kernel-ark/arch/mips/kernel/setup.c
Ralf Baechle cce335ae47 [MIPS] 64-bit Sibyte kernels need DMA32.
Sibyte SOCs only have 32-bit PCI.  Due to the sparse use of the address
space only the first 1GB of memory is mapped at physical addresses
below 1GB.  If a system has more than 1GB of memory 32-bit DMA will
not be able to reach all of it.

For now this patch is good enough to keep Sibyte users happy but it seems
eventually something like swiotlb will be needed for Sibyte.

Signed-off-by: Ralf Baechle <ralf@linux-mips.org>
2007-11-26 17:26:14 +00:00

620 lines
14 KiB
C

/*
* This file is subject to the terms and conditions of the GNU General Public
* License. See the file "COPYING" in the main directory of this archive
* for more details.
*
* Copyright (C) 1995 Linus Torvalds
* Copyright (C) 1995 Waldorf Electronics
* Copyright (C) 1994, 95, 96, 97, 98, 99, 2000, 01, 02, 03 Ralf Baechle
* Copyright (C) 1996 Stoned Elipot
* Copyright (C) 1999 Silicon Graphics, Inc.
* Copyright (C) 2000 2001, 2002 Maciej W. Rozycki
*/
#include <linux/init.h>
#include <linux/ioport.h>
#include <linux/module.h>
#include <linux/screen_info.h>
#include <linux/bootmem.h>
#include <linux/initrd.h>
#include <linux/root_dev.h>
#include <linux/highmem.h>
#include <linux/console.h>
#include <linux/pfn.h>
#include <linux/debugfs.h>
#include <asm/addrspace.h>
#include <asm/bootinfo.h>
#include <asm/cache.h>
#include <asm/cpu.h>
#include <asm/sections.h>
#include <asm/setup.h>
#include <asm/system.h>
struct cpuinfo_mips cpu_data[NR_CPUS] __read_mostly;
EXPORT_SYMBOL(cpu_data);
#ifdef CONFIG_VT
struct screen_info screen_info;
#endif
/*
* Despite it's name this variable is even if we don't have PCI
*/
unsigned int PCI_DMA_BUS_IS_PHYS;
EXPORT_SYMBOL(PCI_DMA_BUS_IS_PHYS);
/*
* Setup information
*
* These are initialized so they are in the .data section
*/
unsigned long mips_machtype __read_mostly = MACH_UNKNOWN;
EXPORT_SYMBOL(mips_machtype);
struct boot_mem_map boot_mem_map;
static char command_line[CL_SIZE];
char arcs_cmdline[CL_SIZE]=CONFIG_CMDLINE;
/*
* mips_io_port_base is the begin of the address space to which x86 style
* I/O ports are mapped.
*/
const unsigned long mips_io_port_base __read_mostly = -1;
EXPORT_SYMBOL(mips_io_port_base);
/*
* isa_slot_offset is the address where E(ISA) busaddress 0 is mapped
* for the processor.
*/
unsigned long isa_slot_offset;
EXPORT_SYMBOL(isa_slot_offset);
static struct resource code_resource = { .name = "Kernel code", };
static struct resource data_resource = { .name = "Kernel data", };
void __init add_memory_region(phys_t start, phys_t size, long type)
{
int x = boot_mem_map.nr_map;
struct boot_mem_map_entry *prev = boot_mem_map.map + x - 1;
/* Sanity check */
if (start + size < start) {
printk("Trying to add an invalid memory region, skipped\n");
return;
}
/*
* Try to merge with previous entry if any. This is far less than
* perfect but is sufficient for most real world cases.
*/
if (x && prev->addr + prev->size == start && prev->type == type) {
prev->size += size;
return;
}
if (x == BOOT_MEM_MAP_MAX) {
printk("Ooops! Too many entries in the memory map!\n");
return;
}
boot_mem_map.map[x].addr = start;
boot_mem_map.map[x].size = size;
boot_mem_map.map[x].type = type;
boot_mem_map.nr_map++;
}
static void __init print_memory_map(void)
{
int i;
const int field = 2 * sizeof(unsigned long);
for (i = 0; i < boot_mem_map.nr_map; i++) {
printk(" memory: %0*Lx @ %0*Lx ",
field, (unsigned long long) boot_mem_map.map[i].size,
field, (unsigned long long) boot_mem_map.map[i].addr);
switch (boot_mem_map.map[i].type) {
case BOOT_MEM_RAM:
printk("(usable)\n");
break;
case BOOT_MEM_ROM_DATA:
printk("(ROM data)\n");
break;
case BOOT_MEM_RESERVED:
printk("(reserved)\n");
break;
default:
printk("type %lu\n", boot_mem_map.map[i].type);
break;
}
}
}
/*
* Manage initrd
*/
#ifdef CONFIG_BLK_DEV_INITRD
static int __init rd_start_early(char *p)
{
unsigned long start = memparse(p, &p);
#ifdef CONFIG_64BIT
/* Guess if the sign extension was forgotten by bootloader */
if (start < XKPHYS)
start = (int)start;
#endif
initrd_start = start;
initrd_end += start;
return 0;
}
early_param("rd_start", rd_start_early);
static int __init rd_size_early(char *p)
{
initrd_end += memparse(p, &p);
return 0;
}
early_param("rd_size", rd_size_early);
/* it returns the next free pfn after initrd */
static unsigned long __init init_initrd(void)
{
unsigned long end;
u32 *initrd_header;
/*
* Board specific code or command line parser should have
* already set up initrd_start and initrd_end. In these cases
* perfom sanity checks and use them if all looks good.
*/
if (initrd_start && initrd_end > initrd_start)
goto sanitize;
/*
* See if initrd has been added to the kernel image by
* arch/mips/boot/addinitrd.c. In that case a header is
* prepended to initrd and is made up by 8 bytes. The fisrt
* word is a magic number and the second one is the size of
* initrd. Initrd start must be page aligned in any cases.
*/
initrd_header = __va(PAGE_ALIGN(__pa_symbol(&_end) + 8)) - 8;
if (initrd_header[0] != 0x494E5244)
goto disable;
initrd_start = (unsigned long)(initrd_header + 2);
initrd_end = initrd_start + initrd_header[1];
sanitize:
if (initrd_start & ~PAGE_MASK) {
printk(KERN_ERR "initrd start must be page aligned\n");
goto disable;
}
if (initrd_start < PAGE_OFFSET) {
printk(KERN_ERR "initrd start < PAGE_OFFSET\n");
goto disable;
}
/*
* Sanitize initrd addresses. For example firmware
* can't guess if they need to pass them through
* 64-bits values if the kernel has been built in pure
* 32-bit. We need also to switch from KSEG0 to XKPHYS
* addresses now, so the code can now safely use __pa().
*/
end = __pa(initrd_end);
initrd_end = (unsigned long)__va(end);
initrd_start = (unsigned long)__va(__pa(initrd_start));
ROOT_DEV = Root_RAM0;
return PFN_UP(end);
disable:
initrd_start = 0;
initrd_end = 0;
return 0;
}
static void __init finalize_initrd(void)
{
unsigned long size = initrd_end - initrd_start;
if (size == 0) {
printk(KERN_INFO "Initrd not found or empty");
goto disable;
}
if (__pa(initrd_end) > PFN_PHYS(max_low_pfn)) {
printk("Initrd extends beyond end of memory");
goto disable;
}
reserve_bootmem(__pa(initrd_start), size);
initrd_below_start_ok = 1;
printk(KERN_INFO "Initial ramdisk at: 0x%lx (%lu bytes)\n",
initrd_start, size);
return;
disable:
printk(" - disabling initrd\n");
initrd_start = 0;
initrd_end = 0;
}
#else /* !CONFIG_BLK_DEV_INITRD */
static unsigned long __init init_initrd(void)
{
return 0;
}
#define finalize_initrd() do {} while (0)
#endif
/*
* Initialize the bootmem allocator. It also setup initrd related data
* if needed.
*/
#ifdef CONFIG_SGI_IP27
static void __init bootmem_init(void)
{
init_initrd();
finalize_initrd();
}
#else /* !CONFIG_SGI_IP27 */
static void __init bootmem_init(void)
{
unsigned long init_begin, reserved_end;
unsigned long mapstart = ~0UL;
unsigned long bootmap_size;
int i;
/*
* Init any data related to initrd. It's a nop if INITRD is
* not selected. Once that done we can determine the low bound
* of usable memory.
*/
reserved_end = max(init_initrd(), PFN_UP(__pa_symbol(&_end)));
/*
* max_low_pfn is not a number of pages. The number of pages
* of the system is given by 'max_low_pfn - min_low_pfn'.
*/
min_low_pfn = ~0UL;
max_low_pfn = 0;
/*
* Find the highest page frame number we have available.
*/
for (i = 0; i < boot_mem_map.nr_map; i++) {
unsigned long start, end;
if (boot_mem_map.map[i].type != BOOT_MEM_RAM)
continue;
start = PFN_UP(boot_mem_map.map[i].addr);
end = PFN_DOWN(boot_mem_map.map[i].addr
+ boot_mem_map.map[i].size);
if (end > max_low_pfn)
max_low_pfn = end;
if (start < min_low_pfn)
min_low_pfn = start;
if (end <= reserved_end)
continue;
if (start >= mapstart)
continue;
mapstart = max(reserved_end, start);
}
if (min_low_pfn >= max_low_pfn)
panic("Incorrect memory mapping !!!");
if (min_low_pfn > ARCH_PFN_OFFSET) {
printk(KERN_INFO
"Wasting %lu bytes for tracking %lu unused pages\n",
(min_low_pfn - ARCH_PFN_OFFSET) * sizeof(struct page),
min_low_pfn - ARCH_PFN_OFFSET);
} else if (min_low_pfn < ARCH_PFN_OFFSET) {
printk(KERN_INFO
"%lu free pages won't be used\n",
ARCH_PFN_OFFSET - min_low_pfn);
}
min_low_pfn = ARCH_PFN_OFFSET;
/*
* Determine low and high memory ranges
*/
if (max_low_pfn > PFN_DOWN(HIGHMEM_START)) {
#ifdef CONFIG_HIGHMEM
highstart_pfn = PFN_DOWN(HIGHMEM_START);
highend_pfn = max_low_pfn;
#endif
max_low_pfn = PFN_DOWN(HIGHMEM_START);
}
/*
* Initialize the boot-time allocator with low memory only.
*/
bootmap_size = init_bootmem_node(NODE_DATA(0), mapstart,
min_low_pfn, max_low_pfn);
init_begin = PFN_UP(__pa_symbol(&__init_begin));
for (i = 0; i < boot_mem_map.nr_map; i++) {
unsigned long start, end;
start = PFN_UP(boot_mem_map.map[i].addr);
end = PFN_DOWN(boot_mem_map.map[i].addr
+ boot_mem_map.map[i].size);
if (start <= init_begin)
start = init_begin;
if (start >= end)
continue;
#ifndef CONFIG_HIGHMEM
if (end > max_low_pfn)
end = max_low_pfn;
/*
* ... finally, is the area going away?
*/
if (end <= start)
continue;
#endif
add_active_range(0, start, end);
}
/*
* Register fully available low RAM pages with the bootmem allocator.
*/
for (i = 0; i < boot_mem_map.nr_map; i++) {
unsigned long start, end, size;
/*
* Reserve usable memory.
*/
if (boot_mem_map.map[i].type != BOOT_MEM_RAM)
continue;
start = PFN_UP(boot_mem_map.map[i].addr);
end = PFN_DOWN(boot_mem_map.map[i].addr
+ boot_mem_map.map[i].size);
/*
* We are rounding up the start address of usable memory
* and at the end of the usable range downwards.
*/
if (start >= max_low_pfn)
continue;
if (start < reserved_end)
start = reserved_end;
if (end > max_low_pfn)
end = max_low_pfn;
/*
* ... finally, is the area going away?
*/
if (end <= start)
continue;
size = end - start;
/* Register lowmem ranges */
free_bootmem(PFN_PHYS(start), size << PAGE_SHIFT);
memory_present(0, start, end);
}
/*
* Reserve the bootmap memory.
*/
reserve_bootmem(PFN_PHYS(mapstart), bootmap_size);
/*
* Reserve initrd memory if needed.
*/
finalize_initrd();
}
#endif /* CONFIG_SGI_IP27 */
/*
* arch_mem_init - initialize memory managment subsystem
*
* o plat_mem_setup() detects the memory configuration and will record detected
* memory areas using add_memory_region.
*
* At this stage the memory configuration of the system is known to the
* kernel but generic memory managment system is still entirely uninitialized.
*
* o bootmem_init()
* o sparse_init()
* o paging_init()
*
* At this stage the bootmem allocator is ready to use.
*
* NOTE: historically plat_mem_setup did the entire platform initialization.
* This was rather impractical because it meant plat_mem_setup had to
* get away without any kind of memory allocator. To keep old code from
* breaking plat_setup was just renamed to plat_setup and a second platform
* initialization hook for anything else was introduced.
*/
static int usermem __initdata = 0;
static int __init early_parse_mem(char *p)
{
unsigned long start, size;
/*
* If a user specifies memory size, we
* blow away any automatically generated
* size.
*/
if (usermem == 0) {
boot_mem_map.nr_map = 0;
usermem = 1;
}
start = 0;
size = memparse(p, &p);
if (*p == '@')
start = memparse(p + 1, &p);
add_memory_region(start, size, BOOT_MEM_RAM);
return 0;
}
early_param("mem", early_parse_mem);
static void __init arch_mem_init(char **cmdline_p)
{
extern void plat_mem_setup(void);
/* call board setup routine */
plat_mem_setup();
printk("Determined physical RAM map:\n");
print_memory_map();
strlcpy(command_line, arcs_cmdline, sizeof(command_line));
strlcpy(boot_command_line, command_line, COMMAND_LINE_SIZE);
*cmdline_p = command_line;
parse_early_param();
if (usermem) {
printk("User-defined physical RAM map:\n");
print_memory_map();
}
bootmem_init();
sparse_init();
paging_init();
}
static void __init resource_init(void)
{
int i;
if (UNCAC_BASE != IO_BASE)
return;
code_resource.start = __pa_symbol(&_text);
code_resource.end = __pa_symbol(&_etext) - 1;
data_resource.start = __pa_symbol(&_etext);
data_resource.end = __pa_symbol(&_edata) - 1;
/*
* Request address space for all standard RAM.
*/
for (i = 0; i < boot_mem_map.nr_map; i++) {
struct resource *res;
unsigned long start, end;
start = boot_mem_map.map[i].addr;
end = boot_mem_map.map[i].addr + boot_mem_map.map[i].size - 1;
if (start >= HIGHMEM_START)
continue;
if (end >= HIGHMEM_START)
end = HIGHMEM_START - 1;
res = alloc_bootmem(sizeof(struct resource));
switch (boot_mem_map.map[i].type) {
case BOOT_MEM_RAM:
case BOOT_MEM_ROM_DATA:
res->name = "System RAM";
break;
case BOOT_MEM_RESERVED:
default:
res->name = "reserved";
}
res->start = start;
res->end = end;
res->flags = IORESOURCE_MEM | IORESOURCE_BUSY;
request_resource(&iomem_resource, res);
/*
* We don't know which RAM region contains kernel data,
* so we try it repeatedly and let the resource manager
* test it.
*/
request_resource(res, &code_resource);
request_resource(res, &data_resource);
}
}
void __init setup_arch(char **cmdline_p)
{
cpu_probe();
prom_init();
#ifdef CONFIG_EARLY_PRINTK
{
extern void setup_early_printk(void);
setup_early_printk();
}
#endif
cpu_report();
#if defined(CONFIG_VT)
#if defined(CONFIG_VGA_CONSOLE)
conswitchp = &vga_con;
#elif defined(CONFIG_DUMMY_CONSOLE)
conswitchp = &dummy_con;
#endif
#endif
arch_mem_init(cmdline_p);
resource_init();
#ifdef CONFIG_SMP
plat_smp_setup();
#endif
}
static int __init fpu_disable(char *s)
{
int i;
for (i = 0; i < NR_CPUS; i++)
cpu_data[i].options &= ~MIPS_CPU_FPU;
return 1;
}
__setup("nofpu", fpu_disable);
static int __init dsp_disable(char *s)
{
cpu_data[0].ases &= ~MIPS_ASE_DSP;
return 1;
}
__setup("nodsp", dsp_disable);
unsigned long kernelsp[NR_CPUS];
unsigned long fw_arg0, fw_arg1, fw_arg2, fw_arg3;
#ifdef CONFIG_DEBUG_FS
struct dentry *mips_debugfs_dir;
static int __init debugfs_mips(void)
{
struct dentry *d;
d = debugfs_create_dir("mips", NULL);
if (IS_ERR(d))
return PTR_ERR(d);
mips_debugfs_dir = d;
return 0;
}
arch_initcall(debugfs_mips);
#endif