kernel-ark/arch/mips/math-emu/ieee754sp.h
Paul Burton db57f29d50 MIPS: math-emu: Fix m{add,sub}.s shifts
The code in _sp_maddf (formerly ieee754sp_madd) appears to have been
copied verbatim from ieee754sp_add, and although it's adding the
unpacked "r" & "z" floats it kept using macros that operate on "x" &
"y". This led to the addition being carried out incorrectly on some
mismash of the product, accumulator & multiplicand fields. Typically
this would lead to the assertions "ze == re" & "ze <= SP_EMAX" failing
since ze & re hadn't been operated upon.

Signed-off-by: Paul Burton <paul.burton@imgtec.com>
Fixes: e24c3bec3e ("MIPS: math-emu: Add support for the MIPS R6 MADDF FPU instruction")
Cc: Adam Buchbinder <adam.buchbinder@gmail.com>
Cc: Maciej W. Rozycki <macro@imgtec.com>
Cc: linux-mips@linux-mips.org
Cc: linux-kernel@vger.kernel.org
Patchwork: https://patchwork.linux-mips.org/patch/13159/
Signed-off-by: Ralf Baechle <ralf@linux-mips.org>
2016-05-13 14:02:23 +02:00

86 lines
2.2 KiB
C

/*
* IEEE754 floating point
* double precision internal header file
*/
/*
* MIPS floating point support
* Copyright (C) 1994-2000 Algorithmics Ltd.
*
* This program is free software; you can distribute it and/or modify it
* under the terms of the GNU General Public License (Version 2) as
* published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*/
#include <linux/compiler.h>
#include "ieee754int.h"
#define assert(expr) ((void)0)
#define SP_EBIAS 127
#define SP_EMIN (-126)
#define SP_EMAX 127
#define SP_FBITS 23
#define SP_MBITS 23
#define SP_MBIT(x) ((u32)1 << (x))
#define SP_HIDDEN_BIT SP_MBIT(SP_FBITS)
#define SP_SIGN_BIT SP_MBIT(31)
#define SPSIGN(sp) (sp.sign)
#define SPBEXP(sp) (sp.bexp)
#define SPMANT(sp) (sp.mant)
static inline int ieee754sp_finite(union ieee754sp x)
{
return SPBEXP(x) != SP_EMAX + 1 + SP_EBIAS;
}
/* 3bit extended single precision sticky right shift */
#define XSPSRS(v, rs) \
((rs > (SP_FBITS+3))?1:((v) >> (rs)) | ((v) << (32-(rs)) != 0))
#define XSPSRS1(m) \
((m >> 1) | (m & 1))
#define SPXSRSX1() \
(xe++, (xm = XSPSRS1(xm)))
#define SPXSRSY1() \
(ye++, (ym = XSPSRS1(ym)))
/* convert denormal to normalized with extended exponent */
#define SPDNORMx(m,e) \
while ((m >> SP_FBITS) == 0) { m <<= 1; e--; }
#define SPDNORMX SPDNORMx(xm, xe)
#define SPDNORMY SPDNORMx(ym, ye)
#define SPDNORMZ SPDNORMx(zm, ze)
static inline union ieee754sp buildsp(int s, int bx, unsigned m)
{
union ieee754sp r;
assert((s) == 0 || (s) == 1);
assert((bx) >= SP_EMIN - 1 + SP_EBIAS
&& (bx) <= SP_EMAX + 1 + SP_EBIAS);
assert(((m) >> SP_FBITS) == 0);
r.sign = s;
r.bexp = bx;
r.mant = m;
return r;
}
extern union ieee754sp __cold ieee754sp_nanxcpt(union ieee754sp);
extern union ieee754sp ieee754sp_format(int, int, unsigned);