kernel-ark/arch/arm/mm/ioremap.c
Russell King 309caa9cc6 ARM: Prohibit ioremap() on kernel managed RAM
ARMv6 and above have a restriction whereby aliasing virtual:physical
mappings must not have differing memory type and sharability
attributes.  Strictly, this covers the memory type (strongly ordered,
device, memory), cache attributes (uncached, write combine, write
through, write back read alloc, write back write alloc) and the
shared bit.

However, using ioremap() and its variants on system RAM results in
mappings which differ in these attributes from the main system RAM
mapping.  Other architectures which similar restrictions approch this
problem in the same way - they do not permit ioremap on main system
RAM.

Make ARM behave in the same way, with a WARN_ON() such that users can
be traced and an alternative approach found.

Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
2010-06-21 21:03:18 +01:00

387 lines
9.7 KiB
C

/*
* linux/arch/arm/mm/ioremap.c
*
* Re-map IO memory to kernel address space so that we can access it.
*
* (C) Copyright 1995 1996 Linus Torvalds
*
* Hacked for ARM by Phil Blundell <philb@gnu.org>
* Hacked to allow all architectures to build, and various cleanups
* by Russell King
*
* This allows a driver to remap an arbitrary region of bus memory into
* virtual space. One should *only* use readl, writel, memcpy_toio and
* so on with such remapped areas.
*
* Because the ARM only has a 32-bit address space we can't address the
* whole of the (physical) PCI space at once. PCI huge-mode addressing
* allows us to circumvent this restriction by splitting PCI space into
* two 2GB chunks and mapping only one at a time into processor memory.
* We use MMU protection domains to trap any attempt to access the bank
* that is not currently mapped. (This isn't fully implemented yet.)
*/
#include <linux/module.h>
#include <linux/errno.h>
#include <linux/mm.h>
#include <linux/vmalloc.h>
#include <linux/io.h>
#include <asm/cputype.h>
#include <asm/cacheflush.h>
#include <asm/mmu_context.h>
#include <asm/pgalloc.h>
#include <asm/tlbflush.h>
#include <asm/sizes.h>
#include <asm/mach/map.h>
#include "mm.h"
/*
* Used by ioremap() and iounmap() code to mark (super)section-mapped
* I/O regions in vm_struct->flags field.
*/
#define VM_ARM_SECTION_MAPPING 0x80000000
static int remap_area_pte(pmd_t *pmd, unsigned long addr, unsigned long end,
unsigned long phys_addr, const struct mem_type *type)
{
pgprot_t prot = __pgprot(type->prot_pte);
pte_t *pte;
pte = pte_alloc_kernel(pmd, addr);
if (!pte)
return -ENOMEM;
do {
if (!pte_none(*pte))
goto bad;
set_pte_ext(pte, pfn_pte(phys_addr >> PAGE_SHIFT, prot), 0);
phys_addr += PAGE_SIZE;
} while (pte++, addr += PAGE_SIZE, addr != end);
return 0;
bad:
printk(KERN_CRIT "remap_area_pte: page already exists\n");
BUG();
}
static inline int remap_area_pmd(pgd_t *pgd, unsigned long addr,
unsigned long end, unsigned long phys_addr,
const struct mem_type *type)
{
unsigned long next;
pmd_t *pmd;
int ret = 0;
pmd = pmd_alloc(&init_mm, pgd, addr);
if (!pmd)
return -ENOMEM;
do {
next = pmd_addr_end(addr, end);
ret = remap_area_pte(pmd, addr, next, phys_addr, type);
if (ret)
return ret;
phys_addr += next - addr;
} while (pmd++, addr = next, addr != end);
return ret;
}
static int remap_area_pages(unsigned long start, unsigned long pfn,
size_t size, const struct mem_type *type)
{
unsigned long addr = start;
unsigned long next, end = start + size;
unsigned long phys_addr = __pfn_to_phys(pfn);
pgd_t *pgd;
int err = 0;
BUG_ON(addr >= end);
pgd = pgd_offset_k(addr);
do {
next = pgd_addr_end(addr, end);
err = remap_area_pmd(pgd, addr, next, phys_addr, type);
if (err)
break;
phys_addr += next - addr;
} while (pgd++, addr = next, addr != end);
return err;
}
int ioremap_page(unsigned long virt, unsigned long phys,
const struct mem_type *mtype)
{
return remap_area_pages(virt, __phys_to_pfn(phys), PAGE_SIZE, mtype);
}
EXPORT_SYMBOL(ioremap_page);
void __check_kvm_seq(struct mm_struct *mm)
{
unsigned int seq;
do {
seq = init_mm.context.kvm_seq;
memcpy(pgd_offset(mm, VMALLOC_START),
pgd_offset_k(VMALLOC_START),
sizeof(pgd_t) * (pgd_index(VMALLOC_END) -
pgd_index(VMALLOC_START)));
mm->context.kvm_seq = seq;
} while (seq != init_mm.context.kvm_seq);
}
#ifndef CONFIG_SMP
/*
* Section support is unsafe on SMP - If you iounmap and ioremap a region,
* the other CPUs will not see this change until their next context switch.
* Meanwhile, (eg) if an interrupt comes in on one of those other CPUs
* which requires the new ioremap'd region to be referenced, the CPU will
* reference the _old_ region.
*
* Note that get_vm_area_caller() allocates a guard 4K page, so we need to
* mask the size back to 1MB aligned or we will overflow in the loop below.
*/
static void unmap_area_sections(unsigned long virt, unsigned long size)
{
unsigned long addr = virt, end = virt + (size & ~(SZ_1M - 1));
pgd_t *pgd;
flush_cache_vunmap(addr, end);
pgd = pgd_offset_k(addr);
do {
pmd_t pmd, *pmdp = pmd_offset(pgd, addr);
pmd = *pmdp;
if (!pmd_none(pmd)) {
/*
* Clear the PMD from the page table, and
* increment the kvm sequence so others
* notice this change.
*
* Note: this is still racy on SMP machines.
*/
pmd_clear(pmdp);
init_mm.context.kvm_seq++;
/*
* Free the page table, if there was one.
*/
if ((pmd_val(pmd) & PMD_TYPE_MASK) == PMD_TYPE_TABLE)
pte_free_kernel(&init_mm, pmd_page_vaddr(pmd));
}
addr += PGDIR_SIZE;
pgd++;
} while (addr < end);
/*
* Ensure that the active_mm is up to date - we want to
* catch any use-after-iounmap cases.
*/
if (current->active_mm->context.kvm_seq != init_mm.context.kvm_seq)
__check_kvm_seq(current->active_mm);
flush_tlb_kernel_range(virt, end);
}
static int
remap_area_sections(unsigned long virt, unsigned long pfn,
size_t size, const struct mem_type *type)
{
unsigned long addr = virt, end = virt + size;
pgd_t *pgd;
/*
* Remove and free any PTE-based mapping, and
* sync the current kernel mapping.
*/
unmap_area_sections(virt, size);
pgd = pgd_offset_k(addr);
do {
pmd_t *pmd = pmd_offset(pgd, addr);
pmd[0] = __pmd(__pfn_to_phys(pfn) | type->prot_sect);
pfn += SZ_1M >> PAGE_SHIFT;
pmd[1] = __pmd(__pfn_to_phys(pfn) | type->prot_sect);
pfn += SZ_1M >> PAGE_SHIFT;
flush_pmd_entry(pmd);
addr += PGDIR_SIZE;
pgd++;
} while (addr < end);
return 0;
}
static int
remap_area_supersections(unsigned long virt, unsigned long pfn,
size_t size, const struct mem_type *type)
{
unsigned long addr = virt, end = virt + size;
pgd_t *pgd;
/*
* Remove and free any PTE-based mapping, and
* sync the current kernel mapping.
*/
unmap_area_sections(virt, size);
pgd = pgd_offset_k(virt);
do {
unsigned long super_pmd_val, i;
super_pmd_val = __pfn_to_phys(pfn) | type->prot_sect |
PMD_SECT_SUPER;
super_pmd_val |= ((pfn >> (32 - PAGE_SHIFT)) & 0xf) << 20;
for (i = 0; i < 8; i++) {
pmd_t *pmd = pmd_offset(pgd, addr);
pmd[0] = __pmd(super_pmd_val);
pmd[1] = __pmd(super_pmd_val);
flush_pmd_entry(pmd);
addr += PGDIR_SIZE;
pgd++;
}
pfn += SUPERSECTION_SIZE >> PAGE_SHIFT;
} while (addr < end);
return 0;
}
#endif
void __iomem * __arm_ioremap_pfn_caller(unsigned long pfn,
unsigned long offset, size_t size, unsigned int mtype, void *caller)
{
const struct mem_type *type;
int err;
unsigned long addr;
struct vm_struct * area;
/*
* High mappings must be supersection aligned
*/
if (pfn >= 0x100000 && (__pfn_to_phys(pfn) & ~SUPERSECTION_MASK))
return NULL;
/*
* Don't allow RAM to be mapped - this causes problems with ARMv6+
*/
if (WARN_ON(pfn_valid(pfn)))
return NULL;
type = get_mem_type(mtype);
if (!type)
return NULL;
/*
* Page align the mapping size, taking account of any offset.
*/
size = PAGE_ALIGN(offset + size);
area = get_vm_area_caller(size, VM_IOREMAP, caller);
if (!area)
return NULL;
addr = (unsigned long)area->addr;
#ifndef CONFIG_SMP
if (DOMAIN_IO == 0 &&
(((cpu_architecture() >= CPU_ARCH_ARMv6) && (get_cr() & CR_XP)) ||
cpu_is_xsc3()) && pfn >= 0x100000 &&
!((__pfn_to_phys(pfn) | size | addr) & ~SUPERSECTION_MASK)) {
area->flags |= VM_ARM_SECTION_MAPPING;
err = remap_area_supersections(addr, pfn, size, type);
} else if (!((__pfn_to_phys(pfn) | size | addr) & ~PMD_MASK)) {
area->flags |= VM_ARM_SECTION_MAPPING;
err = remap_area_sections(addr, pfn, size, type);
} else
#endif
err = remap_area_pages(addr, pfn, size, type);
if (err) {
vunmap((void *)addr);
return NULL;
}
flush_cache_vmap(addr, addr + size);
return (void __iomem *) (offset + addr);
}
void __iomem *__arm_ioremap_caller(unsigned long phys_addr, size_t size,
unsigned int mtype, void *caller)
{
unsigned long last_addr;
unsigned long offset = phys_addr & ~PAGE_MASK;
unsigned long pfn = __phys_to_pfn(phys_addr);
/*
* Don't allow wraparound or zero size
*/
last_addr = phys_addr + size - 1;
if (!size || last_addr < phys_addr)
return NULL;
return __arm_ioremap_pfn_caller(pfn, offset, size, mtype,
caller);
}
/*
* Remap an arbitrary physical address space into the kernel virtual
* address space. Needed when the kernel wants to access high addresses
* directly.
*
* NOTE! We need to allow non-page-aligned mappings too: we will obviously
* have to convert them into an offset in a page-aligned mapping, but the
* caller shouldn't need to know that small detail.
*/
void __iomem *
__arm_ioremap_pfn(unsigned long pfn, unsigned long offset, size_t size,
unsigned int mtype)
{
return __arm_ioremap_pfn_caller(pfn, offset, size, mtype,
__builtin_return_address(0));
}
EXPORT_SYMBOL(__arm_ioremap_pfn);
void __iomem *
__arm_ioremap(unsigned long phys_addr, size_t size, unsigned int mtype)
{
return __arm_ioremap_caller(phys_addr, size, mtype,
__builtin_return_address(0));
}
EXPORT_SYMBOL(__arm_ioremap);
void __iounmap(volatile void __iomem *io_addr)
{
void *addr = (void *)(PAGE_MASK & (unsigned long)io_addr);
#ifndef CONFIG_SMP
struct vm_struct **p, *tmp;
/*
* If this is a section based mapping we need to handle it
* specially as the VM subsystem does not know how to handle
* such a beast. We need the lock here b/c we need to clear
* all the mappings before the area can be reclaimed
* by someone else.
*/
write_lock(&vmlist_lock);
for (p = &vmlist ; (tmp = *p) ; p = &tmp->next) {
if ((tmp->flags & VM_IOREMAP) && (tmp->addr == addr)) {
if (tmp->flags & VM_ARM_SECTION_MAPPING) {
unmap_area_sections((unsigned long)tmp->addr,
tmp->size);
}
break;
}
}
write_unlock(&vmlist_lock);
#endif
vunmap(addr);
}
EXPORT_SYMBOL(__iounmap);