kernel-ark/fs/ufs/inode.c
Evgeniy Dushistov c37336b078 [PATCH] ufs: write to hole in big file
On UFS, this scenario:
	open(O_TRUNC)
	lseek(1024 * 1024 * 80)
	write("A")
	lseek(1024 * 2)
	write("A")

may cause access to invalid address.

This happened because of "goal" is calculated in wrong way in block
allocation path, as I see this problem exists also in 2.4.

We use construction like this i_data[lastfrag], i_data array of pointers to
direct blocks, indirect and so on, it has ceratain size ~20 elements, and
lastfrag may have value for example 40000.

Also this patch fixes related to handling such scenario issues, wrong
zeroing metadata, in case of block(not fragment) allocation, and wrong goal
calculation, when we allocate block

Signed-off-by: Evgeniy Dushistov <dushistov@mail.ru>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-08-27 11:01:31 -07:00

867 lines
23 KiB
C

/*
* linux/fs/ufs/inode.c
*
* Copyright (C) 1998
* Daniel Pirkl <daniel.pirkl@email.cz>
* Charles University, Faculty of Mathematics and Physics
*
* from
*
* linux/fs/ext2/inode.c
*
* Copyright (C) 1992, 1993, 1994, 1995
* Remy Card (card@masi.ibp.fr)
* Laboratoire MASI - Institut Blaise Pascal
* Universite Pierre et Marie Curie (Paris VI)
*
* from
*
* linux/fs/minix/inode.c
*
* Copyright (C) 1991, 1992 Linus Torvalds
*
* Goal-directed block allocation by Stephen Tweedie (sct@dcs.ed.ac.uk), 1993
* Big-endian to little-endian byte-swapping/bitmaps by
* David S. Miller (davem@caip.rutgers.edu), 1995
*/
#include <asm/uaccess.h>
#include <asm/system.h>
#include <linux/errno.h>
#include <linux/fs.h>
#include <linux/ufs_fs.h>
#include <linux/time.h>
#include <linux/stat.h>
#include <linux/string.h>
#include <linux/mm.h>
#include <linux/smp_lock.h>
#include <linux/buffer_head.h>
#include "swab.h"
#include "util.h"
static u64 ufs_frag_map(struct inode *inode, sector_t frag);
static int ufs_block_to_path(struct inode *inode, sector_t i_block, sector_t offsets[4])
{
struct ufs_sb_private_info *uspi = UFS_SB(inode->i_sb)->s_uspi;
int ptrs = uspi->s_apb;
int ptrs_bits = uspi->s_apbshift;
const long direct_blocks = UFS_NDADDR,
indirect_blocks = ptrs,
double_blocks = (1 << (ptrs_bits * 2));
int n = 0;
UFSD("ptrs=uspi->s_apb = %d,double_blocks=%ld \n",ptrs,double_blocks);
if (i_block < 0) {
ufs_warning(inode->i_sb, "ufs_block_to_path", "block < 0");
} else if (i_block < direct_blocks) {
offsets[n++] = i_block;
} else if ((i_block -= direct_blocks) < indirect_blocks) {
offsets[n++] = UFS_IND_BLOCK;
offsets[n++] = i_block;
} else if ((i_block -= indirect_blocks) < double_blocks) {
offsets[n++] = UFS_DIND_BLOCK;
offsets[n++] = i_block >> ptrs_bits;
offsets[n++] = i_block & (ptrs - 1);
} else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
offsets[n++] = UFS_TIND_BLOCK;
offsets[n++] = i_block >> (ptrs_bits * 2);
offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
offsets[n++] = i_block & (ptrs - 1);
} else {
ufs_warning(inode->i_sb, "ufs_block_to_path", "block > big");
}
return n;
}
/*
* Returns the location of the fragment from
* the begining of the filesystem.
*/
static u64 ufs_frag_map(struct inode *inode, sector_t frag)
{
struct ufs_inode_info *ufsi = UFS_I(inode);
struct super_block *sb = inode->i_sb;
struct ufs_sb_private_info *uspi = UFS_SB(sb)->s_uspi;
u64 mask = (u64) uspi->s_apbmask>>uspi->s_fpbshift;
int shift = uspi->s_apbshift-uspi->s_fpbshift;
sector_t offsets[4], *p;
int depth = ufs_block_to_path(inode, frag >> uspi->s_fpbshift, offsets);
u64 ret = 0L;
__fs32 block;
__fs64 u2_block = 0L;
unsigned flags = UFS_SB(sb)->s_flags;
u64 temp = 0L;
UFSD(": frag = %llu depth = %d\n", (unsigned long long)frag, depth);
UFSD(": uspi->s_fpbshift = %d ,uspi->s_apbmask = %x, mask=%llx\n",
uspi->s_fpbshift, uspi->s_apbmask,
(unsigned long long)mask);
if (depth == 0)
return 0;
p = offsets;
lock_kernel();
if ((flags & UFS_TYPE_MASK) == UFS_TYPE_UFS2)
goto ufs2;
block = ufsi->i_u1.i_data[*p++];
if (!block)
goto out;
while (--depth) {
struct buffer_head *bh;
sector_t n = *p++;
bh = sb_bread(sb, uspi->s_sbbase + fs32_to_cpu(sb, block)+(n>>shift));
if (!bh)
goto out;
block = ((__fs32 *) bh->b_data)[n & mask];
brelse (bh);
if (!block)
goto out;
}
ret = (u64) (uspi->s_sbbase + fs32_to_cpu(sb, block) + (frag & uspi->s_fpbmask));
goto out;
ufs2:
u2_block = ufsi->i_u1.u2_i_data[*p++];
if (!u2_block)
goto out;
while (--depth) {
struct buffer_head *bh;
sector_t n = *p++;
temp = (u64)(uspi->s_sbbase) + fs64_to_cpu(sb, u2_block);
bh = sb_bread(sb, temp +(u64) (n>>shift));
if (!bh)
goto out;
u2_block = ((__fs64 *)bh->b_data)[n & mask];
brelse(bh);
if (!u2_block)
goto out;
}
temp = (u64)uspi->s_sbbase + fs64_to_cpu(sb, u2_block);
ret = temp + (u64) (frag & uspi->s_fpbmask);
out:
unlock_kernel();
return ret;
}
static void ufs_clear_frag(struct inode *inode, struct buffer_head *bh)
{
lock_buffer(bh);
memset(bh->b_data, 0, inode->i_sb->s_blocksize);
set_buffer_uptodate(bh);
mark_buffer_dirty(bh);
unlock_buffer(bh);
if (IS_SYNC(inode))
sync_dirty_buffer(bh);
}
static struct buffer_head *
ufs_clear_frags(struct inode *inode, sector_t beg,
unsigned int n, sector_t want)
{
struct buffer_head *res = NULL, *bh;
sector_t end = beg + n;
for (; beg < end; ++beg) {
bh = sb_getblk(inode->i_sb, beg);
ufs_clear_frag(inode, bh);
if (want != beg)
brelse(bh);
else
res = bh;
}
BUG_ON(!res);
return res;
}
/**
* ufs_inode_getfrag() - allocate new fragment(s)
* @inode - pointer to inode
* @fragment - number of `fragment' which hold pointer
* to new allocated fragment(s)
* @new_fragment - number of new allocated fragment(s)
* @required - how many fragment(s) we require
* @err - we set it if something wrong
* @phys - pointer to where we save physical number of new allocated fragments,
* NULL if we allocate not data(indirect blocks for example).
* @new - we set it if we allocate new block
* @locked_page - for ufs_new_fragments()
*/
static struct buffer_head *
ufs_inode_getfrag(struct inode *inode, unsigned int fragment,
sector_t new_fragment, unsigned int required, int *err,
long *phys, int *new, struct page *locked_page)
{
struct ufs_inode_info *ufsi = UFS_I(inode);
struct super_block *sb = inode->i_sb;
struct ufs_sb_private_info *uspi = UFS_SB(sb)->s_uspi;
struct buffer_head * result;
unsigned block, blockoff, lastfrag, lastblock, lastblockoff;
unsigned tmp, goal;
__fs32 * p, * p2;
UFSD("ENTER, ino %lu, fragment %u, new_fragment %llu, required %u, "
"metadata %d\n", inode->i_ino, fragment,
(unsigned long long)new_fragment, required, !phys);
/* TODO : to be done for write support
if ( (flags & UFS_TYPE_MASK) == UFS_TYPE_UFS2)
goto ufs2;
*/
block = ufs_fragstoblks (fragment);
blockoff = ufs_fragnum (fragment);
p = ufsi->i_u1.i_data + block;
goal = 0;
repeat:
tmp = fs32_to_cpu(sb, *p);
lastfrag = ufsi->i_lastfrag;
if (tmp && fragment < lastfrag) {
if (!phys) {
result = sb_getblk(sb, uspi->s_sbbase + tmp + blockoff);
if (tmp == fs32_to_cpu(sb, *p)) {
UFSD("EXIT, result %u\n", tmp + blockoff);
return result;
}
brelse (result);
goto repeat;
} else {
*phys = tmp + blockoff;
return NULL;
}
}
lastblock = ufs_fragstoblks (lastfrag);
lastblockoff = ufs_fragnum (lastfrag);
/*
* We will extend file into new block beyond last allocated block
*/
if (lastblock < block) {
/*
* We must reallocate last allocated block
*/
if (lastblockoff) {
p2 = ufsi->i_u1.i_data + lastblock;
tmp = ufs_new_fragments (inode, p2, lastfrag,
fs32_to_cpu(sb, *p2), uspi->s_fpb - lastblockoff,
err, locked_page);
if (!tmp) {
if (lastfrag != ufsi->i_lastfrag)
goto repeat;
else
return NULL;
}
lastfrag = ufsi->i_lastfrag;
}
tmp = fs32_to_cpu(sb, ufsi->i_u1.i_data[lastblock]);
if (tmp)
goal = tmp + uspi->s_fpb;
tmp = ufs_new_fragments (inode, p, fragment - blockoff,
goal, required + blockoff,
err, locked_page);
}
/*
* We will extend last allocated block
*/
else if (lastblock == block) {
tmp = ufs_new_fragments(inode, p, fragment - (blockoff - lastblockoff),
fs32_to_cpu(sb, *p), required + (blockoff - lastblockoff),
err, locked_page);
} else /* (lastblock > block) */ {
/*
* We will allocate new block before last allocated block
*/
if (block) {
tmp = fs32_to_cpu(sb, ufsi->i_u1.i_data[block-1]);
if (tmp)
goal = tmp + uspi->s_fpb;
}
tmp = ufs_new_fragments(inode, p, fragment - blockoff,
goal, uspi->s_fpb, err, locked_page);
}
if (!tmp) {
if ((!blockoff && *p) ||
(blockoff && lastfrag != ufsi->i_lastfrag))
goto repeat;
*err = -ENOSPC;
return NULL;
}
if (!phys) {
result = ufs_clear_frags(inode, tmp, required, tmp + blockoff);
} else {
*phys = tmp + blockoff;
result = NULL;
*err = 0;
*new = 1;
}
inode->i_ctime = CURRENT_TIME_SEC;
if (IS_SYNC(inode))
ufs_sync_inode (inode);
mark_inode_dirty(inode);
UFSD("EXIT, result %u\n", tmp + blockoff);
return result;
/* This part : To be implemented ....
Required only for writing, not required for READ-ONLY.
ufs2:
u2_block = ufs_fragstoblks(fragment);
u2_blockoff = ufs_fragnum(fragment);
p = ufsi->i_u1.u2_i_data + block;
goal = 0;
repeat2:
tmp = fs32_to_cpu(sb, *p);
lastfrag = ufsi->i_lastfrag;
*/
}
/**
* ufs_inode_getblock() - allocate new block
* @inode - pointer to inode
* @bh - pointer to block which hold "pointer" to new allocated block
* @fragment - number of `fragment' which hold pointer
* to new allocated block
* @new_fragment - number of new allocated fragment
* (block will hold this fragment and also uspi->s_fpb-1)
* @err - see ufs_inode_getfrag()
* @phys - see ufs_inode_getfrag()
* @new - see ufs_inode_getfrag()
* @locked_page - see ufs_inode_getfrag()
*/
static struct buffer_head *
ufs_inode_getblock(struct inode *inode, struct buffer_head *bh,
unsigned int fragment, sector_t new_fragment, int *err,
long *phys, int *new, struct page *locked_page)
{
struct super_block *sb = inode->i_sb;
struct ufs_sb_private_info *uspi = UFS_SB(sb)->s_uspi;
struct buffer_head * result;
unsigned tmp, goal, block, blockoff;
__fs32 * p;
block = ufs_fragstoblks (fragment);
blockoff = ufs_fragnum (fragment);
UFSD("ENTER, ino %lu, fragment %u, new_fragment %llu, metadata %d\n",
inode->i_ino, fragment, (unsigned long long)new_fragment, !phys);
result = NULL;
if (!bh)
goto out;
if (!buffer_uptodate(bh)) {
ll_rw_block (READ, 1, &bh);
wait_on_buffer (bh);
if (!buffer_uptodate(bh))
goto out;
}
p = (__fs32 *) bh->b_data + block;
repeat:
tmp = fs32_to_cpu(sb, *p);
if (tmp) {
if (!phys) {
result = sb_getblk(sb, uspi->s_sbbase + tmp + blockoff);
if (tmp == fs32_to_cpu(sb, *p))
goto out;
brelse (result);
goto repeat;
} else {
*phys = tmp + blockoff;
goto out;
}
}
if (block && (tmp = fs32_to_cpu(sb, ((__fs32*)bh->b_data)[block-1])))
goal = tmp + uspi->s_fpb;
else
goal = bh->b_blocknr + uspi->s_fpb;
tmp = ufs_new_fragments(inode, p, ufs_blknum(new_fragment), goal,
uspi->s_fpb, err, locked_page);
if (!tmp) {
if (fs32_to_cpu(sb, *p))
goto repeat;
goto out;
}
if (!phys) {
result = ufs_clear_frags(inode, tmp, uspi->s_fpb,
tmp + blockoff);
} else {
*phys = tmp + blockoff;
*new = 1;
}
mark_buffer_dirty(bh);
if (IS_SYNC(inode))
sync_dirty_buffer(bh);
inode->i_ctime = CURRENT_TIME_SEC;
mark_inode_dirty(inode);
UFSD("result %u\n", tmp + blockoff);
out:
brelse (bh);
UFSD("EXIT\n");
return result;
}
/**
* ufs_getfrag_bloc() - `get_block_t' function, interface between UFS and
* readpage, writepage and so on
*/
int ufs_getfrag_block(struct inode *inode, sector_t fragment, struct buffer_head *bh_result, int create)
{
struct super_block * sb = inode->i_sb;
struct ufs_sb_private_info * uspi = UFS_SB(sb)->s_uspi;
struct buffer_head * bh;
int ret, err, new;
unsigned long ptr,phys;
u64 phys64 = 0;
if (!create) {
phys64 = ufs_frag_map(inode, fragment);
UFSD("phys64 = %llu\n", (unsigned long long)phys64);
if (phys64)
map_bh(bh_result, sb, phys64);
return 0;
}
/* This code entered only while writing ....? */
err = -EIO;
new = 0;
ret = 0;
bh = NULL;
lock_kernel();
UFSD("ENTER, ino %lu, fragment %llu\n", inode->i_ino, (unsigned long long)fragment);
if (fragment < 0)
goto abort_negative;
if (fragment >
((UFS_NDADDR + uspi->s_apb + uspi->s_2apb + uspi->s_3apb)
<< uspi->s_fpbshift))
goto abort_too_big;
err = 0;
ptr = fragment;
/*
* ok, these macros clean the logic up a bit and make
* it much more readable:
*/
#define GET_INODE_DATABLOCK(x) \
ufs_inode_getfrag(inode, x, fragment, 1, &err, &phys, &new, bh_result->b_page)
#define GET_INODE_PTR(x) \
ufs_inode_getfrag(inode, x, fragment, uspi->s_fpb, &err, NULL, NULL, bh_result->b_page)
#define GET_INDIRECT_DATABLOCK(x) \
ufs_inode_getblock(inode, bh, x, fragment, \
&err, &phys, &new, bh_result->b_page);
#define GET_INDIRECT_PTR(x) \
ufs_inode_getblock(inode, bh, x, fragment, \
&err, NULL, NULL, bh_result->b_page);
if (ptr < UFS_NDIR_FRAGMENT) {
bh = GET_INODE_DATABLOCK(ptr);
goto out;
}
ptr -= UFS_NDIR_FRAGMENT;
if (ptr < (1 << (uspi->s_apbshift + uspi->s_fpbshift))) {
bh = GET_INODE_PTR(UFS_IND_FRAGMENT + (ptr >> uspi->s_apbshift));
goto get_indirect;
}
ptr -= 1 << (uspi->s_apbshift + uspi->s_fpbshift);
if (ptr < (1 << (uspi->s_2apbshift + uspi->s_fpbshift))) {
bh = GET_INODE_PTR(UFS_DIND_FRAGMENT + (ptr >> uspi->s_2apbshift));
goto get_double;
}
ptr -= 1 << (uspi->s_2apbshift + uspi->s_fpbshift);
bh = GET_INODE_PTR(UFS_TIND_FRAGMENT + (ptr >> uspi->s_3apbshift));
bh = GET_INDIRECT_PTR((ptr >> uspi->s_2apbshift) & uspi->s_apbmask);
get_double:
bh = GET_INDIRECT_PTR((ptr >> uspi->s_apbshift) & uspi->s_apbmask);
get_indirect:
bh = GET_INDIRECT_DATABLOCK(ptr & uspi->s_apbmask);
#undef GET_INODE_DATABLOCK
#undef GET_INODE_PTR
#undef GET_INDIRECT_DATABLOCK
#undef GET_INDIRECT_PTR
out:
if (err)
goto abort;
if (new)
set_buffer_new(bh_result);
map_bh(bh_result, sb, phys);
abort:
unlock_kernel();
return err;
abort_negative:
ufs_warning(sb, "ufs_get_block", "block < 0");
goto abort;
abort_too_big:
ufs_warning(sb, "ufs_get_block", "block > big");
goto abort;
}
static struct buffer_head *ufs_getfrag(struct inode *inode,
unsigned int fragment,
int create, int *err)
{
struct buffer_head dummy;
int error;
dummy.b_state = 0;
dummy.b_blocknr = -1000;
error = ufs_getfrag_block(inode, fragment, &dummy, create);
*err = error;
if (!error && buffer_mapped(&dummy)) {
struct buffer_head *bh;
bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
if (buffer_new(&dummy)) {
memset(bh->b_data, 0, inode->i_sb->s_blocksize);
set_buffer_uptodate(bh);
mark_buffer_dirty(bh);
}
return bh;
}
return NULL;
}
struct buffer_head * ufs_bread (struct inode * inode, unsigned fragment,
int create, int * err)
{
struct buffer_head * bh;
UFSD("ENTER, ino %lu, fragment %u\n", inode->i_ino, fragment);
bh = ufs_getfrag (inode, fragment, create, err);
if (!bh || buffer_uptodate(bh))
return bh;
ll_rw_block (READ, 1, &bh);
wait_on_buffer (bh);
if (buffer_uptodate(bh))
return bh;
brelse (bh);
*err = -EIO;
return NULL;
}
static int ufs_writepage(struct page *page, struct writeback_control *wbc)
{
return block_write_full_page(page,ufs_getfrag_block,wbc);
}
static int ufs_readpage(struct file *file, struct page *page)
{
return block_read_full_page(page,ufs_getfrag_block);
}
static int ufs_prepare_write(struct file *file, struct page *page, unsigned from, unsigned to)
{
return block_prepare_write(page,from,to,ufs_getfrag_block);
}
static sector_t ufs_bmap(struct address_space *mapping, sector_t block)
{
return generic_block_bmap(mapping,block,ufs_getfrag_block);
}
const struct address_space_operations ufs_aops = {
.readpage = ufs_readpage,
.writepage = ufs_writepage,
.sync_page = block_sync_page,
.prepare_write = ufs_prepare_write,
.commit_write = generic_commit_write,
.bmap = ufs_bmap
};
static void ufs_set_inode_ops(struct inode *inode)
{
if (S_ISREG(inode->i_mode)) {
inode->i_op = &ufs_file_inode_operations;
inode->i_fop = &ufs_file_operations;
inode->i_mapping->a_ops = &ufs_aops;
} else if (S_ISDIR(inode->i_mode)) {
inode->i_op = &ufs_dir_inode_operations;
inode->i_fop = &ufs_dir_operations;
inode->i_mapping->a_ops = &ufs_aops;
} else if (S_ISLNK(inode->i_mode)) {
if (!inode->i_blocks)
inode->i_op = &ufs_fast_symlink_inode_operations;
else {
inode->i_op = &page_symlink_inode_operations;
inode->i_mapping->a_ops = &ufs_aops;
}
} else
init_special_inode(inode, inode->i_mode,
ufs_get_inode_dev(inode->i_sb, UFS_I(inode)));
}
static void ufs1_read_inode(struct inode *inode, struct ufs_inode *ufs_inode)
{
struct ufs_inode_info *ufsi = UFS_I(inode);
struct super_block *sb = inode->i_sb;
mode_t mode;
unsigned i;
/*
* Copy data to the in-core inode.
*/
inode->i_mode = mode = fs16_to_cpu(sb, ufs_inode->ui_mode);
inode->i_nlink = fs16_to_cpu(sb, ufs_inode->ui_nlink);
if (inode->i_nlink == 0)
ufs_error (sb, "ufs_read_inode", "inode %lu has zero nlink\n", inode->i_ino);
/*
* Linux now has 32-bit uid and gid, so we can support EFT.
*/
inode->i_uid = ufs_get_inode_uid(sb, ufs_inode);
inode->i_gid = ufs_get_inode_gid(sb, ufs_inode);
inode->i_size = fs64_to_cpu(sb, ufs_inode->ui_size);
inode->i_atime.tv_sec = fs32_to_cpu(sb, ufs_inode->ui_atime.tv_sec);
inode->i_ctime.tv_sec = fs32_to_cpu(sb, ufs_inode->ui_ctime.tv_sec);
inode->i_mtime.tv_sec = fs32_to_cpu(sb, ufs_inode->ui_mtime.tv_sec);
inode->i_mtime.tv_nsec = 0;
inode->i_atime.tv_nsec = 0;
inode->i_ctime.tv_nsec = 0;
inode->i_blocks = fs32_to_cpu(sb, ufs_inode->ui_blocks);
ufsi->i_flags = fs32_to_cpu(sb, ufs_inode->ui_flags);
ufsi->i_gen = fs32_to_cpu(sb, ufs_inode->ui_gen);
ufsi->i_shadow = fs32_to_cpu(sb, ufs_inode->ui_u3.ui_sun.ui_shadow);
ufsi->i_oeftflag = fs32_to_cpu(sb, ufs_inode->ui_u3.ui_sun.ui_oeftflag);
if (S_ISCHR(mode) || S_ISBLK(mode) || inode->i_blocks) {
for (i = 0; i < (UFS_NDADDR + UFS_NINDIR); i++)
ufsi->i_u1.i_data[i] = ufs_inode->ui_u2.ui_addr.ui_db[i];
} else {
for (i = 0; i < (UFS_NDADDR + UFS_NINDIR) * 4; i++)
ufsi->i_u1.i_symlink[i] = ufs_inode->ui_u2.ui_symlink[i];
}
}
static void ufs2_read_inode(struct inode *inode, struct ufs2_inode *ufs2_inode)
{
struct ufs_inode_info *ufsi = UFS_I(inode);
struct super_block *sb = inode->i_sb;
mode_t mode;
unsigned i;
UFSD("Reading ufs2 inode, ino %lu\n", inode->i_ino);
/*
* Copy data to the in-core inode.
*/
inode->i_mode = mode = fs16_to_cpu(sb, ufs2_inode->ui_mode);
inode->i_nlink = fs16_to_cpu(sb, ufs2_inode->ui_nlink);
if (inode->i_nlink == 0)
ufs_error (sb, "ufs_read_inode", "inode %lu has zero nlink\n", inode->i_ino);
/*
* Linux now has 32-bit uid and gid, so we can support EFT.
*/
inode->i_uid = fs32_to_cpu(sb, ufs2_inode->ui_uid);
inode->i_gid = fs32_to_cpu(sb, ufs2_inode->ui_gid);
inode->i_size = fs64_to_cpu(sb, ufs2_inode->ui_size);
inode->i_atime.tv_sec = fs32_to_cpu(sb, ufs2_inode->ui_atime.tv_sec);
inode->i_ctime.tv_sec = fs32_to_cpu(sb, ufs2_inode->ui_ctime.tv_sec);
inode->i_mtime.tv_sec = fs32_to_cpu(sb, ufs2_inode->ui_mtime.tv_sec);
inode->i_mtime.tv_nsec = 0;
inode->i_atime.tv_nsec = 0;
inode->i_ctime.tv_nsec = 0;
inode->i_blocks = fs64_to_cpu(sb, ufs2_inode->ui_blocks);
ufsi->i_flags = fs32_to_cpu(sb, ufs2_inode->ui_flags);
ufsi->i_gen = fs32_to_cpu(sb, ufs2_inode->ui_gen);
/*
ufsi->i_shadow = fs32_to_cpu(sb, ufs_inode->ui_u3.ui_sun.ui_shadow);
ufsi->i_oeftflag = fs32_to_cpu(sb, ufs_inode->ui_u3.ui_sun.ui_oeftflag);
*/
if (S_ISCHR(mode) || S_ISBLK(mode) || inode->i_blocks) {
for (i = 0; i < (UFS_NDADDR + UFS_NINDIR); i++)
ufsi->i_u1.u2_i_data[i] =
ufs2_inode->ui_u2.ui_addr.ui_db[i];
} else {
for (i = 0; i < (UFS_NDADDR + UFS_NINDIR) * 4; i++)
ufsi->i_u1.i_symlink[i] = ufs2_inode->ui_u2.ui_symlink[i];
}
}
void ufs_read_inode(struct inode * inode)
{
struct ufs_inode_info *ufsi = UFS_I(inode);
struct super_block * sb;
struct ufs_sb_private_info * uspi;
struct buffer_head * bh;
UFSD("ENTER, ino %lu\n", inode->i_ino);
sb = inode->i_sb;
uspi = UFS_SB(sb)->s_uspi;
if (inode->i_ino < UFS_ROOTINO ||
inode->i_ino > (uspi->s_ncg * uspi->s_ipg)) {
ufs_warning(sb, "ufs_read_inode", "bad inode number (%lu)\n",
inode->i_ino);
goto bad_inode;
}
bh = sb_bread(sb, uspi->s_sbbase + ufs_inotofsba(inode->i_ino));
if (!bh) {
ufs_warning(sb, "ufs_read_inode", "unable to read inode %lu\n",
inode->i_ino);
goto bad_inode;
}
if ((UFS_SB(sb)->s_flags & UFS_TYPE_MASK) == UFS_TYPE_UFS2) {
struct ufs2_inode *ufs2_inode = (struct ufs2_inode *)bh->b_data;
ufs2_read_inode(inode,
ufs2_inode + ufs_inotofsbo(inode->i_ino));
} else {
struct ufs_inode *ufs_inode = (struct ufs_inode *)bh->b_data;
ufs1_read_inode(inode, ufs_inode + ufs_inotofsbo(inode->i_ino));
}
inode->i_blksize = PAGE_SIZE;/*This is the optimal IO size (for stat)*/
inode->i_version++;
ufsi->i_lastfrag =
(inode->i_size + uspi->s_fsize - 1) >> uspi->s_fshift;
ufsi->i_dir_start_lookup = 0;
ufsi->i_osync = 0;
ufs_set_inode_ops(inode);
brelse(bh);
UFSD("EXIT\n");
return;
bad_inode:
make_bad_inode(inode);
}
static int ufs_update_inode(struct inode * inode, int do_sync)
{
struct ufs_inode_info *ufsi = UFS_I(inode);
struct super_block * sb;
struct ufs_sb_private_info * uspi;
struct buffer_head * bh;
struct ufs_inode * ufs_inode;
unsigned i;
unsigned flags;
UFSD("ENTER, ino %lu\n", inode->i_ino);
sb = inode->i_sb;
uspi = UFS_SB(sb)->s_uspi;
flags = UFS_SB(sb)->s_flags;
if (inode->i_ino < UFS_ROOTINO ||
inode->i_ino > (uspi->s_ncg * uspi->s_ipg)) {
ufs_warning (sb, "ufs_read_inode", "bad inode number (%lu)\n", inode->i_ino);
return -1;
}
bh = sb_bread(sb, ufs_inotofsba(inode->i_ino));
if (!bh) {
ufs_warning (sb, "ufs_read_inode", "unable to read inode %lu\n", inode->i_ino);
return -1;
}
ufs_inode = (struct ufs_inode *) (bh->b_data + ufs_inotofsbo(inode->i_ino) * sizeof(struct ufs_inode));
ufs_inode->ui_mode = cpu_to_fs16(sb, inode->i_mode);
ufs_inode->ui_nlink = cpu_to_fs16(sb, inode->i_nlink);
ufs_set_inode_uid(sb, ufs_inode, inode->i_uid);
ufs_set_inode_gid(sb, ufs_inode, inode->i_gid);
ufs_inode->ui_size = cpu_to_fs64(sb, inode->i_size);
ufs_inode->ui_atime.tv_sec = cpu_to_fs32(sb, inode->i_atime.tv_sec);
ufs_inode->ui_atime.tv_usec = 0;
ufs_inode->ui_ctime.tv_sec = cpu_to_fs32(sb, inode->i_ctime.tv_sec);
ufs_inode->ui_ctime.tv_usec = 0;
ufs_inode->ui_mtime.tv_sec = cpu_to_fs32(sb, inode->i_mtime.tv_sec);
ufs_inode->ui_mtime.tv_usec = 0;
ufs_inode->ui_blocks = cpu_to_fs32(sb, inode->i_blocks);
ufs_inode->ui_flags = cpu_to_fs32(sb, ufsi->i_flags);
ufs_inode->ui_gen = cpu_to_fs32(sb, ufsi->i_gen);
if ((flags & UFS_UID_MASK) == UFS_UID_EFT) {
ufs_inode->ui_u3.ui_sun.ui_shadow = cpu_to_fs32(sb, ufsi->i_shadow);
ufs_inode->ui_u3.ui_sun.ui_oeftflag = cpu_to_fs32(sb, ufsi->i_oeftflag);
}
if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
/* ufs_inode->ui_u2.ui_addr.ui_db[0] = cpu_to_fs32(sb, inode->i_rdev); */
ufs_inode->ui_u2.ui_addr.ui_db[0] = ufsi->i_u1.i_data[0];
} else if (inode->i_blocks) {
for (i = 0; i < (UFS_NDADDR + UFS_NINDIR); i++)
ufs_inode->ui_u2.ui_addr.ui_db[i] = ufsi->i_u1.i_data[i];
}
else {
for (i = 0; i < (UFS_NDADDR + UFS_NINDIR) * 4; i++)
ufs_inode->ui_u2.ui_symlink[i] = ufsi->i_u1.i_symlink[i];
}
if (!inode->i_nlink)
memset (ufs_inode, 0, sizeof(struct ufs_inode));
mark_buffer_dirty(bh);
if (do_sync)
sync_dirty_buffer(bh);
brelse (bh);
UFSD("EXIT\n");
return 0;
}
int ufs_write_inode (struct inode * inode, int wait)
{
int ret;
lock_kernel();
ret = ufs_update_inode (inode, wait);
unlock_kernel();
return ret;
}
int ufs_sync_inode (struct inode *inode)
{
return ufs_update_inode (inode, 1);
}
void ufs_delete_inode (struct inode * inode)
{
loff_t old_i_size;
truncate_inode_pages(&inode->i_data, 0);
/*UFS_I(inode)->i_dtime = CURRENT_TIME;*/
lock_kernel();
mark_inode_dirty(inode);
ufs_update_inode(inode, IS_SYNC(inode));
old_i_size = inode->i_size;
inode->i_size = 0;
if (inode->i_blocks && ufs_truncate(inode, old_i_size))
ufs_warning(inode->i_sb, __FUNCTION__, "ufs_truncate failed\n");
ufs_free_inode (inode);
unlock_kernel();
}