, sizeof(handle_tlbm));
memset(labels, 0, sizeof(labels));
memset(relocs, 0, sizeof(relocs));
build_r4000_tlbchange_handler_head(&p, &l, &r, K0, K1);
build_pte_modifiable(&p, &l, &r, K0, K1, label_nopage_tlbm);
/* Present and writable bits set, set accessed and dirty bits. */
build_make_write(&p, &r, K0, K1);
build_r4000_tlbchange_handler_tail(&p, &l, &r, K0, K1);
l_nopage_tlbm(&l, p);
i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
i_nop(&p);
if ((p - handle_tlbm) > FASTPATH_SIZE)
panic("TLB modify handler fastpath space exceeded");
resolve_relocs(relocs, labels);
pr_info("Synthesized TLB modify handler fastpath (%u instructions).\n",
(unsigned int)(p - handle_tlbm));
pr_debug("\t.set push\n");
pr_debug("\t.set noreorder\n");
for (i = 0; i < (p - handle_tlbm); i++)
pr_debug("\t.word 0x%08x\n", handle_tlbm[i]);
pr_debug("\t.set pop\n");
}
void __init build_tlb_refill_handler(void)
{
/*
* The refill handler is generated per-CPU, multi-node systems
* may have local storage for it. The other handlers are only
* needed once.
*/
static int run_once = 0;
switch (current_cpu_data.cputype) {
case CPU_R2000:
case CPU_R3000:
case CPU_R3000A:
case CPU_R3081E:
case CPU_TX3912:
case CPU_TX3922:
case CPU_TX3927:
build_r3000_tlb_refill_handler();
if (!run_once) {
build_r3000_tlb_load_handler();
build_r3000_tlb_store_handler();
build_r3000_tlb_modify_handler();
run_once++;
}
break;
case CPU_R6000:
case CPU_R6000A:
panic("No R6000 TLB refill handler yet");
break;
case CPU_R8000:
panic("No R8000 TLB refill handler yet");
break;
default:
build_r4000_tlb_refill_handler();
if (!run_once) {
build_r4000_tlb_load_handler();
build_r4000_tlb_store_handler();
build_r4000_tlb_modify_handler();
run_once++;
}
}
}
void __init flush_tlb_handlers(void)
{
flush_icache_range((unsigned long)handle_tlbl,
(unsigned long)handle_tlbl + sizeof(handle_tlbl));
flush_icache_range((unsigned long)handle_tlbs,
(unsigned long)handle_tlbs + sizeof(handle_tlbs));
flush_icache_range((unsigned long)handle_tlbm,
(unsigned long)handle_tlbm + sizeof(handle_tlbm));
}