kernel-ark/net/ieee80211/ieee80211_crypt_wep.c
Johannes Berg a4bf26f30e [PATCH] ieee80211: enable hw wep where host has to build IV
This patch fixes some of the ieee80211 crypto related code so that
instead of having the host fully do crypto operations, the host_build_iv
flag works properly (for WEP in this patch) which, if turned on,
requires the hardware to do all crypto operations, but the ieee80211
layer builds the IV. The hardware also has to build the ICV.

Previously, the host_build_iv flag couldn't be used at all for WEP, and
not alone (with both host_decrypt and host_encrypt disabled) because the
crypto algorithm wasn't assigned. This is also fixed.

I have tested this patch both in host crypto mode and in hw crypto mode
(with the Broadcom chipset).

[resent, signing digitally caused it to be MIME-junked, sorry]

Signed-Off-By: Johannes Berg <johannes@sipsolutions.net>

Signed-off-by: Jeff Garzik <jgarzik@pobox.com>
2006-01-09 10:34:25 -05:00

283 lines
6.7 KiB
C

/*
* Host AP crypt: host-based WEP encryption implementation for Host AP driver
*
* Copyright (c) 2002-2004, Jouni Malinen <jkmaline@cc.hut.fi>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation. See README and COPYING for
* more details.
*/
#include <linux/config.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/random.h>
#include <linux/skbuff.h>
#include <asm/string.h>
#include <net/ieee80211.h>
#include <linux/crypto.h>
#include <asm/scatterlist.h>
#include <linux/crc32.h>
MODULE_AUTHOR("Jouni Malinen");
MODULE_DESCRIPTION("Host AP crypt: WEP");
MODULE_LICENSE("GPL");
struct prism2_wep_data {
u32 iv;
#define WEP_KEY_LEN 13
u8 key[WEP_KEY_LEN + 1];
u8 key_len;
u8 key_idx;
struct crypto_tfm *tfm;
};
static void *prism2_wep_init(int keyidx)
{
struct prism2_wep_data *priv;
priv = kmalloc(sizeof(*priv), GFP_ATOMIC);
if (priv == NULL)
goto fail;
memset(priv, 0, sizeof(*priv));
priv->key_idx = keyidx;
priv->tfm = crypto_alloc_tfm("arc4", 0);
if (priv->tfm == NULL) {
printk(KERN_DEBUG "ieee80211_crypt_wep: could not allocate "
"crypto API arc4\n");
goto fail;
}
/* start WEP IV from a random value */
get_random_bytes(&priv->iv, 4);
return priv;
fail:
if (priv) {
if (priv->tfm)
crypto_free_tfm(priv->tfm);
kfree(priv);
}
return NULL;
}
static void prism2_wep_deinit(void *priv)
{
struct prism2_wep_data *_priv = priv;
if (_priv && _priv->tfm)
crypto_free_tfm(_priv->tfm);
kfree(priv);
}
/* Add WEP IV/key info to a frame that has at least 4 bytes of headroom */
static int prism2_wep_build_iv(struct sk_buff *skb, int hdr_len, void *priv)
{
struct prism2_wep_data *wep = priv;
u32 klen, len;
u8 *pos;
if (skb_headroom(skb) < 4 || skb->len < hdr_len)
return -1;
len = skb->len - hdr_len;
pos = skb_push(skb, 4);
memmove(pos, pos + 4, hdr_len);
pos += hdr_len;
klen = 3 + wep->key_len;
wep->iv++;
/* Fluhrer, Mantin, and Shamir have reported weaknesses in the key
* scheduling algorithm of RC4. At least IVs (KeyByte + 3, 0xff, N)
* can be used to speedup attacks, so avoid using them. */
if ((wep->iv & 0xff00) == 0xff00) {
u8 B = (wep->iv >> 16) & 0xff;
if (B >= 3 && B < klen)
wep->iv += 0x0100;
}
/* Prepend 24-bit IV to RC4 key and TX frame */
*pos++ = (wep->iv >> 16) & 0xff;
*pos++ = (wep->iv >> 8) & 0xff;
*pos++ = wep->iv & 0xff;
*pos++ = wep->key_idx << 6;
return 0;
}
/* Perform WEP encryption on given skb that has at least 4 bytes of headroom
* for IV and 4 bytes of tailroom for ICV. Both IV and ICV will be transmitted,
* so the payload length increases with 8 bytes.
*
* WEP frame payload: IV + TX key idx, RC4(data), ICV = RC4(CRC32(data))
*/
static int prism2_wep_encrypt(struct sk_buff *skb, int hdr_len, void *priv)
{
struct prism2_wep_data *wep = priv;
u32 crc, klen, len;
u8 *pos, *icv;
struct scatterlist sg;
u8 key[WEP_KEY_LEN + 3];
/* other checks are in prism2_wep_build_iv */
if (skb_tailroom(skb) < 4)
return -1;
/* add the IV to the frame */
if (prism2_wep_build_iv(skb, hdr_len, priv))
return -1;
/* Copy the IV into the first 3 bytes of the key */
memcpy(key, skb->data + hdr_len, 3);
/* Copy rest of the WEP key (the secret part) */
memcpy(key + 3, wep->key, wep->key_len);
len = skb->len - hdr_len - 4;
pos = skb->data + hdr_len + 4;
klen = 3 + wep->key_len;
/* Append little-endian CRC32 over only the data and encrypt it to produce ICV */
crc = ~crc32_le(~0, pos, len);
icv = skb_put(skb, 4);
icv[0] = crc;
icv[1] = crc >> 8;
icv[2] = crc >> 16;
icv[3] = crc >> 24;
crypto_cipher_setkey(wep->tfm, key, klen);
sg.page = virt_to_page(pos);
sg.offset = offset_in_page(pos);
sg.length = len + 4;
crypto_cipher_encrypt(wep->tfm, &sg, &sg, len + 4);
return 0;
}
/* Perform WEP decryption on given buffer. Buffer includes whole WEP part of
* the frame: IV (4 bytes), encrypted payload (including SNAP header),
* ICV (4 bytes). len includes both IV and ICV.
*
* Returns 0 if frame was decrypted successfully and ICV was correct and -1 on
* failure. If frame is OK, IV and ICV will be removed.
*/
static int prism2_wep_decrypt(struct sk_buff *skb, int hdr_len, void *priv)
{
struct prism2_wep_data *wep = priv;
u32 crc, klen, plen;
u8 key[WEP_KEY_LEN + 3];
u8 keyidx, *pos, icv[4];
struct scatterlist sg;
if (skb->len < hdr_len + 8)
return -1;
pos = skb->data + hdr_len;
key[0] = *pos++;
key[1] = *pos++;
key[2] = *pos++;
keyidx = *pos++ >> 6;
if (keyidx != wep->key_idx)
return -1;
klen = 3 + wep->key_len;
/* Copy rest of the WEP key (the secret part) */
memcpy(key + 3, wep->key, wep->key_len);
/* Apply RC4 to data and compute CRC32 over decrypted data */
plen = skb->len - hdr_len - 8;
crypto_cipher_setkey(wep->tfm, key, klen);
sg.page = virt_to_page(pos);
sg.offset = offset_in_page(pos);
sg.length = plen + 4;
crypto_cipher_decrypt(wep->tfm, &sg, &sg, plen + 4);
crc = ~crc32_le(~0, pos, plen);
icv[0] = crc;
icv[1] = crc >> 8;
icv[2] = crc >> 16;
icv[3] = crc >> 24;
if (memcmp(icv, pos + plen, 4) != 0) {
/* ICV mismatch - drop frame */
return -2;
}
/* Remove IV and ICV */
memmove(skb->data + 4, skb->data, hdr_len);
skb_pull(skb, 4);
skb_trim(skb, skb->len - 4);
return 0;
}
static int prism2_wep_set_key(void *key, int len, u8 * seq, void *priv)
{
struct prism2_wep_data *wep = priv;
if (len < 0 || len > WEP_KEY_LEN)
return -1;
memcpy(wep->key, key, len);
wep->key_len = len;
return 0;
}
static int prism2_wep_get_key(void *key, int len, u8 * seq, void *priv)
{
struct prism2_wep_data *wep = priv;
if (len < wep->key_len)
return -1;
memcpy(key, wep->key, wep->key_len);
return wep->key_len;
}
static char *prism2_wep_print_stats(char *p, void *priv)
{
struct prism2_wep_data *wep = priv;
p += sprintf(p, "key[%d] alg=WEP len=%d\n", wep->key_idx, wep->key_len);
return p;
}
static struct ieee80211_crypto_ops ieee80211_crypt_wep = {
.name = "WEP",
.init = prism2_wep_init,
.deinit = prism2_wep_deinit,
.build_iv = prism2_wep_build_iv,
.encrypt_mpdu = prism2_wep_encrypt,
.decrypt_mpdu = prism2_wep_decrypt,
.encrypt_msdu = NULL,
.decrypt_msdu = NULL,
.set_key = prism2_wep_set_key,
.get_key = prism2_wep_get_key,
.print_stats = prism2_wep_print_stats,
.extra_mpdu_prefix_len = 4, /* IV */
.extra_mpdu_postfix_len = 4, /* ICV */
.owner = THIS_MODULE,
};
static int __init ieee80211_crypto_wep_init(void)
{
return ieee80211_register_crypto_ops(&ieee80211_crypt_wep);
}
static void __exit ieee80211_crypto_wep_exit(void)
{
ieee80211_unregister_crypto_ops(&ieee80211_crypt_wep);
}
module_init(ieee80211_crypto_wep_init);
module_exit(ieee80211_crypto_wep_exit);