kernel-ark/drivers/input/serio/libps2.c
Tejun Heo 5a0e3ad6af include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h
percpu.h is included by sched.h and module.h and thus ends up being
included when building most .c files.  percpu.h includes slab.h which
in turn includes gfp.h making everything defined by the two files
universally available and complicating inclusion dependencies.

percpu.h -> slab.h dependency is about to be removed.  Prepare for
this change by updating users of gfp and slab facilities include those
headers directly instead of assuming availability.  As this conversion
needs to touch large number of source files, the following script is
used as the basis of conversion.

  http://userweb.kernel.org/~tj/misc/slabh-sweep.py

The script does the followings.

* Scan files for gfp and slab usages and update includes such that
  only the necessary includes are there.  ie. if only gfp is used,
  gfp.h, if slab is used, slab.h.

* When the script inserts a new include, it looks at the include
  blocks and try to put the new include such that its order conforms
  to its surrounding.  It's put in the include block which contains
  core kernel includes, in the same order that the rest are ordered -
  alphabetical, Christmas tree, rev-Xmas-tree or at the end if there
  doesn't seem to be any matching order.

* If the script can't find a place to put a new include (mostly
  because the file doesn't have fitting include block), it prints out
  an error message indicating which .h file needs to be added to the
  file.

The conversion was done in the following steps.

1. The initial automatic conversion of all .c files updated slightly
   over 4000 files, deleting around 700 includes and adding ~480 gfp.h
   and ~3000 slab.h inclusions.  The script emitted errors for ~400
   files.

2. Each error was manually checked.  Some didn't need the inclusion,
   some needed manual addition while adding it to implementation .h or
   embedding .c file was more appropriate for others.  This step added
   inclusions to around 150 files.

3. The script was run again and the output was compared to the edits
   from #2 to make sure no file was left behind.

4. Several build tests were done and a couple of problems were fixed.
   e.g. lib/decompress_*.c used malloc/free() wrappers around slab
   APIs requiring slab.h to be added manually.

5. The script was run on all .h files but without automatically
   editing them as sprinkling gfp.h and slab.h inclusions around .h
   files could easily lead to inclusion dependency hell.  Most gfp.h
   inclusion directives were ignored as stuff from gfp.h was usually
   wildly available and often used in preprocessor macros.  Each
   slab.h inclusion directive was examined and added manually as
   necessary.

6. percpu.h was updated not to include slab.h.

7. Build test were done on the following configurations and failures
   were fixed.  CONFIG_GCOV_KERNEL was turned off for all tests (as my
   distributed build env didn't work with gcov compiles) and a few
   more options had to be turned off depending on archs to make things
   build (like ipr on powerpc/64 which failed due to missing writeq).

   * x86 and x86_64 UP and SMP allmodconfig and a custom test config.
   * powerpc and powerpc64 SMP allmodconfig
   * sparc and sparc64 SMP allmodconfig
   * ia64 SMP allmodconfig
   * s390 SMP allmodconfig
   * alpha SMP allmodconfig
   * um on x86_64 SMP allmodconfig

8. percpu.h modifications were reverted so that it could be applied as
   a separate patch and serve as bisection point.

Given the fact that I had only a couple of failures from tests on step
6, I'm fairly confident about the coverage of this conversion patch.
If there is a breakage, it's likely to be something in one of the arch
headers which should be easily discoverable easily on most builds of
the specific arch.

Signed-off-by: Tejun Heo <tj@kernel.org>
Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-30 22:02:32 +09:00

376 lines
8.4 KiB
C

/*
* PS/2 driver library
*
* Copyright (c) 1999-2002 Vojtech Pavlik
* Copyright (c) 2004 Dmitry Torokhov
*/
/*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 as published by
* the Free Software Foundation.
*/
#include <linux/delay.h>
#include <linux/module.h>
#include <linux/sched.h>
#include <linux/interrupt.h>
#include <linux/input.h>
#include <linux/serio.h>
#include <linux/i8042.h>
#include <linux/init.h>
#include <linux/libps2.h>
#define DRIVER_DESC "PS/2 driver library"
MODULE_AUTHOR("Dmitry Torokhov <dtor@mail.ru>");
MODULE_DESCRIPTION("PS/2 driver library");
MODULE_LICENSE("GPL");
/*
* ps2_sendbyte() sends a byte to the device and waits for acknowledge.
* It doesn't handle retransmission, though it could - because if there
* is a need for retransmissions device has to be replaced anyway.
*
* ps2_sendbyte() can only be called from a process context.
*/
int ps2_sendbyte(struct ps2dev *ps2dev, unsigned char byte, int timeout)
{
serio_pause_rx(ps2dev->serio);
ps2dev->nak = 1;
ps2dev->flags |= PS2_FLAG_ACK;
serio_continue_rx(ps2dev->serio);
if (serio_write(ps2dev->serio, byte) == 0)
wait_event_timeout(ps2dev->wait,
!(ps2dev->flags & PS2_FLAG_ACK),
msecs_to_jiffies(timeout));
serio_pause_rx(ps2dev->serio);
ps2dev->flags &= ~PS2_FLAG_ACK;
serio_continue_rx(ps2dev->serio);
return -ps2dev->nak;
}
EXPORT_SYMBOL(ps2_sendbyte);
void ps2_begin_command(struct ps2dev *ps2dev)
{
mutex_lock(&ps2dev->cmd_mutex);
if (i8042_check_port_owner(ps2dev->serio))
i8042_lock_chip();
}
EXPORT_SYMBOL(ps2_begin_command);
void ps2_end_command(struct ps2dev *ps2dev)
{
if (i8042_check_port_owner(ps2dev->serio))
i8042_unlock_chip();
mutex_unlock(&ps2dev->cmd_mutex);
}
EXPORT_SYMBOL(ps2_end_command);
/*
* ps2_drain() waits for device to transmit requested number of bytes
* and discards them.
*/
void ps2_drain(struct ps2dev *ps2dev, int maxbytes, int timeout)
{
if (maxbytes > sizeof(ps2dev->cmdbuf)) {
WARN_ON(1);
maxbytes = sizeof(ps2dev->cmdbuf);
}
ps2_begin_command(ps2dev);
serio_pause_rx(ps2dev->serio);
ps2dev->flags = PS2_FLAG_CMD;
ps2dev->cmdcnt = maxbytes;
serio_continue_rx(ps2dev->serio);
wait_event_timeout(ps2dev->wait,
!(ps2dev->flags & PS2_FLAG_CMD),
msecs_to_jiffies(timeout));
ps2_end_command(ps2dev);
}
EXPORT_SYMBOL(ps2_drain);
/*
* ps2_is_keyboard_id() checks received ID byte against the list of
* known keyboard IDs.
*/
int ps2_is_keyboard_id(char id_byte)
{
static const char keyboard_ids[] = {
0xab, /* Regular keyboards */
0xac, /* NCD Sun keyboard */
0x2b, /* Trust keyboard, translated */
0x5d, /* Trust keyboard */
0x60, /* NMB SGI keyboard, translated */
0x47, /* NMB SGI keyboard */
};
return memchr(keyboard_ids, id_byte, sizeof(keyboard_ids)) != NULL;
}
EXPORT_SYMBOL(ps2_is_keyboard_id);
/*
* ps2_adjust_timeout() is called after receiving 1st byte of command
* response and tries to reduce remaining timeout to speed up command
* completion.
*/
static int ps2_adjust_timeout(struct ps2dev *ps2dev, int command, int timeout)
{
switch (command) {
case PS2_CMD_RESET_BAT:
/*
* Device has sent the first response byte after
* reset command, reset is thus done, so we can
* shorten the timeout.
* The next byte will come soon (keyboard) or not
* at all (mouse).
*/
if (timeout > msecs_to_jiffies(100))
timeout = msecs_to_jiffies(100);
break;
case PS2_CMD_GETID:
/*
* Microsoft Natural Elite keyboard responds to
* the GET ID command as it were a mouse, with
* a single byte. Fail the command so atkbd will
* use alternative probe to detect it.
*/
if (ps2dev->cmdbuf[1] == 0xaa) {
serio_pause_rx(ps2dev->serio);
ps2dev->flags = 0;
serio_continue_rx(ps2dev->serio);
timeout = 0;
}
/*
* If device behind the port is not a keyboard there
* won't be 2nd byte of ID response.
*/
if (!ps2_is_keyboard_id(ps2dev->cmdbuf[1])) {
serio_pause_rx(ps2dev->serio);
ps2dev->flags = ps2dev->cmdcnt = 0;
serio_continue_rx(ps2dev->serio);
timeout = 0;
}
break;
default:
break;
}
return timeout;
}
/*
* ps2_command() sends a command and its parameters to the mouse,
* then waits for the response and puts it in the param array.
*
* ps2_command() can only be called from a process context
*/
int __ps2_command(struct ps2dev *ps2dev, unsigned char *param, int command)
{
int timeout;
int send = (command >> 12) & 0xf;
int receive = (command >> 8) & 0xf;
int rc = -1;
int i;
if (receive > sizeof(ps2dev->cmdbuf)) {
WARN_ON(1);
return -1;
}
if (send && !param) {
WARN_ON(1);
return -1;
}
serio_pause_rx(ps2dev->serio);
ps2dev->flags = command == PS2_CMD_GETID ? PS2_FLAG_WAITID : 0;
ps2dev->cmdcnt = receive;
if (receive && param)
for (i = 0; i < receive; i++)
ps2dev->cmdbuf[(receive - 1) - i] = param[i];
serio_continue_rx(ps2dev->serio);
/*
* Some devices (Synaptics) peform the reset before
* ACKing the reset command, and so it can take a long
* time before the ACK arrrives.
*/
if (ps2_sendbyte(ps2dev, command & 0xff,
command == PS2_CMD_RESET_BAT ? 1000 : 200))
goto out;
for (i = 0; i < send; i++)
if (ps2_sendbyte(ps2dev, param[i], 200))
goto out;
/*
* The reset command takes a long time to execute.
*/
timeout = msecs_to_jiffies(command == PS2_CMD_RESET_BAT ? 4000 : 500);
timeout = wait_event_timeout(ps2dev->wait,
!(ps2dev->flags & PS2_FLAG_CMD1), timeout);
if (ps2dev->cmdcnt && !(ps2dev->flags & PS2_FLAG_CMD1)) {
timeout = ps2_adjust_timeout(ps2dev, command, timeout);
wait_event_timeout(ps2dev->wait,
!(ps2dev->flags & PS2_FLAG_CMD), timeout);
}
if (param)
for (i = 0; i < receive; i++)
param[i] = ps2dev->cmdbuf[(receive - 1) - i];
if (ps2dev->cmdcnt && (command != PS2_CMD_RESET_BAT || ps2dev->cmdcnt != 1))
goto out;
rc = 0;
out:
serio_pause_rx(ps2dev->serio);
ps2dev->flags = 0;
serio_continue_rx(ps2dev->serio);
return rc;
}
EXPORT_SYMBOL(__ps2_command);
int ps2_command(struct ps2dev *ps2dev, unsigned char *param, int command)
{
int rc;
ps2_begin_command(ps2dev);
rc = __ps2_command(ps2dev, param, command);
ps2_end_command(ps2dev);
return rc;
}
EXPORT_SYMBOL(ps2_command);
/*
* ps2_init() initializes ps2dev structure
*/
void ps2_init(struct ps2dev *ps2dev, struct serio *serio)
{
mutex_init(&ps2dev->cmd_mutex);
lockdep_set_subclass(&ps2dev->cmd_mutex, serio->depth);
init_waitqueue_head(&ps2dev->wait);
ps2dev->serio = serio;
}
EXPORT_SYMBOL(ps2_init);
/*
* ps2_handle_ack() is supposed to be used in interrupt handler
* to properly process ACK/NAK of a command from a PS/2 device.
*/
int ps2_handle_ack(struct ps2dev *ps2dev, unsigned char data)
{
switch (data) {
case PS2_RET_ACK:
ps2dev->nak = 0;
break;
case PS2_RET_NAK:
ps2dev->flags |= PS2_FLAG_NAK;
ps2dev->nak = PS2_RET_NAK;
break;
case PS2_RET_ERR:
if (ps2dev->flags & PS2_FLAG_NAK) {
ps2dev->flags &= ~PS2_FLAG_NAK;
ps2dev->nak = PS2_RET_ERR;
break;
}
/*
* Workaround for mice which don't ACK the Get ID command.
* These are valid mouse IDs that we recognize.
*/
case 0x00:
case 0x03:
case 0x04:
if (ps2dev->flags & PS2_FLAG_WAITID) {
ps2dev->nak = 0;
break;
}
/* Fall through */
default:
return 0;
}
if (!ps2dev->nak) {
ps2dev->flags &= ~PS2_FLAG_NAK;
if (ps2dev->cmdcnt)
ps2dev->flags |= PS2_FLAG_CMD | PS2_FLAG_CMD1;
}
ps2dev->flags &= ~PS2_FLAG_ACK;
wake_up(&ps2dev->wait);
if (data != PS2_RET_ACK)
ps2_handle_response(ps2dev, data);
return 1;
}
EXPORT_SYMBOL(ps2_handle_ack);
/*
* ps2_handle_response() is supposed to be used in interrupt handler
* to properly store device's response to a command and notify process
* waiting for completion of the command.
*/
int ps2_handle_response(struct ps2dev *ps2dev, unsigned char data)
{
if (ps2dev->cmdcnt)
ps2dev->cmdbuf[--ps2dev->cmdcnt] = data;
if (ps2dev->flags & PS2_FLAG_CMD1) {
ps2dev->flags &= ~PS2_FLAG_CMD1;
if (ps2dev->cmdcnt)
wake_up(&ps2dev->wait);
}
if (!ps2dev->cmdcnt) {
ps2dev->flags &= ~PS2_FLAG_CMD;
wake_up(&ps2dev->wait);
}
return 1;
}
EXPORT_SYMBOL(ps2_handle_response);
void ps2_cmd_aborted(struct ps2dev *ps2dev)
{
if (ps2dev->flags & PS2_FLAG_ACK)
ps2dev->nak = 1;
if (ps2dev->flags & (PS2_FLAG_ACK | PS2_FLAG_CMD))
wake_up(&ps2dev->wait);
/* reset all flags except last nack */
ps2dev->flags &= PS2_FLAG_NAK;
}
EXPORT_SYMBOL(ps2_cmd_aborted);