kernel-ark/drivers/staging/ramzswap/ramzswap_drv.c
Tejun Heo 5a0e3ad6af include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h
percpu.h is included by sched.h and module.h and thus ends up being
included when building most .c files.  percpu.h includes slab.h which
in turn includes gfp.h making everything defined by the two files
universally available and complicating inclusion dependencies.

percpu.h -> slab.h dependency is about to be removed.  Prepare for
this change by updating users of gfp and slab facilities include those
headers directly instead of assuming availability.  As this conversion
needs to touch large number of source files, the following script is
used as the basis of conversion.

  http://userweb.kernel.org/~tj/misc/slabh-sweep.py

The script does the followings.

* Scan files for gfp and slab usages and update includes such that
  only the necessary includes are there.  ie. if only gfp is used,
  gfp.h, if slab is used, slab.h.

* When the script inserts a new include, it looks at the include
  blocks and try to put the new include such that its order conforms
  to its surrounding.  It's put in the include block which contains
  core kernel includes, in the same order that the rest are ordered -
  alphabetical, Christmas tree, rev-Xmas-tree or at the end if there
  doesn't seem to be any matching order.

* If the script can't find a place to put a new include (mostly
  because the file doesn't have fitting include block), it prints out
  an error message indicating which .h file needs to be added to the
  file.

The conversion was done in the following steps.

1. The initial automatic conversion of all .c files updated slightly
   over 4000 files, deleting around 700 includes and adding ~480 gfp.h
   and ~3000 slab.h inclusions.  The script emitted errors for ~400
   files.

2. Each error was manually checked.  Some didn't need the inclusion,
   some needed manual addition while adding it to implementation .h or
   embedding .c file was more appropriate for others.  This step added
   inclusions to around 150 files.

3. The script was run again and the output was compared to the edits
   from #2 to make sure no file was left behind.

4. Several build tests were done and a couple of problems were fixed.
   e.g. lib/decompress_*.c used malloc/free() wrappers around slab
   APIs requiring slab.h to be added manually.

5. The script was run on all .h files but without automatically
   editing them as sprinkling gfp.h and slab.h inclusions around .h
   files could easily lead to inclusion dependency hell.  Most gfp.h
   inclusion directives were ignored as stuff from gfp.h was usually
   wildly available and often used in preprocessor macros.  Each
   slab.h inclusion directive was examined and added manually as
   necessary.

6. percpu.h was updated not to include slab.h.

7. Build test were done on the following configurations and failures
   were fixed.  CONFIG_GCOV_KERNEL was turned off for all tests (as my
   distributed build env didn't work with gcov compiles) and a few
   more options had to be turned off depending on archs to make things
   build (like ipr on powerpc/64 which failed due to missing writeq).

   * x86 and x86_64 UP and SMP allmodconfig and a custom test config.
   * powerpc and powerpc64 SMP allmodconfig
   * sparc and sparc64 SMP allmodconfig
   * ia64 SMP allmodconfig
   * s390 SMP allmodconfig
   * alpha SMP allmodconfig
   * um on x86_64 SMP allmodconfig

8. percpu.h modifications were reverted so that it could be applied as
   a separate patch and serve as bisection point.

Given the fact that I had only a couple of failures from tests on step
6, I'm fairly confident about the coverage of this conversion patch.
If there is a breakage, it's likely to be something in one of the arch
headers which should be easily discoverable easily on most builds of
the specific arch.

Signed-off-by: Tejun Heo <tj@kernel.org>
Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-30 22:02:32 +09:00

1443 lines
34 KiB
C

/*
* Compressed RAM based swap device
*
* Copyright (C) 2008, 2009, 2010 Nitin Gupta
*
* This code is released using a dual license strategy: BSD/GPL
* You can choose the licence that better fits your requirements.
*
* Released under the terms of 3-clause BSD License
* Released under the terms of GNU General Public License Version 2.0
*
* Project home: http://compcache.googlecode.com
*/
#define KMSG_COMPONENT "ramzswap"
#define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/bitops.h>
#include <linux/blkdev.h>
#include <linux/buffer_head.h>
#include <linux/device.h>
#include <linux/genhd.h>
#include <linux/highmem.h>
#include <linux/slab.h>
#include <linux/lzo.h>
#include <linux/string.h>
#include <linux/swap.h>
#include <linux/swapops.h>
#include <linux/vmalloc.h>
#include "ramzswap_drv.h"
/* Globals */
static int ramzswap_major;
static struct ramzswap *devices;
/*
* Pages that compress to larger than this size are
* forwarded to backing swap, if present or stored
* uncompressed in memory otherwise.
*/
static unsigned int max_zpage_size;
/* Module params (documentation at end) */
static unsigned int num_devices;
static int rzs_test_flag(struct ramzswap *rzs, u32 index,
enum rzs_pageflags flag)
{
return rzs->table[index].flags & BIT(flag);
}
static void rzs_set_flag(struct ramzswap *rzs, u32 index,
enum rzs_pageflags flag)
{
rzs->table[index].flags |= BIT(flag);
}
static void rzs_clear_flag(struct ramzswap *rzs, u32 index,
enum rzs_pageflags flag)
{
rzs->table[index].flags &= ~BIT(flag);
}
static int page_zero_filled(void *ptr)
{
unsigned int pos;
unsigned long *page;
page = (unsigned long *)ptr;
for (pos = 0; pos != PAGE_SIZE / sizeof(*page); pos++) {
if (page[pos])
return 0;
}
return 1;
}
/*
* memlimit cannot be greater than backing disk size.
*/
static void ramzswap_set_memlimit(struct ramzswap *rzs, size_t totalram_bytes)
{
int memlimit_valid = 1;
if (!rzs->memlimit) {
pr_info("Memory limit not set.\n");
memlimit_valid = 0;
}
if (rzs->memlimit > rzs->disksize) {
pr_info("Memory limit cannot be greater than "
"disksize: limit=%zu, disksize=%zu\n",
rzs->memlimit, rzs->disksize);
memlimit_valid = 0;
}
if (!memlimit_valid) {
size_t mempart, disksize;
pr_info("Using default: smaller of (%u%% of RAM) and "
"(backing disk size).\n",
default_memlimit_perc_ram);
mempart = default_memlimit_perc_ram * (totalram_bytes / 100);
disksize = rzs->disksize;
rzs->memlimit = mempart > disksize ? disksize : mempart;
}
if (rzs->memlimit > totalram_bytes / 2) {
pr_info(
"Its not advisable setting limit more than half of "
"size of memory since we expect a 2:1 compression ratio. "
"Limit represents amount of *compressed* data we can keep "
"in memory!\n"
"\tMemory Size: %zu kB\n"
"\tLimit you selected: %zu kB\n"
"Continuing anyway ...\n",
totalram_bytes >> 10, rzs->memlimit >> 10
);
}
rzs->memlimit &= PAGE_MASK;
BUG_ON(!rzs->memlimit);
}
static void ramzswap_set_disksize(struct ramzswap *rzs, size_t totalram_bytes)
{
if (!rzs->disksize) {
pr_info(
"disk size not provided. You can use disksize_kb module "
"param to specify size.\nUsing default: (%u%% of RAM).\n",
default_disksize_perc_ram
);
rzs->disksize = default_disksize_perc_ram *
(totalram_bytes / 100);
}
if (rzs->disksize > 2 * (totalram_bytes)) {
pr_info(
"There is little point creating a ramzswap of greater than "
"twice the size of memory since we expect a 2:1 compression "
"ratio. Note that ramzswap uses about 0.1%% of the size of "
"the swap device when not in use so a huge ramzswap is "
"wasteful.\n"
"\tMemory Size: %zu kB\n"
"\tSize you selected: %zu kB\n"
"Continuing anyway ...\n",
totalram_bytes >> 10, rzs->disksize
);
}
rzs->disksize &= PAGE_MASK;
}
/*
* Swap header (1st page of swap device) contains information
* to indentify it as a swap partition. Prepare such a header
* for ramzswap device (ramzswap0) so that swapon can identify
* it as swap partition. In case backing swap device is provided,
* copy its swap header.
*/
static int setup_swap_header(struct ramzswap *rzs, union swap_header *s)
{
int ret = 0;
struct page *page;
struct address_space *mapping;
union swap_header *backing_swap_header;
/*
* There is no backing swap device. Create a swap header
* that is acceptable by swapon.
*/
if (!rzs->backing_swap) {
s->info.version = 1;
s->info.last_page = (rzs->disksize >> PAGE_SHIFT) - 1;
s->info.nr_badpages = 0;
memcpy(s->magic.magic, "SWAPSPACE2", 10);
return 0;
}
/*
* We have a backing swap device. Copy its swap header
* to ramzswap device header. If this header contains
* invalid information (backing device not a swap
* partition, etc.), swapon will fail for ramzswap
* which is correct behavior - we don't want to swap
* over filesystem partition!
*/
/* Read the backing swap header (code from sys_swapon) */
mapping = rzs->swap_file->f_mapping;
if (!mapping->a_ops->readpage) {
ret = -EINVAL;
goto out;
}
page = read_mapping_page(mapping, 0, rzs->swap_file);
if (IS_ERR(page)) {
ret = PTR_ERR(page);
goto out;
}
backing_swap_header = kmap(page);
memcpy(s, backing_swap_header, sizeof(*s));
if (s->info.nr_badpages) {
pr_info("Cannot use backing swap with bad pages (%u)\n",
s->info.nr_badpages);
ret = -EINVAL;
}
/*
* ramzswap disksize equals number of usable pages in backing
* swap. Set last_page in swap header to match this disksize
* ('last_page' means 0-based index of last usable swap page).
*/
s->info.last_page = (rzs->disksize >> PAGE_SHIFT) - 1;
kunmap(page);
out:
return ret;
}
static void ramzswap_ioctl_get_stats(struct ramzswap *rzs,
struct ramzswap_ioctl_stats *s)
{
strncpy(s->backing_swap_name, rzs->backing_swap_name,
MAX_SWAP_NAME_LEN - 1);
s->backing_swap_name[MAX_SWAP_NAME_LEN - 1] = '\0';
s->disksize = rzs->disksize;
s->memlimit = rzs->memlimit;
#if defined(CONFIG_RAMZSWAP_STATS)
{
struct ramzswap_stats *rs = &rzs->stats;
size_t succ_writes, mem_used;
unsigned int good_compress_perc = 0, no_compress_perc = 0;
mem_used = xv_get_total_size_bytes(rzs->mem_pool)
+ (rs->pages_expand << PAGE_SHIFT);
succ_writes = rzs_stat64_read(rzs, &rs->num_writes) -
rzs_stat64_read(rzs, &rs->failed_writes);
if (succ_writes && rs->pages_stored) {
good_compress_perc = rs->good_compress * 100
/ rs->pages_stored;
no_compress_perc = rs->pages_expand * 100
/ rs->pages_stored;
}
s->num_reads = rzs_stat64_read(rzs, &rs->num_reads);
s->num_writes = rzs_stat64_read(rzs, &rs->num_writes);
s->failed_reads = rzs_stat64_read(rzs, &rs->failed_reads);
s->failed_writes = rzs_stat64_read(rzs, &rs->failed_writes);
s->invalid_io = rzs_stat64_read(rzs, &rs->invalid_io);
s->notify_free = rzs_stat64_read(rzs, &rs->notify_free);
s->pages_zero = rs->pages_zero;
s->good_compress_pct = good_compress_perc;
s->pages_expand_pct = no_compress_perc;
s->pages_stored = rs->pages_stored;
s->pages_used = mem_used >> PAGE_SHIFT;
s->orig_data_size = rs->pages_stored << PAGE_SHIFT;
s->compr_data_size = rs->compr_size;
s->mem_used_total = mem_used;
s->bdev_num_reads = rzs_stat64_read(rzs, &rs->bdev_num_reads);
s->bdev_num_writes = rzs_stat64_read(rzs, &rs->bdev_num_writes);
}
#endif /* CONFIG_RAMZSWAP_STATS */
}
static int add_backing_swap_extent(struct ramzswap *rzs,
pgoff_t phy_pagenum,
pgoff_t num_pages)
{
unsigned int idx;
struct list_head *head;
struct page *curr_page, *new_page;
unsigned int extents_per_page = PAGE_SIZE /
sizeof(struct ramzswap_backing_extent);
idx = rzs->num_extents % extents_per_page;
if (!idx) {
new_page = alloc_page(__GFP_ZERO);
if (!new_page)
return -ENOMEM;
if (rzs->num_extents) {
curr_page = virt_to_page(rzs->curr_extent);
head = &curr_page->lru;
} else {
head = &rzs->backing_swap_extent_list;
}
list_add(&new_page->lru, head);
rzs->curr_extent = page_address(new_page);
}
rzs->curr_extent->phy_pagenum = phy_pagenum;
rzs->curr_extent->num_pages = num_pages;
pr_debug("add_extent: idx=%u, phy_pgnum=%lu, num_pgs=%lu, "
"pg_last=%lu, curr_ext=%p\n", idx, phy_pagenum, num_pages,
phy_pagenum + num_pages - 1, rzs->curr_extent);
if (idx != extents_per_page - 1)
rzs->curr_extent++;
return 0;
}
static int setup_backing_swap_extents(struct ramzswap *rzs,
struct inode *inode, unsigned long *num_pages)
{
int ret = 0;
unsigned blkbits;
unsigned blocks_per_page;
pgoff_t contig_pages = 0, total_pages = 0;
pgoff_t pagenum = 0, prev_pagenum = 0;
sector_t probe_block = 0;
sector_t last_block;
blkbits = inode->i_blkbits;
blocks_per_page = PAGE_SIZE >> blkbits;
last_block = i_size_read(inode) >> blkbits;
while (probe_block + blocks_per_page <= last_block) {
unsigned block_in_page;
sector_t first_block;
first_block = bmap(inode, probe_block);
if (first_block == 0)
goto bad_bmap;
/* It must be PAGE_SIZE aligned on-disk */
if (first_block & (blocks_per_page - 1)) {
probe_block++;
goto probe_next;
}
/* All blocks within this page must be contiguous on disk */
for (block_in_page = 1; block_in_page < blocks_per_page;
block_in_page++) {
sector_t block;
block = bmap(inode, probe_block + block_in_page);
if (block == 0)
goto bad_bmap;
if (block != first_block + block_in_page) {
/* Discontiguity */
probe_block++;
goto probe_next;
}
}
/*
* We found a PAGE_SIZE length, PAGE_SIZE aligned
* run of blocks.
*/
pagenum = first_block >> (PAGE_SHIFT - blkbits);
if (total_pages && (pagenum != prev_pagenum + 1)) {
ret = add_backing_swap_extent(rzs, prev_pagenum -
(contig_pages - 1), contig_pages);
if (ret < 0)
goto out;
rzs->num_extents++;
contig_pages = 0;
}
total_pages++;
contig_pages++;
prev_pagenum = pagenum;
probe_block += blocks_per_page;
probe_next:
continue;
}
if (contig_pages) {
pr_debug("adding last extent: pagenum=%lu, "
"contig_pages=%lu\n", pagenum, contig_pages);
ret = add_backing_swap_extent(rzs,
prev_pagenum - (contig_pages - 1), contig_pages);
if (ret < 0)
goto out;
rzs->num_extents++;
}
if (!rzs->num_extents) {
pr_err("No swap extents found!\n");
ret = -EINVAL;
}
if (!ret) {
*num_pages = total_pages;
pr_info("Found %lu extents containing %luk\n",
rzs->num_extents, *num_pages << (PAGE_SHIFT - 10));
}
goto out;
bad_bmap:
pr_err("Backing swapfile has holes\n");
ret = -EINVAL;
out:
while (ret && !list_empty(&rzs->backing_swap_extent_list)) {
struct page *page;
struct list_head *entry = rzs->backing_swap_extent_list.next;
page = list_entry(entry, struct page, lru);
list_del(entry);
__free_page(page);
}
return ret;
}
static void map_backing_swap_extents(struct ramzswap *rzs)
{
struct ramzswap_backing_extent *se;
struct page *table_page, *se_page;
unsigned long num_pages, num_table_pages, entry;
unsigned long se_idx, span;
unsigned entries_per_page = PAGE_SIZE / sizeof(*rzs->table);
unsigned extents_per_page = PAGE_SIZE / sizeof(*se);
/* True for block device */
if (!rzs->num_extents)
return;
se_page = list_entry(rzs->backing_swap_extent_list.next,
struct page, lru);
se = page_address(se_page);
span = se->num_pages;
num_pages = rzs->disksize >> PAGE_SHIFT;
num_table_pages = DIV_ROUND_UP(num_pages * sizeof(*rzs->table),
PAGE_SIZE);
entry = 0;
se_idx = 0;
while (num_table_pages--) {
table_page = vmalloc_to_page(&rzs->table[entry]);
while (span <= entry) {
se_idx++;
if (se_idx == rzs->num_extents)
BUG();
if (!(se_idx % extents_per_page)) {
se_page = list_entry(se_page->lru.next,
struct page, lru);
se = page_address(se_page);
} else
se++;
span += se->num_pages;
}
table_page->mapping = (struct address_space *)se;
table_page->private = se->num_pages - (span - entry);
pr_debug("map_table: entry=%lu, span=%lu, map=%p, priv=%lu\n",
entry, span, table_page->mapping, table_page->private);
entry += entries_per_page;
}
}
/*
* Check if value of backing_swap module param is sane.
* Claim this device and set ramzswap size equal to
* size of this block device.
*/
static int setup_backing_swap(struct ramzswap *rzs)
{
int ret = 0;
size_t disksize;
unsigned long num_pages = 0;
struct inode *inode;
struct file *swap_file;
struct address_space *mapping;
struct block_device *bdev = NULL;
if (!rzs->backing_swap_name[0]) {
pr_debug("backing_swap param not given\n");
goto out;
}
pr_info("Using backing swap device: %s\n", rzs->backing_swap_name);
swap_file = filp_open(rzs->backing_swap_name,
O_RDWR | O_LARGEFILE, 0);
if (IS_ERR(swap_file)) {
pr_err("Error opening backing device: %s\n",
rzs->backing_swap_name);
ret = -EINVAL;
goto out;
}
mapping = swap_file->f_mapping;
inode = mapping->host;
if (S_ISBLK(inode->i_mode)) {
bdev = I_BDEV(inode);
ret = bd_claim(bdev, setup_backing_swap);
if (ret < 0) {
bdev = NULL;
goto bad_param;
}
disksize = i_size_read(inode);
/*
* Can happen if user gives an extended partition as
* backing swap or simply a bad disk.
*/
if (!disksize) {
pr_err("Error reading backing swap size.\n");
goto bad_param;
}
} else if (S_ISREG(inode->i_mode)) {
bdev = inode->i_sb->s_bdev;
if (IS_SWAPFILE(inode)) {
ret = -EBUSY;
goto bad_param;
}
ret = setup_backing_swap_extents(rzs, inode, &num_pages);
if (ret < 0)
goto bad_param;
disksize = num_pages << PAGE_SHIFT;
} else {
goto bad_param;
}
rzs->swap_file = swap_file;
rzs->backing_swap = bdev;
rzs->disksize = disksize;
return 0;
bad_param:
if (bdev)
bd_release(bdev);
filp_close(swap_file, NULL);
out:
rzs->backing_swap = NULL;
return ret;
}
/*
* Map logical page number 'pagenum' to physical page number
* on backing swap device. For block device, this is a nop.
*/
static u32 map_backing_swap_page(struct ramzswap *rzs, u32 pagenum)
{
u32 skip_pages, entries_per_page;
size_t delta, se_offset, skipped;
struct page *table_page, *se_page;
struct ramzswap_backing_extent *se;
if (!rzs->num_extents)
return pagenum;
entries_per_page = PAGE_SIZE / sizeof(*rzs->table);
table_page = vmalloc_to_page(&rzs->table[pagenum]);
se = (struct ramzswap_backing_extent *)table_page->mapping;
se_page = virt_to_page(se);
skip_pages = pagenum - (pagenum / entries_per_page * entries_per_page);
se_offset = table_page->private + skip_pages;
if (se_offset < se->num_pages)
return se->phy_pagenum + se_offset;
skipped = se->num_pages - table_page->private;
do {
struct ramzswap_backing_extent *se_base;
u32 se_entries_per_page = PAGE_SIZE / sizeof(*se);
/* Get next swap extent */
se_base = (struct ramzswap_backing_extent *)
page_address(se_page);
if (se - se_base == se_entries_per_page - 1) {
se_page = list_entry(se_page->lru.next,
struct page, lru);
se = page_address(se_page);
} else {
se++;
}
skipped += se->num_pages;
} while (skipped < skip_pages);
delta = skipped - skip_pages;
se_offset = se->num_pages - delta;
return se->phy_pagenum + se_offset;
}
static void ramzswap_free_page(struct ramzswap *rzs, size_t index)
{
u32 clen;
void *obj;
struct page *page = rzs->table[index].page;
u32 offset = rzs->table[index].offset;
if (unlikely(!page)) {
/*
* No memory is allocated for zero filled pages.
* Simply clear zero page flag.
*/
if (rzs_test_flag(rzs, index, RZS_ZERO)) {
rzs_clear_flag(rzs, index, RZS_ZERO);
rzs_stat_dec(&rzs->stats.pages_zero);
}
return;
}
if (unlikely(rzs_test_flag(rzs, index, RZS_UNCOMPRESSED))) {
clen = PAGE_SIZE;
__free_page(page);
rzs_clear_flag(rzs, index, RZS_UNCOMPRESSED);
rzs_stat_dec(&rzs->stats.pages_expand);
goto out;
}
obj = kmap_atomic(page, KM_USER0) + offset;
clen = xv_get_object_size(obj) - sizeof(struct zobj_header);
kunmap_atomic(obj, KM_USER0);
xv_free(rzs->mem_pool, page, offset);
if (clen <= PAGE_SIZE / 2)
rzs_stat_dec(&rzs->stats.good_compress);
out:
rzs->stats.compr_size -= clen;
rzs_stat_dec(&rzs->stats.pages_stored);
rzs->table[index].page = NULL;
rzs->table[index].offset = 0;
}
static int handle_zero_page(struct bio *bio)
{
void *user_mem;
struct page *page = bio->bi_io_vec[0].bv_page;
user_mem = kmap_atomic(page, KM_USER0);
memset(user_mem, 0, PAGE_SIZE);
kunmap_atomic(user_mem, KM_USER0);
flush_dcache_page(page);
set_bit(BIO_UPTODATE, &bio->bi_flags);
bio_endio(bio, 0);
return 0;
}
static int handle_uncompressed_page(struct ramzswap *rzs, struct bio *bio)
{
u32 index;
struct page *page;
unsigned char *user_mem, *cmem;
page = bio->bi_io_vec[0].bv_page;
index = bio->bi_sector >> SECTORS_PER_PAGE_SHIFT;
user_mem = kmap_atomic(page, KM_USER0);
cmem = kmap_atomic(rzs->table[index].page, KM_USER1) +
rzs->table[index].offset;
memcpy(user_mem, cmem, PAGE_SIZE);
kunmap_atomic(user_mem, KM_USER0);
kunmap_atomic(cmem, KM_USER1);
flush_dcache_page(page);
set_bit(BIO_UPTODATE, &bio->bi_flags);
bio_endio(bio, 0);
return 0;
}
/*
* Called when request page is not present in ramzswap.
* Its either in backing swap device (if present) or
* this is an attempt to read before any previous write
* to this location - this happens due to readahead when
* swap device is read from user-space (e.g. during swapon)
*/
static int handle_ramzswap_fault(struct ramzswap *rzs, struct bio *bio)
{
/*
* Always forward such requests to backing swap
* device (if present)
*/
if (rzs->backing_swap) {
u32 pagenum;
rzs_stat64_dec(rzs, &rzs->stats.num_reads);
rzs_stat64_inc(rzs, &rzs->stats.bdev_num_reads);
bio->bi_bdev = rzs->backing_swap;
/*
* In case backing swap is a file, find the right offset within
* the file corresponding to logical position 'index'. For block
* device, this is a nop.
*/
pagenum = bio->bi_sector >> SECTORS_PER_PAGE_SHIFT;
bio->bi_sector = map_backing_swap_page(rzs, pagenum)
<< SECTORS_PER_PAGE_SHIFT;
return 1;
}
/*
* Its unlikely event in case backing dev is
* not present
*/
pr_debug("Read before write on swap device: "
"sector=%lu, size=%u, offset=%u\n",
(ulong)(bio->bi_sector), bio->bi_size,
bio->bi_io_vec[0].bv_offset);
/* Do nothing. Just return success */
set_bit(BIO_UPTODATE, &bio->bi_flags);
bio_endio(bio, 0);
return 0;
}
static int ramzswap_read(struct ramzswap *rzs, struct bio *bio)
{
int ret;
u32 index;
size_t clen;
struct page *page;
struct zobj_header *zheader;
unsigned char *user_mem, *cmem;
rzs_stat64_inc(rzs, &rzs->stats.num_reads);
page = bio->bi_io_vec[0].bv_page;
index = bio->bi_sector >> SECTORS_PER_PAGE_SHIFT;
if (rzs_test_flag(rzs, index, RZS_ZERO))
return handle_zero_page(bio);
/* Requested page is not present in compressed area */
if (!rzs->table[index].page)
return handle_ramzswap_fault(rzs, bio);
/* Page is stored uncompressed since it's incompressible */
if (unlikely(rzs_test_flag(rzs, index, RZS_UNCOMPRESSED)))
return handle_uncompressed_page(rzs, bio);
user_mem = kmap_atomic(page, KM_USER0);
clen = PAGE_SIZE;
cmem = kmap_atomic(rzs->table[index].page, KM_USER1) +
rzs->table[index].offset;
ret = lzo1x_decompress_safe(
cmem + sizeof(*zheader),
xv_get_object_size(cmem) - sizeof(*zheader),
user_mem, &clen);
kunmap_atomic(user_mem, KM_USER0);
kunmap_atomic(cmem, KM_USER1);
/* should NEVER happen */
if (unlikely(ret != LZO_E_OK)) {
pr_err("Decompression failed! err=%d, page=%u\n",
ret, index);
rzs_stat64_inc(rzs, &rzs->stats.failed_reads);
goto out;
}
flush_dcache_page(page);
set_bit(BIO_UPTODATE, &bio->bi_flags);
bio_endio(bio, 0);
return 0;
out:
bio_io_error(bio);
return 0;
}
static int ramzswap_write(struct ramzswap *rzs, struct bio *bio)
{
int ret, fwd_write_request = 0;
u32 offset, index;
size_t clen;
struct zobj_header *zheader;
struct page *page, *page_store;
unsigned char *user_mem, *cmem, *src;
rzs_stat64_inc(rzs, &rzs->stats.num_writes);
page = bio->bi_io_vec[0].bv_page;
index = bio->bi_sector >> SECTORS_PER_PAGE_SHIFT;
src = rzs->compress_buffer;
/*
* System swaps to same sector again when the stored page
* is no longer referenced by any process. So, its now safe
* to free the memory that was allocated for this page.
*/
if (rzs->table[index].page || rzs_test_flag(rzs, index, RZS_ZERO))
ramzswap_free_page(rzs, index);
mutex_lock(&rzs->lock);
user_mem = kmap_atomic(page, KM_USER0);
if (page_zero_filled(user_mem)) {
kunmap_atomic(user_mem, KM_USER0);
mutex_unlock(&rzs->lock);
rzs_stat_inc(&rzs->stats.pages_zero);
rzs_set_flag(rzs, index, RZS_ZERO);
set_bit(BIO_UPTODATE, &bio->bi_flags);
bio_endio(bio, 0);
return 0;
}
if (rzs->backing_swap &&
(rzs->stats.compr_size > rzs->memlimit - PAGE_SIZE)) {
kunmap_atomic(user_mem, KM_USER0);
mutex_unlock(&rzs->lock);
fwd_write_request = 1;
goto out;
}
ret = lzo1x_1_compress(user_mem, PAGE_SIZE, src, &clen,
rzs->compress_workmem);
kunmap_atomic(user_mem, KM_USER0);
if (unlikely(ret != LZO_E_OK)) {
mutex_unlock(&rzs->lock);
pr_err("Compression failed! err=%d\n", ret);
rzs_stat64_inc(rzs, &rzs->stats.failed_writes);
goto out;
}
/*
* Page is incompressible. Forward it to backing swap
* if present. Otherwise, store it as-is (uncompressed)
* since we do not want to return too many swap write
* errors which has side effect of hanging the system.
*/
if (unlikely(clen > max_zpage_size)) {
if (rzs->backing_swap) {
mutex_unlock(&rzs->lock);
fwd_write_request = 1;
goto out;
}
clen = PAGE_SIZE;
page_store = alloc_page(GFP_NOIO | __GFP_HIGHMEM);
if (unlikely(!page_store)) {
mutex_unlock(&rzs->lock);
pr_info("Error allocating memory for incompressible "
"page: %u\n", index);
rzs_stat64_inc(rzs, &rzs->stats.failed_writes);
goto out;
}
offset = 0;
rzs_set_flag(rzs, index, RZS_UNCOMPRESSED);
rzs_stat_inc(&rzs->stats.pages_expand);
rzs->table[index].page = page_store;
src = kmap_atomic(page, KM_USER0);
goto memstore;
}
if (xv_malloc(rzs->mem_pool, clen + sizeof(*zheader),
&rzs->table[index].page, &offset,
GFP_NOIO | __GFP_HIGHMEM)) {
mutex_unlock(&rzs->lock);
pr_info("Error allocating memory for compressed "
"page: %u, size=%zu\n", index, clen);
rzs_stat64_inc(rzs, &rzs->stats.failed_writes);
if (rzs->backing_swap)
fwd_write_request = 1;
goto out;
}
memstore:
rzs->table[index].offset = offset;
cmem = kmap_atomic(rzs->table[index].page, KM_USER1) +
rzs->table[index].offset;
#if 0
/* Back-reference needed for memory defragmentation */
if (!rzs_test_flag(rzs, index, RZS_UNCOMPRESSED)) {
zheader = (struct zobj_header *)cmem;
zheader->table_idx = index;
cmem += sizeof(*zheader);
}
#endif
memcpy(cmem, src, clen);
kunmap_atomic(cmem, KM_USER1);
if (unlikely(rzs_test_flag(rzs, index, RZS_UNCOMPRESSED)))
kunmap_atomic(src, KM_USER0);
/* Update stats */
rzs->stats.compr_size += clen;
rzs_stat_inc(&rzs->stats.pages_stored);
if (clen <= PAGE_SIZE / 2)
rzs_stat_inc(&rzs->stats.good_compress);
mutex_unlock(&rzs->lock);
set_bit(BIO_UPTODATE, &bio->bi_flags);
bio_endio(bio, 0);
return 0;
out:
if (fwd_write_request) {
rzs_stat64_inc(rzs, &rzs->stats.bdev_num_writes);
bio->bi_bdev = rzs->backing_swap;
#if 0
/*
* TODO: We currently have linear mapping of ramzswap and
* backing swap sectors. This is not desired since we want
* to optimize writes to backing swap to minimize disk seeks
* or have effective wear leveling (for SSDs). Also, a
* non-linear mapping is required to implement compressed
* on-disk swapping.
*/
bio->bi_sector = get_backing_swap_page()
<< SECTORS_PER_PAGE_SHIFT;
#endif
/*
* In case backing swap is a file, find the right offset within
* the file corresponding to logical position 'index'. For block
* device, this is a nop.
*/
bio->bi_sector = map_backing_swap_page(rzs, index)
<< SECTORS_PER_PAGE_SHIFT;
return 1;
}
bio_io_error(bio);
return 0;
}
/*
* Check if request is within bounds and page aligned.
*/
static inline int valid_swap_request(struct ramzswap *rzs, struct bio *bio)
{
if (unlikely(
(bio->bi_sector >= (rzs->disksize >> SECTOR_SHIFT)) ||
(bio->bi_sector & (SECTORS_PER_PAGE - 1)) ||
(bio->bi_vcnt != 1) ||
(bio->bi_size != PAGE_SIZE) ||
(bio->bi_io_vec[0].bv_offset != 0))) {
return 0;
}
/* swap request is valid */
return 1;
}
/*
* Handler function for all ramzswap I/O requests.
*/
static int ramzswap_make_request(struct request_queue *queue, struct bio *bio)
{
int ret = 0;
struct ramzswap *rzs = queue->queuedata;
if (unlikely(!rzs->init_done)) {
bio_io_error(bio);
return 0;
}
if (!valid_swap_request(rzs, bio)) {
rzs_stat64_inc(rzs, &rzs->stats.invalid_io);
bio_io_error(bio);
return 0;
}
switch (bio_data_dir(bio)) {
case READ:
ret = ramzswap_read(rzs, bio);
break;
case WRITE:
ret = ramzswap_write(rzs, bio);
break;
}
return ret;
}
static void reset_device(struct ramzswap *rzs)
{
int is_backing_blkdev = 0;
size_t index, num_pages;
unsigned entries_per_page;
unsigned long num_table_pages, entry = 0;
/* Do not accept any new I/O request */
rzs->init_done = 0;
if (rzs->backing_swap && !rzs->num_extents)
is_backing_blkdev = 1;
num_pages = rzs->disksize >> PAGE_SHIFT;
/* Free various per-device buffers */
kfree(rzs->compress_workmem);
free_pages((unsigned long)rzs->compress_buffer, 1);
rzs->compress_workmem = NULL;
rzs->compress_buffer = NULL;
/* Free all pages that are still in this ramzswap device */
for (index = 0; index < num_pages; index++) {
struct page *page;
u16 offset;
page = rzs->table[index].page;
offset = rzs->table[index].offset;
if (!page)
continue;
if (unlikely(rzs_test_flag(rzs, index, RZS_UNCOMPRESSED)))
__free_page(page);
else
xv_free(rzs->mem_pool, page, offset);
}
entries_per_page = PAGE_SIZE / sizeof(*rzs->table);
num_table_pages = DIV_ROUND_UP(num_pages * sizeof(*rzs->table),
PAGE_SIZE);
/*
* Set page->mapping to NULL for every table page.
* Otherwise, we will hit bad_page() during free.
*/
while (rzs->num_extents && num_table_pages--) {
struct page *page;
page = vmalloc_to_page(&rzs->table[entry]);
page->mapping = NULL;
entry += entries_per_page;
}
vfree(rzs->table);
rzs->table = NULL;
xv_destroy_pool(rzs->mem_pool);
rzs->mem_pool = NULL;
/* Free all swap extent pages */
while (!list_empty(&rzs->backing_swap_extent_list)) {
struct page *page;
struct list_head *entry;
entry = rzs->backing_swap_extent_list.next;
page = list_entry(entry, struct page, lru);
list_del(entry);
__free_page(page);
}
INIT_LIST_HEAD(&rzs->backing_swap_extent_list);
rzs->num_extents = 0;
/* Close backing swap device, if present */
if (rzs->backing_swap) {
if (is_backing_blkdev)
bd_release(rzs->backing_swap);
filp_close(rzs->swap_file, NULL);
rzs->backing_swap = NULL;
memset(rzs->backing_swap_name, 0, MAX_SWAP_NAME_LEN);
}
/* Reset stats */
memset(&rzs->stats, 0, sizeof(rzs->stats));
rzs->disksize = 0;
rzs->memlimit = 0;
}
static int ramzswap_ioctl_init_device(struct ramzswap *rzs)
{
int ret;
size_t num_pages;
struct page *page;
union swap_header *swap_header;
if (rzs->init_done) {
pr_info("Device already initialized!\n");
return -EBUSY;
}
ret = setup_backing_swap(rzs);
if (ret)
goto fail;
if (rzs->backing_swap)
ramzswap_set_memlimit(rzs, totalram_pages << PAGE_SHIFT);
else
ramzswap_set_disksize(rzs, totalram_pages << PAGE_SHIFT);
rzs->compress_workmem = kzalloc(LZO1X_MEM_COMPRESS, GFP_KERNEL);
if (!rzs->compress_workmem) {
pr_err("Error allocating compressor working memory!\n");
ret = -ENOMEM;
goto fail;
}
rzs->compress_buffer = (void *)__get_free_pages(__GFP_ZERO, 1);
if (!rzs->compress_buffer) {
pr_err("Error allocating compressor buffer space\n");
ret = -ENOMEM;
goto fail;
}
num_pages = rzs->disksize >> PAGE_SHIFT;
rzs->table = vmalloc(num_pages * sizeof(*rzs->table));
if (!rzs->table) {
pr_err("Error allocating ramzswap address table\n");
/* To prevent accessing table entries during cleanup */
rzs->disksize = 0;
ret = -ENOMEM;
goto fail;
}
memset(rzs->table, 0, num_pages * sizeof(*rzs->table));
map_backing_swap_extents(rzs);
page = alloc_page(__GFP_ZERO);
if (!page) {
pr_err("Error allocating swap header page\n");
ret = -ENOMEM;
goto fail;
}
rzs->table[0].page = page;
rzs_set_flag(rzs, 0, RZS_UNCOMPRESSED);
swap_header = kmap(page);
ret = setup_swap_header(rzs, swap_header);
kunmap(page);
if (ret) {
pr_err("Error setting swap header\n");
goto fail;
}
set_capacity(rzs->disk, rzs->disksize >> SECTOR_SHIFT);
/*
* We have ident mapping of sectors for ramzswap and
* and the backing swap device. So, this queue flag
* should be according to backing dev.
*/
if (!rzs->backing_swap ||
blk_queue_nonrot(rzs->backing_swap->bd_disk->queue))
queue_flag_set_unlocked(QUEUE_FLAG_NONROT, rzs->disk->queue);
rzs->mem_pool = xv_create_pool();
if (!rzs->mem_pool) {
pr_err("Error creating memory pool\n");
ret = -ENOMEM;
goto fail;
}
/*
* Pages that compress to size greater than this are forwarded
* to physical swap disk (if backing dev is provided)
* TODO: make this configurable
*/
if (rzs->backing_swap)
max_zpage_size = max_zpage_size_bdev;
else
max_zpage_size = max_zpage_size_nobdev;
pr_debug("Max compressed page size: %u bytes\n", max_zpage_size);
rzs->init_done = 1;
pr_debug("Initialization done!\n");
return 0;
fail:
reset_device(rzs);
pr_err("Initialization failed: err=%d\n", ret);
return ret;
}
static int ramzswap_ioctl_reset_device(struct ramzswap *rzs)
{
if (rzs->init_done)
reset_device(rzs);
return 0;
}
static int ramzswap_ioctl(struct block_device *bdev, fmode_t mode,
unsigned int cmd, unsigned long arg)
{
int ret = 0;
size_t disksize_kb, memlimit_kb;
struct ramzswap *rzs = bdev->bd_disk->private_data;
switch (cmd) {
case RZSIO_SET_DISKSIZE_KB:
if (rzs->init_done) {
ret = -EBUSY;
goto out;
}
if (copy_from_user(&disksize_kb, (void *)arg,
_IOC_SIZE(cmd))) {
ret = -EFAULT;
goto out;
}
rzs->disksize = disksize_kb << 10;
pr_info("Disk size set to %zu kB\n", disksize_kb);
break;
case RZSIO_SET_MEMLIMIT_KB:
if (rzs->init_done) {
/* TODO: allow changing memlimit */
ret = -EBUSY;
goto out;
}
if (copy_from_user(&memlimit_kb, (void *)arg,
_IOC_SIZE(cmd))) {
ret = -EFAULT;
goto out;
}
rzs->memlimit = memlimit_kb << 10;
pr_info("Memory limit set to %zu kB\n", memlimit_kb);
break;
case RZSIO_SET_BACKING_SWAP:
if (rzs->init_done) {
ret = -EBUSY;
goto out;
}
if (copy_from_user(&rzs->backing_swap_name, (void *)arg,
_IOC_SIZE(cmd))) {
ret = -EFAULT;
goto out;
}
rzs->backing_swap_name[MAX_SWAP_NAME_LEN - 1] = '\0';
pr_info("Backing swap set to %s\n", rzs->backing_swap_name);
break;
case RZSIO_GET_STATS:
{
struct ramzswap_ioctl_stats *stats;
if (!rzs->init_done) {
ret = -ENOTTY;
goto out;
}
stats = kzalloc(sizeof(*stats), GFP_KERNEL);
if (!stats) {
ret = -ENOMEM;
goto out;
}
ramzswap_ioctl_get_stats(rzs, stats);
if (copy_to_user((void *)arg, stats, sizeof(*stats))) {
kfree(stats);
ret = -EFAULT;
goto out;
}
kfree(stats);
break;
}
case RZSIO_INIT:
ret = ramzswap_ioctl_init_device(rzs);
break;
case RZSIO_RESET:
/* Do not reset an active device! */
if (bdev->bd_holders) {
ret = -EBUSY;
goto out;
}
/* Make sure all pending I/O is finished */
if (bdev)
fsync_bdev(bdev);
ret = ramzswap_ioctl_reset_device(rzs);
break;
default:
pr_info("Invalid ioctl %u\n", cmd);
ret = -ENOTTY;
}
out:
return ret;
}
static struct block_device_operations ramzswap_devops = {
.ioctl = ramzswap_ioctl,
.owner = THIS_MODULE,
};
static int create_device(struct ramzswap *rzs, int device_id)
{
int ret = 0;
mutex_init(&rzs->lock);
spin_lock_init(&rzs->stat64_lock);
INIT_LIST_HEAD(&rzs->backing_swap_extent_list);
rzs->queue = blk_alloc_queue(GFP_KERNEL);
if (!rzs->queue) {
pr_err("Error allocating disk queue for device %d\n",
device_id);
ret = -ENOMEM;
goto out;
}
blk_queue_make_request(rzs->queue, ramzswap_make_request);
rzs->queue->queuedata = rzs;
/* gendisk structure */
rzs->disk = alloc_disk(1);
if (!rzs->disk) {
blk_cleanup_queue(rzs->queue);
pr_warning("Error allocating disk structure for device %d\n",
device_id);
ret = -ENOMEM;
goto out;
}
rzs->disk->major = ramzswap_major;
rzs->disk->first_minor = device_id;
rzs->disk->fops = &ramzswap_devops;
rzs->disk->queue = rzs->queue;
rzs->disk->private_data = rzs;
snprintf(rzs->disk->disk_name, 16, "ramzswap%d", device_id);
/*
* Actual capacity set using RZSIO_SET_DISKSIZE_KB ioctl
* or set equal to backing swap device (if provided)
*/
set_capacity(rzs->disk, 0);
blk_queue_physical_block_size(rzs->disk->queue, PAGE_SIZE);
blk_queue_logical_block_size(rzs->disk->queue, PAGE_SIZE);
add_disk(rzs->disk);
rzs->init_done = 0;
out:
return ret;
}
static void destroy_device(struct ramzswap *rzs)
{
if (rzs->disk) {
del_gendisk(rzs->disk);
put_disk(rzs->disk);
}
if (rzs->queue)
blk_cleanup_queue(rzs->queue);
}
static int __init ramzswap_init(void)
{
int ret, dev_id;
if (num_devices > max_num_devices) {
pr_warning("Invalid value for num_devices: %u\n",
num_devices);
ret = -EINVAL;
goto out;
}
ramzswap_major = register_blkdev(0, "ramzswap");
if (ramzswap_major <= 0) {
pr_warning("Unable to get major number\n");
ret = -EBUSY;
goto out;
}
if (!num_devices) {
pr_info("num_devices not specified. Using default: 1\n");
num_devices = 1;
}
/* Allocate the device array and initialize each one */
pr_info("Creating %u devices ...\n", num_devices);
devices = kzalloc(num_devices * sizeof(struct ramzswap), GFP_KERNEL);
if (!devices) {
ret = -ENOMEM;
goto unregister;
}
for (dev_id = 0; dev_id < num_devices; dev_id++) {
ret = create_device(&devices[dev_id], dev_id);
if (ret)
goto free_devices;
}
return 0;
free_devices:
while (dev_id)
destroy_device(&devices[--dev_id]);
unregister:
unregister_blkdev(ramzswap_major, "ramzswap");
out:
return ret;
}
static void __exit ramzswap_exit(void)
{
int i;
struct ramzswap *rzs;
for (i = 0; i < num_devices; i++) {
rzs = &devices[i];
destroy_device(rzs);
if (rzs->init_done)
reset_device(rzs);
}
unregister_blkdev(ramzswap_major, "ramzswap");
kfree(devices);
pr_debug("Cleanup done!\n");
}
module_param(num_devices, uint, 0);
MODULE_PARM_DESC(num_devices, "Number of ramzswap devices");
module_init(ramzswap_init);
module_exit(ramzswap_exit);
MODULE_LICENSE("Dual BSD/GPL");
MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");
MODULE_DESCRIPTION("Compressed RAM Based Swap Device");