51368bf792
Happy new year! Signed-off-by: Emmanuel Grumbach <emmanuel.grumbach@intel.com>
557 lines
16 KiB
C
557 lines
16 KiB
C
/******************************************************************************
|
|
*
|
|
* This file is provided under a dual BSD/GPLv2 license. When using or
|
|
* redistributing this file, you may do so under either license.
|
|
*
|
|
* GPL LICENSE SUMMARY
|
|
*
|
|
* Copyright(c) 2013 - 2014 Intel Corporation. All rights reserved.
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of version 2 of the GNU General Public License as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
* This program is distributed in the hope that it will be useful, but
|
|
* WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software
|
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110,
|
|
* USA
|
|
*
|
|
* The full GNU General Public License is included in this distribution
|
|
* in the file called COPYING.
|
|
*
|
|
* Contact Information:
|
|
* Intel Linux Wireless <ilw@linux.intel.com>
|
|
* Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
|
|
*
|
|
* BSD LICENSE
|
|
*
|
|
* Copyright(c) 2012 - 2014 Intel Corporation. All rights reserved.
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
*
|
|
* * Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* * Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in
|
|
* the documentation and/or other materials provided with the
|
|
* distribution.
|
|
* * Neither the name Intel Corporation nor the names of its
|
|
* contributors may be used to endorse or promote products derived
|
|
* from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*
|
|
*****************************************************************************/
|
|
|
|
#include "mvm.h"
|
|
#include "iwl-config.h"
|
|
#include "iwl-io.h"
|
|
#include "iwl-csr.h"
|
|
#include "iwl-prph.h"
|
|
|
|
#define OTP_DTS_DIODE_DEVIATION 96 /*in words*/
|
|
/* VBG - Voltage Band Gap error data (temperature offset) */
|
|
#define OTP_WP_DTS_VBG (OTP_DTS_DIODE_DEVIATION + 2)
|
|
#define MEAS_VBG_MIN_VAL 2300
|
|
#define MEAS_VBG_MAX_VAL 3000
|
|
#define MEAS_VBG_DEFAULT_VAL 2700
|
|
#define DTS_DIODE_VALID(flags) (flags & DTS_DIODE_REG_FLAGS_PASS_ONCE)
|
|
#define MIN_TEMPERATURE 0
|
|
#define MAX_TEMPERATURE 125
|
|
#define TEMPERATURE_ERROR (MAX_TEMPERATURE + 1)
|
|
#define PTAT_DIGITAL_VALUE_MIN_VALUE 0
|
|
#define PTAT_DIGITAL_VALUE_MAX_VALUE 0xFF
|
|
#define DTS_VREFS_NUM 5
|
|
static inline u32 DTS_DIODE_GET_VREFS_ID(u32 flags)
|
|
{
|
|
return (flags & DTS_DIODE_REG_FLAGS_VREFS_ID) >>
|
|
DTS_DIODE_REG_FLAGS_VREFS_ID_POS;
|
|
}
|
|
|
|
#define CALC_VREFS_MIN_DIFF 43
|
|
#define CALC_VREFS_MAX_DIFF 51
|
|
#define CALC_LUT_SIZE (1 + CALC_VREFS_MAX_DIFF - CALC_VREFS_MIN_DIFF)
|
|
#define CALC_LUT_INDEX_OFFSET CALC_VREFS_MIN_DIFF
|
|
#define CALC_TEMPERATURE_RESULT_SHIFT_OFFSET 23
|
|
|
|
/*
|
|
* @digital_value: The diode's digital-value sampled (temperature/voltage)
|
|
* @vref_low: The lower voltage-reference (the vref just below the diode's
|
|
* sampled digital-value)
|
|
* @vref_high: The higher voltage-reference (the vref just above the diode's
|
|
* sampled digital-value)
|
|
* @flags: bits[1:0]: The ID of the Vrefs pair (lowVref,highVref)
|
|
* bits[6:2]: Reserved.
|
|
* bits[7:7]: Indicates completion of at least 1 successful sample
|
|
* since last DTS reset.
|
|
*/
|
|
struct iwl_mvm_dts_diode_bits {
|
|
u8 digital_value;
|
|
u8 vref_low;
|
|
u8 vref_high;
|
|
u8 flags;
|
|
} __packed;
|
|
|
|
union dts_diode_results {
|
|
u32 reg_value;
|
|
struct iwl_mvm_dts_diode_bits bits;
|
|
} __packed;
|
|
|
|
static s16 iwl_mvm_dts_get_volt_band_gap(struct iwl_mvm *mvm)
|
|
{
|
|
struct iwl_nvm_section calib_sec;
|
|
const __le16 *calib;
|
|
u16 vbg;
|
|
|
|
/* TODO: move parsing to NVM code */
|
|
calib_sec = mvm->nvm_sections[NVM_SECTION_TYPE_CALIBRATION];
|
|
calib = (__le16 *)calib_sec.data;
|
|
|
|
vbg = le16_to_cpu(calib[OTP_WP_DTS_VBG]);
|
|
|
|
if (vbg < MEAS_VBG_MIN_VAL || vbg > MEAS_VBG_MAX_VAL)
|
|
vbg = MEAS_VBG_DEFAULT_VAL;
|
|
|
|
return vbg;
|
|
}
|
|
|
|
static u16 iwl_mvm_dts_get_ptat_deviation_offset(struct iwl_mvm *mvm)
|
|
{
|
|
const u8 *calib;
|
|
u8 ptat, pa1, pa2, median;
|
|
|
|
/* TODO: move parsing to NVM code */
|
|
calib = mvm->nvm_sections[NVM_SECTION_TYPE_CALIBRATION].data;
|
|
ptat = calib[OTP_DTS_DIODE_DEVIATION];
|
|
pa1 = calib[OTP_DTS_DIODE_DEVIATION + 1];
|
|
pa2 = calib[OTP_DTS_DIODE_DEVIATION + 2];
|
|
|
|
/* get the median: */
|
|
if (ptat > pa1) {
|
|
if (ptat > pa2)
|
|
median = (pa1 > pa2) ? pa1 : pa2;
|
|
else
|
|
median = ptat;
|
|
} else {
|
|
if (pa1 > pa2)
|
|
median = (ptat > pa2) ? ptat : pa2;
|
|
else
|
|
median = pa1;
|
|
}
|
|
|
|
return ptat - median;
|
|
}
|
|
|
|
static u8 iwl_mvm_dts_calibrate_ptat_deviation(struct iwl_mvm *mvm, u8 value)
|
|
{
|
|
/* Calibrate the PTAT digital value, based on PTAT deviation data: */
|
|
s16 new_val = value - iwl_mvm_dts_get_ptat_deviation_offset(mvm);
|
|
|
|
if (new_val > PTAT_DIGITAL_VALUE_MAX_VALUE)
|
|
new_val = PTAT_DIGITAL_VALUE_MAX_VALUE;
|
|
else if (new_val < PTAT_DIGITAL_VALUE_MIN_VALUE)
|
|
new_val = PTAT_DIGITAL_VALUE_MIN_VALUE;
|
|
|
|
return new_val;
|
|
}
|
|
|
|
static bool dts_get_adjacent_vrefs(struct iwl_mvm *mvm,
|
|
union dts_diode_results *avg_ptat)
|
|
{
|
|
u8 vrefs_results[DTS_VREFS_NUM];
|
|
u8 low_vref_index = 0, flags;
|
|
u32 reg;
|
|
|
|
reg = iwl_read_prph(mvm->trans, DTSC_VREF_AVG);
|
|
memcpy(vrefs_results, ®, sizeof(reg));
|
|
reg = iwl_read_prph(mvm->trans, DTSC_VREF5_AVG);
|
|
vrefs_results[4] = reg & 0xff;
|
|
|
|
if (avg_ptat->bits.digital_value < vrefs_results[0] ||
|
|
avg_ptat->bits.digital_value > vrefs_results[4])
|
|
return false;
|
|
|
|
if (avg_ptat->bits.digital_value > vrefs_results[3])
|
|
low_vref_index = 3;
|
|
else if (avg_ptat->bits.digital_value > vrefs_results[2])
|
|
low_vref_index = 2;
|
|
else if (avg_ptat->bits.digital_value > vrefs_results[1])
|
|
low_vref_index = 1;
|
|
|
|
avg_ptat->bits.vref_low = vrefs_results[low_vref_index];
|
|
avg_ptat->bits.vref_high = vrefs_results[low_vref_index + 1];
|
|
flags = avg_ptat->bits.flags;
|
|
avg_ptat->bits.flags =
|
|
(flags & ~DTS_DIODE_REG_FLAGS_VREFS_ID) |
|
|
(low_vref_index & DTS_DIODE_REG_FLAGS_VREFS_ID);
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* return true it the results are valid, and false otherwise.
|
|
*/
|
|
static bool dts_read_ptat_avg_results(struct iwl_mvm *mvm,
|
|
union dts_diode_results *avg_ptat)
|
|
{
|
|
u32 reg;
|
|
u8 tmp;
|
|
|
|
/* fill the diode value and pass_once with avg-reg results */
|
|
reg = iwl_read_prph(mvm->trans, DTSC_PTAT_AVG);
|
|
reg &= DTS_DIODE_REG_DIG_VAL | DTS_DIODE_REG_PASS_ONCE;
|
|
avg_ptat->reg_value = reg;
|
|
|
|
/* calibrate the PTAT digital value */
|
|
tmp = avg_ptat->bits.digital_value;
|
|
tmp = iwl_mvm_dts_calibrate_ptat_deviation(mvm, tmp);
|
|
avg_ptat->bits.digital_value = tmp;
|
|
|
|
/*
|
|
* fill vrefs fields, based on the avgVrefs results
|
|
* and the diode value
|
|
*/
|
|
return dts_get_adjacent_vrefs(mvm, avg_ptat) &&
|
|
DTS_DIODE_VALID(avg_ptat->bits.flags);
|
|
}
|
|
|
|
static s32 calculate_nic_temperature(union dts_diode_results avg_ptat,
|
|
u16 volt_band_gap)
|
|
{
|
|
u32 tmp_result;
|
|
u8 vrefs_diff;
|
|
/*
|
|
* For temperature calculation (at the end, shift right by 23)
|
|
* LUT[(D2-D1)] = ROUND{ 2^23 / ((D2-D1)*9*10) }
|
|
* (D2-D1) == 43 44 45 46 47 48 49 50 51
|
|
*/
|
|
static const u16 calc_lut[CALC_LUT_SIZE] = {
|
|
2168, 2118, 2071, 2026, 1983, 1942, 1902, 1864, 1828,
|
|
};
|
|
|
|
/*
|
|
* The diff between the high and low voltage-references is assumed
|
|
* to be strictly be in range of [60,68]
|
|
*/
|
|
vrefs_diff = avg_ptat.bits.vref_high - avg_ptat.bits.vref_low;
|
|
|
|
if (vrefs_diff < CALC_VREFS_MIN_DIFF ||
|
|
vrefs_diff > CALC_VREFS_MAX_DIFF)
|
|
return TEMPERATURE_ERROR;
|
|
|
|
/* calculate the result: */
|
|
tmp_result =
|
|
vrefs_diff * (DTS_DIODE_GET_VREFS_ID(avg_ptat.bits.flags) + 9);
|
|
tmp_result += avg_ptat.bits.digital_value;
|
|
tmp_result -= avg_ptat.bits.vref_high;
|
|
|
|
/* multiply by the LUT value (based on the diff) */
|
|
tmp_result *= calc_lut[vrefs_diff - CALC_LUT_INDEX_OFFSET];
|
|
|
|
/*
|
|
* Get the BandGap (the voltage refereces source) error data
|
|
* (temperature offset)
|
|
*/
|
|
tmp_result *= volt_band_gap;
|
|
|
|
/*
|
|
* here, tmp_result value can be up to 32-bits. We want to right-shift
|
|
* it *without* sign-extend.
|
|
*/
|
|
tmp_result = tmp_result >> CALC_TEMPERATURE_RESULT_SHIFT_OFFSET;
|
|
|
|
/*
|
|
* at this point, tmp_result should be in the range:
|
|
* 200 <= tmp_result <= 365
|
|
*/
|
|
return (s16)tmp_result - 240;
|
|
}
|
|
|
|
static s32 check_nic_temperature(struct iwl_mvm *mvm)
|
|
{
|
|
u16 volt_band_gap;
|
|
union dts_diode_results avg_ptat;
|
|
|
|
volt_band_gap = iwl_mvm_dts_get_volt_band_gap(mvm);
|
|
|
|
/* disable DTS */
|
|
iwl_write_prph(mvm->trans, SHR_MISC_WFM_DTS_EN, 0);
|
|
|
|
/* SV initialization */
|
|
iwl_write_prph(mvm->trans, SHR_MISC_WFM_DTS_EN, 1);
|
|
iwl_write_prph(mvm->trans, DTSC_CFG_MODE,
|
|
DTSC_CFG_MODE_PERIODIC);
|
|
|
|
/* wait for results */
|
|
msleep(100);
|
|
if (!dts_read_ptat_avg_results(mvm, &avg_ptat))
|
|
return TEMPERATURE_ERROR;
|
|
|
|
/* disable DTS */
|
|
iwl_write_prph(mvm->trans, SHR_MISC_WFM_DTS_EN, 0);
|
|
|
|
return calculate_nic_temperature(avg_ptat, volt_band_gap);
|
|
}
|
|
|
|
static void iwl_mvm_enter_ctkill(struct iwl_mvm *mvm)
|
|
{
|
|
u32 duration = mvm->thermal_throttle.params->ct_kill_duration;
|
|
|
|
IWL_ERR(mvm, "Enter CT Kill\n");
|
|
iwl_mvm_set_hw_ctkill_state(mvm, true);
|
|
schedule_delayed_work(&mvm->thermal_throttle.ct_kill_exit,
|
|
round_jiffies_relative(duration * HZ));
|
|
}
|
|
|
|
static void iwl_mvm_exit_ctkill(struct iwl_mvm *mvm)
|
|
{
|
|
IWL_ERR(mvm, "Exit CT Kill\n");
|
|
iwl_mvm_set_hw_ctkill_state(mvm, false);
|
|
}
|
|
|
|
static void check_exit_ctkill(struct work_struct *work)
|
|
{
|
|
struct iwl_mvm_tt_mgmt *tt;
|
|
struct iwl_mvm *mvm;
|
|
u32 duration;
|
|
s32 temp;
|
|
|
|
tt = container_of(work, struct iwl_mvm_tt_mgmt, ct_kill_exit.work);
|
|
mvm = container_of(tt, struct iwl_mvm, thermal_throttle);
|
|
|
|
duration = tt->params->ct_kill_duration;
|
|
|
|
iwl_trans_start_hw(mvm->trans);
|
|
temp = check_nic_temperature(mvm);
|
|
iwl_trans_stop_device(mvm->trans);
|
|
|
|
if (temp < MIN_TEMPERATURE || temp > MAX_TEMPERATURE) {
|
|
IWL_DEBUG_TEMP(mvm, "Failed to measure NIC temperature\n");
|
|
goto reschedule;
|
|
}
|
|
IWL_DEBUG_TEMP(mvm, "NIC temperature: %d\n", temp);
|
|
|
|
if (temp <= tt->params->ct_kill_exit) {
|
|
iwl_mvm_exit_ctkill(mvm);
|
|
return;
|
|
}
|
|
|
|
reschedule:
|
|
schedule_delayed_work(&mvm->thermal_throttle.ct_kill_exit,
|
|
round_jiffies(duration * HZ));
|
|
}
|
|
|
|
static void iwl_mvm_tt_smps_iterator(void *_data, u8 *mac,
|
|
struct ieee80211_vif *vif)
|
|
{
|
|
struct iwl_mvm *mvm = _data;
|
|
enum ieee80211_smps_mode smps_mode;
|
|
|
|
lockdep_assert_held(&mvm->mutex);
|
|
|
|
if (mvm->thermal_throttle.dynamic_smps)
|
|
smps_mode = IEEE80211_SMPS_DYNAMIC;
|
|
else
|
|
smps_mode = IEEE80211_SMPS_AUTOMATIC;
|
|
|
|
if (vif->type != NL80211_IFTYPE_STATION)
|
|
return;
|
|
|
|
iwl_mvm_update_smps(mvm, vif, IWL_MVM_SMPS_REQ_TT, smps_mode);
|
|
}
|
|
|
|
static void iwl_mvm_tt_tx_protection(struct iwl_mvm *mvm, bool enable)
|
|
{
|
|
struct ieee80211_sta *sta;
|
|
struct iwl_mvm_sta *mvmsta;
|
|
int i, err;
|
|
|
|
for (i = 0; i < IWL_MVM_STATION_COUNT; i++) {
|
|
sta = rcu_dereference_protected(mvm->fw_id_to_mac_id[i],
|
|
lockdep_is_held(&mvm->mutex));
|
|
if (IS_ERR_OR_NULL(sta))
|
|
continue;
|
|
mvmsta = iwl_mvm_sta_from_mac80211(sta);
|
|
if (enable == mvmsta->tt_tx_protection)
|
|
continue;
|
|
err = iwl_mvm_tx_protection(mvm, mvmsta, enable);
|
|
if (err) {
|
|
IWL_ERR(mvm, "Failed to %s Tx protection\n",
|
|
enable ? "enable" : "disable");
|
|
} else {
|
|
IWL_DEBUG_TEMP(mvm, "%s Tx protection\n",
|
|
enable ? "Enable" : "Disable");
|
|
mvmsta->tt_tx_protection = enable;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void iwl_mvm_tt_tx_backoff(struct iwl_mvm *mvm, u32 backoff)
|
|
{
|
|
struct iwl_host_cmd cmd = {
|
|
.id = REPLY_THERMAL_MNG_BACKOFF,
|
|
.len = { sizeof(u32), },
|
|
.data = { &backoff, },
|
|
.flags = CMD_SYNC,
|
|
};
|
|
|
|
if (iwl_mvm_send_cmd(mvm, &cmd) == 0) {
|
|
IWL_DEBUG_TEMP(mvm, "Set Thermal Tx backoff to: %u\n",
|
|
backoff);
|
|
mvm->thermal_throttle.tx_backoff = backoff;
|
|
} else {
|
|
IWL_ERR(mvm, "Failed to change Thermal Tx backoff\n");
|
|
}
|
|
}
|
|
|
|
void iwl_mvm_tt_handler(struct iwl_mvm *mvm)
|
|
{
|
|
const struct iwl_tt_params *params = mvm->thermal_throttle.params;
|
|
struct iwl_mvm_tt_mgmt *tt = &mvm->thermal_throttle;
|
|
s32 temperature = mvm->temperature;
|
|
bool throttle_enable = false;
|
|
int i;
|
|
u32 tx_backoff;
|
|
|
|
IWL_DEBUG_TEMP(mvm, "NIC temperature: %d\n", mvm->temperature);
|
|
|
|
if (params->support_ct_kill && temperature >= params->ct_kill_entry) {
|
|
iwl_mvm_enter_ctkill(mvm);
|
|
return;
|
|
}
|
|
|
|
if (params->support_dynamic_smps) {
|
|
if (!tt->dynamic_smps &&
|
|
temperature >= params->dynamic_smps_entry) {
|
|
IWL_DEBUG_TEMP(mvm, "Enable dynamic SMPS\n");
|
|
tt->dynamic_smps = true;
|
|
ieee80211_iterate_active_interfaces_atomic(
|
|
mvm->hw, IEEE80211_IFACE_ITER_NORMAL,
|
|
iwl_mvm_tt_smps_iterator, mvm);
|
|
throttle_enable = true;
|
|
} else if (tt->dynamic_smps &&
|
|
temperature <= params->dynamic_smps_exit) {
|
|
IWL_DEBUG_TEMP(mvm, "Disable dynamic SMPS\n");
|
|
tt->dynamic_smps = false;
|
|
ieee80211_iterate_active_interfaces_atomic(
|
|
mvm->hw, IEEE80211_IFACE_ITER_NORMAL,
|
|
iwl_mvm_tt_smps_iterator, mvm);
|
|
}
|
|
}
|
|
|
|
if (params->support_tx_protection) {
|
|
if (temperature >= params->tx_protection_entry) {
|
|
iwl_mvm_tt_tx_protection(mvm, true);
|
|
throttle_enable = true;
|
|
} else if (temperature <= params->tx_protection_exit) {
|
|
iwl_mvm_tt_tx_protection(mvm, false);
|
|
}
|
|
}
|
|
|
|
if (params->support_tx_backoff) {
|
|
tx_backoff = 0;
|
|
for (i = 0; i < TT_TX_BACKOFF_SIZE; i++) {
|
|
if (temperature < params->tx_backoff[i].temperature)
|
|
break;
|
|
tx_backoff = params->tx_backoff[i].backoff;
|
|
}
|
|
if (tx_backoff != 0)
|
|
throttle_enable = true;
|
|
if (tt->tx_backoff != tx_backoff)
|
|
iwl_mvm_tt_tx_backoff(mvm, tx_backoff);
|
|
}
|
|
|
|
if (!tt->throttle && throttle_enable) {
|
|
IWL_WARN(mvm,
|
|
"Due to high temperature thermal throttling initiated\n");
|
|
tt->throttle = true;
|
|
} else if (tt->throttle && !tt->dynamic_smps && tt->tx_backoff == 0 &&
|
|
temperature <= params->tx_protection_exit) {
|
|
IWL_WARN(mvm,
|
|
"Temperature is back to normal thermal throttling stopped\n");
|
|
tt->throttle = false;
|
|
}
|
|
}
|
|
|
|
static const struct iwl_tt_params iwl7000_tt_params = {
|
|
.ct_kill_entry = 118,
|
|
.ct_kill_exit = 96,
|
|
.ct_kill_duration = 5,
|
|
.dynamic_smps_entry = 114,
|
|
.dynamic_smps_exit = 110,
|
|
.tx_protection_entry = 114,
|
|
.tx_protection_exit = 108,
|
|
.tx_backoff = {
|
|
{.temperature = 112, .backoff = 200},
|
|
{.temperature = 113, .backoff = 600},
|
|
{.temperature = 114, .backoff = 1200},
|
|
{.temperature = 115, .backoff = 2000},
|
|
{.temperature = 116, .backoff = 4000},
|
|
{.temperature = 117, .backoff = 10000},
|
|
},
|
|
.support_ct_kill = true,
|
|
.support_dynamic_smps = true,
|
|
.support_tx_protection = true,
|
|
.support_tx_backoff = true,
|
|
};
|
|
|
|
static const struct iwl_tt_params iwl7000_high_temp_tt_params = {
|
|
.ct_kill_entry = 118,
|
|
.ct_kill_exit = 96,
|
|
.ct_kill_duration = 5,
|
|
.dynamic_smps_entry = 114,
|
|
.dynamic_smps_exit = 110,
|
|
.tx_protection_entry = 114,
|
|
.tx_protection_exit = 108,
|
|
.tx_backoff = {
|
|
{.temperature = 112, .backoff = 300},
|
|
{.temperature = 113, .backoff = 800},
|
|
{.temperature = 114, .backoff = 1500},
|
|
{.temperature = 115, .backoff = 3000},
|
|
{.temperature = 116, .backoff = 5000},
|
|
{.temperature = 117, .backoff = 10000},
|
|
},
|
|
.support_ct_kill = true,
|
|
.support_dynamic_smps = true,
|
|
.support_tx_protection = true,
|
|
.support_tx_backoff = true,
|
|
};
|
|
|
|
void iwl_mvm_tt_initialize(struct iwl_mvm *mvm)
|
|
{
|
|
struct iwl_mvm_tt_mgmt *tt = &mvm->thermal_throttle;
|
|
|
|
IWL_DEBUG_TEMP(mvm, "Initialize Thermal Throttling\n");
|
|
|
|
if (mvm->cfg->high_temp)
|
|
tt->params = &iwl7000_high_temp_tt_params;
|
|
else
|
|
tt->params = &iwl7000_tt_params;
|
|
|
|
tt->throttle = false;
|
|
INIT_DELAYED_WORK(&tt->ct_kill_exit, check_exit_ctkill);
|
|
}
|
|
|
|
void iwl_mvm_tt_exit(struct iwl_mvm *mvm)
|
|
{
|
|
cancel_delayed_work_sync(&mvm->thermal_throttle.ct_kill_exit);
|
|
IWL_DEBUG_TEMP(mvm, "Exit Thermal Throttling\n");
|
|
}
|