kernel-ark/arch/mips/kernel/smp.c
KAMEZAWA Hiroyuki 76b67ed9dc [PATCH] node hotplug: register cpu: remove node struct
With Goto-san's patch, we can add new pgdat/node at runtime.  I'm now
considering node-hot-add with cpu + memory on ACPI.

I found acpi container, which describes node, could evaluate cpu before
memory. This means cpu-hot-add occurs before memory hot add.

In most part, cpu-hot-add doesn't depend on node hot add.  But register_cpu(),
which creates symbolic link from node to cpu, requires that node should be
onlined before register_cpu().  When a node is onlined, its pgdat should be
there.

This patch-set holds off creating symbolic link from node to cpu
until node is onlined.

This removes node arguments from register_cpu().

Now, register_cpu() requires 'struct node' as its argument.  But the array of
struct node is now unified in driver/base/node.c now (By Goto's node hotplug
patch).  We can get struct node in generic way.  So, this argument is not
necessary now.

This patch also guarantees add cpu under node only when node is onlined.  It
is necessary for node-hot-add vs.  cpu-hot-add patch following this.

Moreover, register_cpu calculates cpu->node_id by cpu_to_node() without regard
to its 'struct node *root' argument.  This patch removes it.

Also modify callers of register_cpu()/unregister_cpu, whose args are changed
by register-cpu-remove-node-struct patch.

[Brice.Goglin@ens-lyon.org: fix it]
Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Yasunori Goto <y-goto@jp.fujitsu.com>
Cc: Ashok Raj <ashok.raj@intel.com>
Cc: Dave Hansen <haveblue@us.ibm.com>
Signed-off-by: Brice Goglin <Brice.Goglin@ens-lyon.org>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-06-27 17:32:37 -07:00

462 lines
11 KiB
C

/*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*
* Copyright (C) 2000, 2001 Kanoj Sarcar
* Copyright (C) 2000, 2001 Ralf Baechle
* Copyright (C) 2000, 2001 Silicon Graphics, Inc.
* Copyright (C) 2000, 2001, 2003 Broadcom Corporation
*/
#include <linux/cache.h>
#include <linux/delay.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/spinlock.h>
#include <linux/threads.h>
#include <linux/module.h>
#include <linux/time.h>
#include <linux/timex.h>
#include <linux/sched.h>
#include <linux/cpumask.h>
#include <linux/cpu.h>
#include <asm/atomic.h>
#include <asm/cpu.h>
#include <asm/processor.h>
#include <asm/system.h>
#include <asm/mmu_context.h>
#include <asm/smp.h>
#ifdef CONFIG_MIPS_MT_SMTC
#include <asm/mipsmtregs.h>
#endif /* CONFIG_MIPS_MT_SMTC */
cpumask_t phys_cpu_present_map; /* Bitmask of available CPUs */
volatile cpumask_t cpu_callin_map; /* Bitmask of started secondaries */
cpumask_t cpu_online_map; /* Bitmask of currently online CPUs */
int __cpu_number_map[NR_CPUS]; /* Map physical to logical */
int __cpu_logical_map[NR_CPUS]; /* Map logical to physical */
EXPORT_SYMBOL(phys_cpu_present_map);
EXPORT_SYMBOL(cpu_online_map);
static void smp_tune_scheduling (void)
{
struct cache_desc *cd = &current_cpu_data.scache;
unsigned long cachesize; /* kB */
unsigned long cpu_khz;
/*
* Crude estimate until we actually meassure ...
*/
cpu_khz = loops_per_jiffy * 2 * HZ / 1000;
/*
* Rough estimation for SMP scheduling, this is the number of
* cycles it takes for a fully memory-limited process to flush
* the SMP-local cache.
*
* (For a P5 this pretty much means we will choose another idle
* CPU almost always at wakeup time (this is due to the small
* L1 cache), on PIIs it's around 50-100 usecs, depending on
* the cache size)
*/
if (!cpu_khz)
return;
cachesize = cd->linesz * cd->sets * cd->ways;
}
extern void __init calibrate_delay(void);
extern ATTRIB_NORET void cpu_idle(void);
/*
* First C code run on the secondary CPUs after being started up by
* the master.
*/
asmlinkage void start_secondary(void)
{
unsigned int cpu;
#ifdef CONFIG_MIPS_MT_SMTC
/* Only do cpu_probe for first TC of CPU */
if ((read_c0_tcbind() & TCBIND_CURTC) == 0)
#endif /* CONFIG_MIPS_MT_SMTC */
cpu_probe();
cpu_report();
per_cpu_trap_init();
prom_init_secondary();
/*
* XXX parity protection should be folded in here when it's converted
* to an option instead of something based on .cputype
*/
calibrate_delay();
preempt_disable();
cpu = smp_processor_id();
cpu_data[cpu].udelay_val = loops_per_jiffy;
prom_smp_finish();
cpu_set(cpu, cpu_callin_map);
cpu_idle();
}
DEFINE_SPINLOCK(smp_call_lock);
struct call_data_struct *call_data;
/*
* Run a function on all other CPUs.
* <func> The function to run. This must be fast and non-blocking.
* <info> An arbitrary pointer to pass to the function.
* <retry> If true, keep retrying until ready.
* <wait> If true, wait until function has completed on other CPUs.
* [RETURNS] 0 on success, else a negative status code.
*
* Does not return until remote CPUs are nearly ready to execute <func>
* or are or have executed.
*
* You must not call this function with disabled interrupts or from a
* hardware interrupt handler or from a bottom half handler:
*
* CPU A CPU B
* Disable interrupts
* smp_call_function()
* Take call_lock
* Send IPIs
* Wait for all cpus to acknowledge IPI
* CPU A has not responded, spin waiting
* for cpu A to respond, holding call_lock
* smp_call_function()
* Spin waiting for call_lock
* Deadlock Deadlock
*/
int smp_call_function (void (*func) (void *info), void *info, int retry,
int wait)
{
struct call_data_struct data;
int i, cpus = num_online_cpus() - 1;
int cpu = smp_processor_id();
/*
* Can die spectacularly if this CPU isn't yet marked online
*/
BUG_ON(!cpu_online(cpu));
if (!cpus)
return 0;
/* Can deadlock when called with interrupts disabled */
WARN_ON(irqs_disabled());
data.func = func;
data.info = info;
atomic_set(&data.started, 0);
data.wait = wait;
if (wait)
atomic_set(&data.finished, 0);
spin_lock(&smp_call_lock);
call_data = &data;
mb();
/* Send a message to all other CPUs and wait for them to respond */
for_each_online_cpu(i)
if (i != cpu)
core_send_ipi(i, SMP_CALL_FUNCTION);
/* Wait for response */
/* FIXME: lock-up detection, backtrace on lock-up */
while (atomic_read(&data.started) != cpus)
barrier();
if (wait)
while (atomic_read(&data.finished) != cpus)
barrier();
call_data = NULL;
spin_unlock(&smp_call_lock);
return 0;
}
void smp_call_function_interrupt(void)
{
void (*func) (void *info) = call_data->func;
void *info = call_data->info;
int wait = call_data->wait;
/*
* Notify initiating CPU that I've grabbed the data and am
* about to execute the function.
*/
mb();
atomic_inc(&call_data->started);
/*
* At this point the info structure may be out of scope unless wait==1.
*/
irq_enter();
(*func)(info);
irq_exit();
if (wait) {
mb();
atomic_inc(&call_data->finished);
}
}
static void stop_this_cpu(void *dummy)
{
/*
* Remove this CPU:
*/
cpu_clear(smp_processor_id(), cpu_online_map);
local_irq_enable(); /* May need to service _machine_restart IPI */
for (;;); /* Wait if available. */
}
void smp_send_stop(void)
{
smp_call_function(stop_this_cpu, NULL, 1, 0);
}
void __init smp_cpus_done(unsigned int max_cpus)
{
prom_cpus_done();
}
/* called from main before smp_init() */
void __init smp_prepare_cpus(unsigned int max_cpus)
{
init_new_context(current, &init_mm);
current_thread_info()->cpu = 0;
smp_tune_scheduling();
plat_prepare_cpus(max_cpus);
#ifndef CONFIG_HOTPLUG_CPU
cpu_present_map = cpu_possible_map;
#endif
}
/* preload SMP state for boot cpu */
void __devinit smp_prepare_boot_cpu(void)
{
/*
* This assumes that bootup is always handled by the processor
* with the logic and physical number 0.
*/
__cpu_number_map[0] = 0;
__cpu_logical_map[0] = 0;
cpu_set(0, phys_cpu_present_map);
cpu_set(0, cpu_online_map);
cpu_set(0, cpu_callin_map);
}
/*
* Called once for each "cpu_possible(cpu)". Needs to spin up the cpu
* and keep control until "cpu_online(cpu)" is set. Note: cpu is
* physical, not logical.
*/
int __devinit __cpu_up(unsigned int cpu)
{
struct task_struct *idle;
/*
* Processor goes to start_secondary(), sets online flag
* The following code is purely to make sure
* Linux can schedule processes on this slave.
*/
idle = fork_idle(cpu);
if (IS_ERR(idle))
panic(KERN_ERR "Fork failed for CPU %d", cpu);
prom_boot_secondary(cpu, idle);
/*
* Trust is futile. We should really have timeouts ...
*/
while (!cpu_isset(cpu, cpu_callin_map))
udelay(100);
cpu_set(cpu, cpu_online_map);
return 0;
}
/* Not really SMP stuff ... */
int setup_profiling_timer(unsigned int multiplier)
{
return 0;
}
static void flush_tlb_all_ipi(void *info)
{
local_flush_tlb_all();
}
void flush_tlb_all(void)
{
on_each_cpu(flush_tlb_all_ipi, 0, 1, 1);
}
static void flush_tlb_mm_ipi(void *mm)
{
local_flush_tlb_mm((struct mm_struct *)mm);
}
/*
* The following tlb flush calls are invoked when old translations are
* being torn down, or pte attributes are changing. For single threaded
* address spaces, a new context is obtained on the current cpu, and tlb
* context on other cpus are invalidated to force a new context allocation
* at switch_mm time, should the mm ever be used on other cpus. For
* multithreaded address spaces, intercpu interrupts have to be sent.
* Another case where intercpu interrupts are required is when the target
* mm might be active on another cpu (eg debuggers doing the flushes on
* behalf of debugees, kswapd stealing pages from another process etc).
* Kanoj 07/00.
*/
void flush_tlb_mm(struct mm_struct *mm)
{
preempt_disable();
if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) {
smp_call_function(flush_tlb_mm_ipi, (void *)mm, 1, 1);
} else {
int i;
for (i = 0; i < num_online_cpus(); i++)
if (smp_processor_id() != i)
cpu_context(i, mm) = 0;
}
local_flush_tlb_mm(mm);
preempt_enable();
}
struct flush_tlb_data {
struct vm_area_struct *vma;
unsigned long addr1;
unsigned long addr2;
};
static void flush_tlb_range_ipi(void *info)
{
struct flush_tlb_data *fd = (struct flush_tlb_data *)info;
local_flush_tlb_range(fd->vma, fd->addr1, fd->addr2);
}
void flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
{
struct mm_struct *mm = vma->vm_mm;
preempt_disable();
if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) {
struct flush_tlb_data fd;
fd.vma = vma;
fd.addr1 = start;
fd.addr2 = end;
smp_call_function(flush_tlb_range_ipi, (void *)&fd, 1, 1);
} else {
int i;
for (i = 0; i < num_online_cpus(); i++)
if (smp_processor_id() != i)
cpu_context(i, mm) = 0;
}
local_flush_tlb_range(vma, start, end);
preempt_enable();
}
static void flush_tlb_kernel_range_ipi(void *info)
{
struct flush_tlb_data *fd = (struct flush_tlb_data *)info;
local_flush_tlb_kernel_range(fd->addr1, fd->addr2);
}
void flush_tlb_kernel_range(unsigned long start, unsigned long end)
{
struct flush_tlb_data fd;
fd.addr1 = start;
fd.addr2 = end;
on_each_cpu(flush_tlb_kernel_range_ipi, (void *)&fd, 1, 1);
}
static void flush_tlb_page_ipi(void *info)
{
struct flush_tlb_data *fd = (struct flush_tlb_data *)info;
local_flush_tlb_page(fd->vma, fd->addr1);
}
void flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
{
preempt_disable();
if ((atomic_read(&vma->vm_mm->mm_users) != 1) || (current->mm != vma->vm_mm)) {
struct flush_tlb_data fd;
fd.vma = vma;
fd.addr1 = page;
smp_call_function(flush_tlb_page_ipi, (void *)&fd, 1, 1);
} else {
int i;
for (i = 0; i < num_online_cpus(); i++)
if (smp_processor_id() != i)
cpu_context(i, vma->vm_mm) = 0;
}
local_flush_tlb_page(vma, page);
preempt_enable();
}
static void flush_tlb_one_ipi(void *info)
{
unsigned long vaddr = (unsigned long) info;
local_flush_tlb_one(vaddr);
}
void flush_tlb_one(unsigned long vaddr)
{
smp_call_function(flush_tlb_one_ipi, (void *) vaddr, 1, 1);
local_flush_tlb_one(vaddr);
}
static DEFINE_PER_CPU(struct cpu, cpu_devices);
static int __init topology_init(void)
{
int cpu;
int ret;
for_each_present_cpu(cpu) {
ret = register_cpu(&per_cpu(cpu_devices, cpu), cpu);
if (ret)
printk(KERN_WARNING "topology_init: register_cpu %d "
"failed (%d)\n", cpu, ret);
}
return 0;
}
subsys_initcall(topology_init);
EXPORT_SYMBOL(flush_tlb_page);
EXPORT_SYMBOL(flush_tlb_one);