kernel-ark/drivers/video/atmel_lcdfb.c
Ben Nizette 97b9a5a28b atmel-lcdc: fix pixclock upper bound detection
AFAICT the code which checks that the requested pixclock value is within
bounds is incorrect.  It ensures that the lcdc core clock is at least
(bytes per pixel) times higher than the pixel clock rather than just
greater than or equal to.

There are tighter restrictions on the pixclock value as a function of bus
width for STN panels but even then it isn't a simple relationship as
currently checked for.  IMO either something like the below patch should
be applied or else more detailed checking logic should be implemented
which takes in to account the panel type as well.

Signed-off-by: Ben Nizette <bn@niasdigital.com>
Acked-by: Nicolas Ferre <nicolas.ferre@atmel.com>
Cc: Haavard Skinnemoen <haavard.skinnemoen@atmel.com>
Cc: Daniel Glockner <dg@emlix.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-06-16 19:47:58 -07:00

1106 lines
30 KiB
C

/*
* Driver for AT91/AT32 LCD Controller
*
* Copyright (C) 2007 Atmel Corporation
*
* This file is subject to the terms and conditions of the GNU General Public
* License. See the file COPYING in the main directory of this archive for
* more details.
*/
#include <linux/kernel.h>
#include <linux/platform_device.h>
#include <linux/dma-mapping.h>
#include <linux/interrupt.h>
#include <linux/clk.h>
#include <linux/fb.h>
#include <linux/init.h>
#include <linux/delay.h>
#include <linux/backlight.h>
#include <mach/board.h>
#include <mach/cpu.h>
#include <mach/gpio.h>
#include <video/atmel_lcdc.h>
#define lcdc_readl(sinfo, reg) __raw_readl((sinfo)->mmio+(reg))
#define lcdc_writel(sinfo, reg, val) __raw_writel((val), (sinfo)->mmio+(reg))
/* configurable parameters */
#define ATMEL_LCDC_CVAL_DEFAULT 0xc8
#define ATMEL_LCDC_DMA_BURST_LEN 8 /* words */
#define ATMEL_LCDC_FIFO_SIZE 512 /* words */
#if defined(CONFIG_ARCH_AT91)
#define ATMEL_LCDFB_FBINFO_DEFAULT (FBINFO_DEFAULT \
| FBINFO_PARTIAL_PAN_OK \
| FBINFO_HWACCEL_YPAN)
static inline void atmel_lcdfb_update_dma2d(struct atmel_lcdfb_info *sinfo,
struct fb_var_screeninfo *var)
{
}
#elif defined(CONFIG_AVR32)
#define ATMEL_LCDFB_FBINFO_DEFAULT (FBINFO_DEFAULT \
| FBINFO_PARTIAL_PAN_OK \
| FBINFO_HWACCEL_XPAN \
| FBINFO_HWACCEL_YPAN)
static void atmel_lcdfb_update_dma2d(struct atmel_lcdfb_info *sinfo,
struct fb_var_screeninfo *var)
{
u32 dma2dcfg;
u32 pixeloff;
pixeloff = (var->xoffset * var->bits_per_pixel) & 0x1f;
dma2dcfg = ((var->xres_virtual - var->xres) * var->bits_per_pixel) / 8;
dma2dcfg |= pixeloff << ATMEL_LCDC_PIXELOFF_OFFSET;
lcdc_writel(sinfo, ATMEL_LCDC_DMA2DCFG, dma2dcfg);
/* Update configuration */
lcdc_writel(sinfo, ATMEL_LCDC_DMACON,
lcdc_readl(sinfo, ATMEL_LCDC_DMACON)
| ATMEL_LCDC_DMAUPDT);
}
#endif
static const u32 contrast_ctr = ATMEL_LCDC_PS_DIV8
| ATMEL_LCDC_POL_POSITIVE
| ATMEL_LCDC_ENA_PWMENABLE;
#ifdef CONFIG_BACKLIGHT_ATMEL_LCDC
/* some bl->props field just changed */
static int atmel_bl_update_status(struct backlight_device *bl)
{
struct atmel_lcdfb_info *sinfo = bl_get_data(bl);
int power = sinfo->bl_power;
int brightness = bl->props.brightness;
/* REVISIT there may be a meaningful difference between
* fb_blank and power ... there seem to be some cases
* this doesn't handle correctly.
*/
if (bl->props.fb_blank != sinfo->bl_power)
power = bl->props.fb_blank;
else if (bl->props.power != sinfo->bl_power)
power = bl->props.power;
if (brightness < 0 && power == FB_BLANK_UNBLANK)
brightness = lcdc_readl(sinfo, ATMEL_LCDC_CONTRAST_VAL);
else if (power != FB_BLANK_UNBLANK)
brightness = 0;
lcdc_writel(sinfo, ATMEL_LCDC_CONTRAST_VAL, brightness);
lcdc_writel(sinfo, ATMEL_LCDC_CONTRAST_CTR,
brightness ? contrast_ctr : 0);
bl->props.fb_blank = bl->props.power = sinfo->bl_power = power;
return 0;
}
static int atmel_bl_get_brightness(struct backlight_device *bl)
{
struct atmel_lcdfb_info *sinfo = bl_get_data(bl);
return lcdc_readl(sinfo, ATMEL_LCDC_CONTRAST_VAL);
}
static struct backlight_ops atmel_lcdc_bl_ops = {
.update_status = atmel_bl_update_status,
.get_brightness = atmel_bl_get_brightness,
};
static void init_backlight(struct atmel_lcdfb_info *sinfo)
{
struct backlight_device *bl;
sinfo->bl_power = FB_BLANK_UNBLANK;
if (sinfo->backlight)
return;
bl = backlight_device_register("backlight", &sinfo->pdev->dev,
sinfo, &atmel_lcdc_bl_ops);
if (IS_ERR(bl)) {
dev_err(&sinfo->pdev->dev, "error %ld on backlight register\n",
PTR_ERR(bl));
return;
}
sinfo->backlight = bl;
bl->props.power = FB_BLANK_UNBLANK;
bl->props.fb_blank = FB_BLANK_UNBLANK;
bl->props.max_brightness = 0xff;
bl->props.brightness = atmel_bl_get_brightness(bl);
}
static void exit_backlight(struct atmel_lcdfb_info *sinfo)
{
if (sinfo->backlight)
backlight_device_unregister(sinfo->backlight);
}
#else
static void init_backlight(struct atmel_lcdfb_info *sinfo)
{
dev_warn(&sinfo->pdev->dev, "backlight control is not available\n");
}
static void exit_backlight(struct atmel_lcdfb_info *sinfo)
{
}
#endif
static void init_contrast(struct atmel_lcdfb_info *sinfo)
{
/* have some default contrast/backlight settings */
lcdc_writel(sinfo, ATMEL_LCDC_CONTRAST_CTR, contrast_ctr);
lcdc_writel(sinfo, ATMEL_LCDC_CONTRAST_VAL, ATMEL_LCDC_CVAL_DEFAULT);
if (sinfo->lcdcon_is_backlight)
init_backlight(sinfo);
}
static struct fb_fix_screeninfo atmel_lcdfb_fix __initdata = {
.type = FB_TYPE_PACKED_PIXELS,
.visual = FB_VISUAL_TRUECOLOR,
.xpanstep = 0,
.ypanstep = 1,
.ywrapstep = 0,
.accel = FB_ACCEL_NONE,
};
static unsigned long compute_hozval(unsigned long xres, unsigned long lcdcon2)
{
unsigned long value;
if (!(cpu_is_at91sam9261() || cpu_is_at32ap7000()))
return xres;
value = xres;
if ((lcdcon2 & ATMEL_LCDC_DISTYPE) != ATMEL_LCDC_DISTYPE_TFT) {
/* STN display */
if ((lcdcon2 & ATMEL_LCDC_DISTYPE) == ATMEL_LCDC_DISTYPE_STNCOLOR) {
value *= 3;
}
if ( (lcdcon2 & ATMEL_LCDC_IFWIDTH) == ATMEL_LCDC_IFWIDTH_4
|| ( (lcdcon2 & ATMEL_LCDC_IFWIDTH) == ATMEL_LCDC_IFWIDTH_8
&& (lcdcon2 & ATMEL_LCDC_SCANMOD) == ATMEL_LCDC_SCANMOD_DUAL ))
value = DIV_ROUND_UP(value, 4);
else
value = DIV_ROUND_UP(value, 8);
}
return value;
}
static void atmel_lcdfb_stop_nowait(struct atmel_lcdfb_info *sinfo)
{
/* Turn off the LCD controller and the DMA controller */
lcdc_writel(sinfo, ATMEL_LCDC_PWRCON,
sinfo->guard_time << ATMEL_LCDC_GUARDT_OFFSET);
/* Wait for the LCDC core to become idle */
while (lcdc_readl(sinfo, ATMEL_LCDC_PWRCON) & ATMEL_LCDC_BUSY)
msleep(10);
lcdc_writel(sinfo, ATMEL_LCDC_DMACON, 0);
}
static void atmel_lcdfb_stop(struct atmel_lcdfb_info *sinfo)
{
atmel_lcdfb_stop_nowait(sinfo);
/* Wait for DMA engine to become idle... */
while (lcdc_readl(sinfo, ATMEL_LCDC_DMACON) & ATMEL_LCDC_DMABUSY)
msleep(10);
}
static void atmel_lcdfb_start(struct atmel_lcdfb_info *sinfo)
{
lcdc_writel(sinfo, ATMEL_LCDC_DMACON, sinfo->default_dmacon);
lcdc_writel(sinfo, ATMEL_LCDC_PWRCON,
(sinfo->guard_time << ATMEL_LCDC_GUARDT_OFFSET)
| ATMEL_LCDC_PWR);
}
static void atmel_lcdfb_update_dma(struct fb_info *info,
struct fb_var_screeninfo *var)
{
struct atmel_lcdfb_info *sinfo = info->par;
struct fb_fix_screeninfo *fix = &info->fix;
unsigned long dma_addr;
dma_addr = (fix->smem_start + var->yoffset * fix->line_length
+ var->xoffset * var->bits_per_pixel / 8);
dma_addr &= ~3UL;
/* Set framebuffer DMA base address and pixel offset */
lcdc_writel(sinfo, ATMEL_LCDC_DMABADDR1, dma_addr);
atmel_lcdfb_update_dma2d(sinfo, var);
}
static inline void atmel_lcdfb_free_video_memory(struct atmel_lcdfb_info *sinfo)
{
struct fb_info *info = sinfo->info;
dma_free_writecombine(info->device, info->fix.smem_len,
info->screen_base, info->fix.smem_start);
}
/**
* atmel_lcdfb_alloc_video_memory - Allocate framebuffer memory
* @sinfo: the frame buffer to allocate memory for
*/
static int atmel_lcdfb_alloc_video_memory(struct atmel_lcdfb_info *sinfo)
{
struct fb_info *info = sinfo->info;
struct fb_var_screeninfo *var = &info->var;
unsigned int smem_len;
smem_len = (var->xres_virtual * var->yres_virtual
* ((var->bits_per_pixel + 7) / 8));
info->fix.smem_len = max(smem_len, sinfo->smem_len);
info->screen_base = dma_alloc_writecombine(info->device, info->fix.smem_len,
(dma_addr_t *)&info->fix.smem_start, GFP_KERNEL);
if (!info->screen_base) {
return -ENOMEM;
}
memset(info->screen_base, 0, info->fix.smem_len);
return 0;
}
static const struct fb_videomode *atmel_lcdfb_choose_mode(struct fb_var_screeninfo *var,
struct fb_info *info)
{
struct fb_videomode varfbmode;
const struct fb_videomode *fbmode = NULL;
fb_var_to_videomode(&varfbmode, var);
fbmode = fb_find_nearest_mode(&varfbmode, &info->modelist);
if (fbmode)
fb_videomode_to_var(var, fbmode);
return fbmode;
}
/**
* atmel_lcdfb_check_var - Validates a var passed in.
* @var: frame buffer variable screen structure
* @info: frame buffer structure that represents a single frame buffer
*
* Checks to see if the hardware supports the state requested by
* var passed in. This function does not alter the hardware
* state!!! This means the data stored in struct fb_info and
* struct atmel_lcdfb_info do not change. This includes the var
* inside of struct fb_info. Do NOT change these. This function
* can be called on its own if we intent to only test a mode and
* not actually set it. The stuff in modedb.c is a example of
* this. If the var passed in is slightly off by what the
* hardware can support then we alter the var PASSED in to what
* we can do. If the hardware doesn't support mode change a
* -EINVAL will be returned by the upper layers. You don't need
* to implement this function then. If you hardware doesn't
* support changing the resolution then this function is not
* needed. In this case the driver would just provide a var that
* represents the static state the screen is in.
*
* Returns negative errno on error, or zero on success.
*/
static int atmel_lcdfb_check_var(struct fb_var_screeninfo *var,
struct fb_info *info)
{
struct device *dev = info->device;
struct atmel_lcdfb_info *sinfo = info->par;
unsigned long clk_value_khz;
clk_value_khz = clk_get_rate(sinfo->lcdc_clk) / 1000;
dev_dbg(dev, "%s:\n", __func__);
if (!(var->pixclock && var->bits_per_pixel)) {
/* choose a suitable mode if possible */
if (!atmel_lcdfb_choose_mode(var, info)) {
dev_err(dev, "needed value not specified\n");
return -EINVAL;
}
}
dev_dbg(dev, " resolution: %ux%u\n", var->xres, var->yres);
dev_dbg(dev, " pixclk: %lu KHz\n", PICOS2KHZ(var->pixclock));
dev_dbg(dev, " bpp: %u\n", var->bits_per_pixel);
dev_dbg(dev, " clk: %lu KHz\n", clk_value_khz);
if (PICOS2KHZ(var->pixclock) > clk_value_khz) {
dev_err(dev, "%lu KHz pixel clock is too fast\n", PICOS2KHZ(var->pixclock));
return -EINVAL;
}
/* Do not allow to have real resoulution larger than virtual */
if (var->xres > var->xres_virtual)
var->xres_virtual = var->xres;
if (var->yres > var->yres_virtual)
var->yres_virtual = var->yres;
/* Force same alignment for each line */
var->xres = (var->xres + 3) & ~3UL;
var->xres_virtual = (var->xres_virtual + 3) & ~3UL;
var->red.msb_right = var->green.msb_right = var->blue.msb_right = 0;
var->transp.msb_right = 0;
var->transp.offset = var->transp.length = 0;
var->xoffset = var->yoffset = 0;
if (info->fix.smem_len) {
unsigned int smem_len = (var->xres_virtual * var->yres_virtual
* ((var->bits_per_pixel + 7) / 8));
if (smem_len > info->fix.smem_len)
return -EINVAL;
}
/* Saturate vertical and horizontal timings at maximum values */
var->vsync_len = min_t(u32, var->vsync_len,
(ATMEL_LCDC_VPW >> ATMEL_LCDC_VPW_OFFSET) + 1);
var->upper_margin = min_t(u32, var->upper_margin,
ATMEL_LCDC_VBP >> ATMEL_LCDC_VBP_OFFSET);
var->lower_margin = min_t(u32, var->lower_margin,
ATMEL_LCDC_VFP);
var->right_margin = min_t(u32, var->right_margin,
(ATMEL_LCDC_HFP >> ATMEL_LCDC_HFP_OFFSET) + 1);
var->hsync_len = min_t(u32, var->hsync_len,
(ATMEL_LCDC_HPW >> ATMEL_LCDC_HPW_OFFSET) + 1);
var->left_margin = min_t(u32, var->left_margin,
ATMEL_LCDC_HBP + 1);
/* Some parameters can't be zero */
var->vsync_len = max_t(u32, var->vsync_len, 1);
var->right_margin = max_t(u32, var->right_margin, 1);
var->hsync_len = max_t(u32, var->hsync_len, 1);
var->left_margin = max_t(u32, var->left_margin, 1);
switch (var->bits_per_pixel) {
case 1:
case 2:
case 4:
case 8:
var->red.offset = var->green.offset = var->blue.offset = 0;
var->red.length = var->green.length = var->blue.length
= var->bits_per_pixel;
break;
case 15:
case 16:
if (sinfo->lcd_wiring_mode == ATMEL_LCDC_WIRING_RGB) {
/* RGB:565 mode */
var->red.offset = 11;
var->blue.offset = 0;
var->green.length = 6;
} else if (sinfo->lcd_wiring_mode == ATMEL_LCDC_WIRING_RGB555) {
var->red.offset = 10;
var->blue.offset = 0;
var->green.length = 5;
} else {
/* BGR:555 mode */
var->red.offset = 0;
var->blue.offset = 10;
var->green.length = 5;
}
var->green.offset = 5;
var->red.length = var->blue.length = 5;
break;
case 32:
var->transp.offset = 24;
var->transp.length = 8;
/* fall through */
case 24:
if (sinfo->lcd_wiring_mode == ATMEL_LCDC_WIRING_RGB) {
/* RGB:888 mode */
var->red.offset = 16;
var->blue.offset = 0;
} else {
/* BGR:888 mode */
var->red.offset = 0;
var->blue.offset = 16;
}
var->green.offset = 8;
var->red.length = var->green.length = var->blue.length = 8;
break;
default:
dev_err(dev, "color depth %d not supported\n",
var->bits_per_pixel);
return -EINVAL;
}
return 0;
}
/*
* LCD reset sequence
*/
static void atmel_lcdfb_reset(struct atmel_lcdfb_info *sinfo)
{
might_sleep();
atmel_lcdfb_stop(sinfo);
atmel_lcdfb_start(sinfo);
}
/**
* atmel_lcdfb_set_par - Alters the hardware state.
* @info: frame buffer structure that represents a single frame buffer
*
* Using the fb_var_screeninfo in fb_info we set the resolution
* of the this particular framebuffer. This function alters the
* par AND the fb_fix_screeninfo stored in fb_info. It doesn't
* not alter var in fb_info since we are using that data. This
* means we depend on the data in var inside fb_info to be
* supported by the hardware. atmel_lcdfb_check_var is always called
* before atmel_lcdfb_set_par to ensure this. Again if you can't
* change the resolution you don't need this function.
*
*/
static int atmel_lcdfb_set_par(struct fb_info *info)
{
struct atmel_lcdfb_info *sinfo = info->par;
unsigned long hozval_linesz;
unsigned long value;
unsigned long clk_value_khz;
unsigned long bits_per_line;
might_sleep();
dev_dbg(info->device, "%s:\n", __func__);
dev_dbg(info->device, " * resolution: %ux%u (%ux%u virtual)\n",
info->var.xres, info->var.yres,
info->var.xres_virtual, info->var.yres_virtual);
atmel_lcdfb_stop_nowait(sinfo);
if (info->var.bits_per_pixel == 1)
info->fix.visual = FB_VISUAL_MONO01;
else if (info->var.bits_per_pixel <= 8)
info->fix.visual = FB_VISUAL_PSEUDOCOLOR;
else
info->fix.visual = FB_VISUAL_TRUECOLOR;
bits_per_line = info->var.xres_virtual * info->var.bits_per_pixel;
info->fix.line_length = DIV_ROUND_UP(bits_per_line, 8);
/* Re-initialize the DMA engine... */
dev_dbg(info->device, " * update DMA engine\n");
atmel_lcdfb_update_dma(info, &info->var);
/* ...set frame size and burst length = 8 words (?) */
value = (info->var.yres * info->var.xres * info->var.bits_per_pixel) / 32;
value |= ((ATMEL_LCDC_DMA_BURST_LEN - 1) << ATMEL_LCDC_BLENGTH_OFFSET);
lcdc_writel(sinfo, ATMEL_LCDC_DMAFRMCFG, value);
/* Now, the LCDC core... */
/* Set pixel clock */
clk_value_khz = clk_get_rate(sinfo->lcdc_clk) / 1000;
value = DIV_ROUND_UP(clk_value_khz, PICOS2KHZ(info->var.pixclock));
if (value < 2) {
dev_notice(info->device, "Bypassing pixel clock divider\n");
lcdc_writel(sinfo, ATMEL_LCDC_LCDCON1, ATMEL_LCDC_BYPASS);
} else {
value = (value / 2) - 1;
dev_dbg(info->device, " * programming CLKVAL = 0x%08lx\n",
value);
lcdc_writel(sinfo, ATMEL_LCDC_LCDCON1,
value << ATMEL_LCDC_CLKVAL_OFFSET);
info->var.pixclock = KHZ2PICOS(clk_value_khz / (2 * (value + 1)));
dev_dbg(info->device, " updated pixclk: %lu KHz\n",
PICOS2KHZ(info->var.pixclock));
}
/* Initialize control register 2 */
value = sinfo->default_lcdcon2;
if (!(info->var.sync & FB_SYNC_HOR_HIGH_ACT))
value |= ATMEL_LCDC_INVLINE_INVERTED;
if (!(info->var.sync & FB_SYNC_VERT_HIGH_ACT))
value |= ATMEL_LCDC_INVFRAME_INVERTED;
switch (info->var.bits_per_pixel) {
case 1: value |= ATMEL_LCDC_PIXELSIZE_1; break;
case 2: value |= ATMEL_LCDC_PIXELSIZE_2; break;
case 4: value |= ATMEL_LCDC_PIXELSIZE_4; break;
case 8: value |= ATMEL_LCDC_PIXELSIZE_8; break;
case 15: /* fall through */
case 16: value |= ATMEL_LCDC_PIXELSIZE_16; break;
case 24: value |= ATMEL_LCDC_PIXELSIZE_24; break;
case 32: value |= ATMEL_LCDC_PIXELSIZE_32; break;
default: BUG(); break;
}
dev_dbg(info->device, " * LCDCON2 = %08lx\n", value);
lcdc_writel(sinfo, ATMEL_LCDC_LCDCON2, value);
/* Vertical timing */
value = (info->var.vsync_len - 1) << ATMEL_LCDC_VPW_OFFSET;
value |= info->var.upper_margin << ATMEL_LCDC_VBP_OFFSET;
value |= info->var.lower_margin;
dev_dbg(info->device, " * LCDTIM1 = %08lx\n", value);
lcdc_writel(sinfo, ATMEL_LCDC_TIM1, value);
/* Horizontal timing */
value = (info->var.right_margin - 1) << ATMEL_LCDC_HFP_OFFSET;
value |= (info->var.hsync_len - 1) << ATMEL_LCDC_HPW_OFFSET;
value |= (info->var.left_margin - 1);
dev_dbg(info->device, " * LCDTIM2 = %08lx\n", value);
lcdc_writel(sinfo, ATMEL_LCDC_TIM2, value);
/* Horizontal value (aka line size) */
hozval_linesz = compute_hozval(info->var.xres,
lcdc_readl(sinfo, ATMEL_LCDC_LCDCON2));
/* Display size */
value = (hozval_linesz - 1) << ATMEL_LCDC_HOZVAL_OFFSET;
value |= info->var.yres - 1;
dev_dbg(info->device, " * LCDFRMCFG = %08lx\n", value);
lcdc_writel(sinfo, ATMEL_LCDC_LCDFRMCFG, value);
/* FIFO Threshold: Use formula from data sheet */
value = ATMEL_LCDC_FIFO_SIZE - (2 * ATMEL_LCDC_DMA_BURST_LEN + 3);
lcdc_writel(sinfo, ATMEL_LCDC_FIFO, value);
/* Toggle LCD_MODE every frame */
lcdc_writel(sinfo, ATMEL_LCDC_MVAL, 0);
/* Disable all interrupts */
lcdc_writel(sinfo, ATMEL_LCDC_IDR, ~0UL);
/* Enable FIFO & DMA errors */
lcdc_writel(sinfo, ATMEL_LCDC_IER, ATMEL_LCDC_UFLWI | ATMEL_LCDC_OWRI | ATMEL_LCDC_MERI);
/* ...wait for DMA engine to become idle... */
while (lcdc_readl(sinfo, ATMEL_LCDC_DMACON) & ATMEL_LCDC_DMABUSY)
msleep(10);
atmel_lcdfb_start(sinfo);
dev_dbg(info->device, " * DONE\n");
return 0;
}
static inline unsigned int chan_to_field(unsigned int chan, const struct fb_bitfield *bf)
{
chan &= 0xffff;
chan >>= 16 - bf->length;
return chan << bf->offset;
}
/**
* atmel_lcdfb_setcolreg - Optional function. Sets a color register.
* @regno: Which register in the CLUT we are programming
* @red: The red value which can be up to 16 bits wide
* @green: The green value which can be up to 16 bits wide
* @blue: The blue value which can be up to 16 bits wide.
* @transp: If supported the alpha value which can be up to 16 bits wide.
* @info: frame buffer info structure
*
* Set a single color register. The values supplied have a 16 bit
* magnitude which needs to be scaled in this function for the hardware.
* Things to take into consideration are how many color registers, if
* any, are supported with the current color visual. With truecolor mode
* no color palettes are supported. Here a psuedo palette is created
* which we store the value in pseudo_palette in struct fb_info. For
* pseudocolor mode we have a limited color palette. To deal with this
* we can program what color is displayed for a particular pixel value.
* DirectColor is similar in that we can program each color field. If
* we have a static colormap we don't need to implement this function.
*
* Returns negative errno on error, or zero on success. In an
* ideal world, this would have been the case, but as it turns
* out, the other drivers return 1 on failure, so that's what
* we're going to do.
*/
static int atmel_lcdfb_setcolreg(unsigned int regno, unsigned int red,
unsigned int green, unsigned int blue,
unsigned int transp, struct fb_info *info)
{
struct atmel_lcdfb_info *sinfo = info->par;
unsigned int val;
u32 *pal;
int ret = 1;
if (info->var.grayscale)
red = green = blue = (19595 * red + 38470 * green
+ 7471 * blue) >> 16;
switch (info->fix.visual) {
case FB_VISUAL_TRUECOLOR:
if (regno < 16) {
pal = info->pseudo_palette;
val = chan_to_field(red, &info->var.red);
val |= chan_to_field(green, &info->var.green);
val |= chan_to_field(blue, &info->var.blue);
pal[regno] = val;
ret = 0;
}
break;
case FB_VISUAL_PSEUDOCOLOR:
if (regno < 256) {
val = ((red >> 11) & 0x001f);
val |= ((green >> 6) & 0x03e0);
val |= ((blue >> 1) & 0x7c00);
/*
* TODO: intensity bit. Maybe something like
* ~(red[10] ^ green[10] ^ blue[10]) & 1
*/
lcdc_writel(sinfo, ATMEL_LCDC_LUT(regno), val);
ret = 0;
}
break;
case FB_VISUAL_MONO01:
if (regno < 2) {
val = (regno == 0) ? 0x00 : 0x1F;
lcdc_writel(sinfo, ATMEL_LCDC_LUT(regno), val);
ret = 0;
}
break;
}
return ret;
}
static int atmel_lcdfb_pan_display(struct fb_var_screeninfo *var,
struct fb_info *info)
{
dev_dbg(info->device, "%s\n", __func__);
atmel_lcdfb_update_dma(info, var);
return 0;
}
static struct fb_ops atmel_lcdfb_ops = {
.owner = THIS_MODULE,
.fb_check_var = atmel_lcdfb_check_var,
.fb_set_par = atmel_lcdfb_set_par,
.fb_setcolreg = atmel_lcdfb_setcolreg,
.fb_pan_display = atmel_lcdfb_pan_display,
.fb_fillrect = cfb_fillrect,
.fb_copyarea = cfb_copyarea,
.fb_imageblit = cfb_imageblit,
};
static irqreturn_t atmel_lcdfb_interrupt(int irq, void *dev_id)
{
struct fb_info *info = dev_id;
struct atmel_lcdfb_info *sinfo = info->par;
u32 status;
status = lcdc_readl(sinfo, ATMEL_LCDC_ISR);
if (status & ATMEL_LCDC_UFLWI) {
dev_warn(info->device, "FIFO underflow %#x\n", status);
/* reset DMA and FIFO to avoid screen shifting */
schedule_work(&sinfo->task);
}
lcdc_writel(sinfo, ATMEL_LCDC_ICR, status);
return IRQ_HANDLED;
}
/*
* LCD controller task (to reset the LCD)
*/
static void atmel_lcdfb_task(struct work_struct *work)
{
struct atmel_lcdfb_info *sinfo =
container_of(work, struct atmel_lcdfb_info, task);
atmel_lcdfb_reset(sinfo);
}
static int __init atmel_lcdfb_init_fbinfo(struct atmel_lcdfb_info *sinfo)
{
struct fb_info *info = sinfo->info;
int ret = 0;
info->var.activate |= FB_ACTIVATE_FORCE | FB_ACTIVATE_NOW;
dev_info(info->device,
"%luKiB frame buffer at %08lx (mapped at %p)\n",
(unsigned long)info->fix.smem_len / 1024,
(unsigned long)info->fix.smem_start,
info->screen_base);
/* Allocate colormap */
ret = fb_alloc_cmap(&info->cmap, 256, 0);
if (ret < 0)
dev_err(info->device, "Alloc color map failed\n");
return ret;
}
static void atmel_lcdfb_start_clock(struct atmel_lcdfb_info *sinfo)
{
if (sinfo->bus_clk)
clk_enable(sinfo->bus_clk);
clk_enable(sinfo->lcdc_clk);
}
static void atmel_lcdfb_stop_clock(struct atmel_lcdfb_info *sinfo)
{
if (sinfo->bus_clk)
clk_disable(sinfo->bus_clk);
clk_disable(sinfo->lcdc_clk);
}
static int __init atmel_lcdfb_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct fb_info *info;
struct atmel_lcdfb_info *sinfo;
struct atmel_lcdfb_info *pdata_sinfo;
struct fb_videomode fbmode;
struct resource *regs = NULL;
struct resource *map = NULL;
int ret;
dev_dbg(dev, "%s BEGIN\n", __func__);
ret = -ENOMEM;
info = framebuffer_alloc(sizeof(struct atmel_lcdfb_info), dev);
if (!info) {
dev_err(dev, "cannot allocate memory\n");
goto out;
}
sinfo = info->par;
if (dev->platform_data) {
pdata_sinfo = (struct atmel_lcdfb_info *)dev->platform_data;
sinfo->default_bpp = pdata_sinfo->default_bpp;
sinfo->default_dmacon = pdata_sinfo->default_dmacon;
sinfo->default_lcdcon2 = pdata_sinfo->default_lcdcon2;
sinfo->default_monspecs = pdata_sinfo->default_monspecs;
sinfo->atmel_lcdfb_power_control = pdata_sinfo->atmel_lcdfb_power_control;
sinfo->guard_time = pdata_sinfo->guard_time;
sinfo->smem_len = pdata_sinfo->smem_len;
sinfo->lcdcon_is_backlight = pdata_sinfo->lcdcon_is_backlight;
sinfo->lcd_wiring_mode = pdata_sinfo->lcd_wiring_mode;
} else {
dev_err(dev, "cannot get default configuration\n");
goto free_info;
}
sinfo->info = info;
sinfo->pdev = pdev;
strcpy(info->fix.id, sinfo->pdev->name);
info->flags = ATMEL_LCDFB_FBINFO_DEFAULT;
info->pseudo_palette = sinfo->pseudo_palette;
info->fbops = &atmel_lcdfb_ops;
memcpy(&info->monspecs, sinfo->default_monspecs, sizeof(info->monspecs));
info->fix = atmel_lcdfb_fix;
/* Enable LCDC Clocks */
if (cpu_is_at91sam9261() || cpu_is_at32ap7000()) {
sinfo->bus_clk = clk_get(dev, "hck1");
if (IS_ERR(sinfo->bus_clk)) {
ret = PTR_ERR(sinfo->bus_clk);
goto free_info;
}
}
sinfo->lcdc_clk = clk_get(dev, "lcdc_clk");
if (IS_ERR(sinfo->lcdc_clk)) {
ret = PTR_ERR(sinfo->lcdc_clk);
goto put_bus_clk;
}
atmel_lcdfb_start_clock(sinfo);
ret = fb_find_mode(&info->var, info, NULL, info->monspecs.modedb,
info->monspecs.modedb_len, info->monspecs.modedb,
sinfo->default_bpp);
if (!ret) {
dev_err(dev, "no suitable video mode found\n");
goto stop_clk;
}
regs = platform_get_resource(pdev, IORESOURCE_MEM, 0);
if (!regs) {
dev_err(dev, "resources unusable\n");
ret = -ENXIO;
goto stop_clk;
}
sinfo->irq_base = platform_get_irq(pdev, 0);
if (sinfo->irq_base < 0) {
dev_err(dev, "unable to get irq\n");
ret = sinfo->irq_base;
goto stop_clk;
}
/* Initialize video memory */
map = platform_get_resource(pdev, IORESOURCE_MEM, 1);
if (map) {
/* use a pre-allocated memory buffer */
info->fix.smem_start = map->start;
info->fix.smem_len = map->end - map->start + 1;
if (!request_mem_region(info->fix.smem_start,
info->fix.smem_len, pdev->name)) {
ret = -EBUSY;
goto stop_clk;
}
info->screen_base = ioremap(info->fix.smem_start, info->fix.smem_len);
if (!info->screen_base)
goto release_intmem;
/*
* Don't clear the framebuffer -- someone may have set
* up a splash image.
*/
} else {
/* alocate memory buffer */
ret = atmel_lcdfb_alloc_video_memory(sinfo);
if (ret < 0) {
dev_err(dev, "cannot allocate framebuffer: %d\n", ret);
goto stop_clk;
}
}
/* LCDC registers */
info->fix.mmio_start = regs->start;
info->fix.mmio_len = regs->end - regs->start + 1;
if (!request_mem_region(info->fix.mmio_start,
info->fix.mmio_len, pdev->name)) {
ret = -EBUSY;
goto free_fb;
}
sinfo->mmio = ioremap(info->fix.mmio_start, info->fix.mmio_len);
if (!sinfo->mmio) {
dev_err(dev, "cannot map LCDC registers\n");
goto release_mem;
}
/* Initialize PWM for contrast or backlight ("off") */
init_contrast(sinfo);
/* interrupt */
ret = request_irq(sinfo->irq_base, atmel_lcdfb_interrupt, 0, pdev->name, info);
if (ret) {
dev_err(dev, "request_irq failed: %d\n", ret);
goto unmap_mmio;
}
/* Some operations on the LCDC might sleep and
* require a preemptible task context */
INIT_WORK(&sinfo->task, atmel_lcdfb_task);
ret = atmel_lcdfb_init_fbinfo(sinfo);
if (ret < 0) {
dev_err(dev, "init fbinfo failed: %d\n", ret);
goto unregister_irqs;
}
/*
* This makes sure that our colour bitfield
* descriptors are correctly initialised.
*/
atmel_lcdfb_check_var(&info->var, info);
ret = fb_set_var(info, &info->var);
if (ret) {
dev_warn(dev, "unable to set display parameters\n");
goto free_cmap;
}
dev_set_drvdata(dev, info);
/*
* Tell the world that we're ready to go
*/
ret = register_framebuffer(info);
if (ret < 0) {
dev_err(dev, "failed to register framebuffer device: %d\n", ret);
goto reset_drvdata;
}
/* add selected videomode to modelist */
fb_var_to_videomode(&fbmode, &info->var);
fb_add_videomode(&fbmode, &info->modelist);
/* Power up the LCDC screen */
if (sinfo->atmel_lcdfb_power_control)
sinfo->atmel_lcdfb_power_control(1);
dev_info(dev, "fb%d: Atmel LCDC at 0x%08lx (mapped at %p), irq %lu\n",
info->node, info->fix.mmio_start, sinfo->mmio, sinfo->irq_base);
return 0;
reset_drvdata:
dev_set_drvdata(dev, NULL);
free_cmap:
fb_dealloc_cmap(&info->cmap);
unregister_irqs:
cancel_work_sync(&sinfo->task);
free_irq(sinfo->irq_base, info);
unmap_mmio:
exit_backlight(sinfo);
iounmap(sinfo->mmio);
release_mem:
release_mem_region(info->fix.mmio_start, info->fix.mmio_len);
free_fb:
if (map)
iounmap(info->screen_base);
else
atmel_lcdfb_free_video_memory(sinfo);
release_intmem:
if (map)
release_mem_region(info->fix.smem_start, info->fix.smem_len);
stop_clk:
atmel_lcdfb_stop_clock(sinfo);
clk_put(sinfo->lcdc_clk);
put_bus_clk:
if (sinfo->bus_clk)
clk_put(sinfo->bus_clk);
free_info:
framebuffer_release(info);
out:
dev_dbg(dev, "%s FAILED\n", __func__);
return ret;
}
static int __exit atmel_lcdfb_remove(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct fb_info *info = dev_get_drvdata(dev);
struct atmel_lcdfb_info *sinfo;
if (!info || !info->par)
return 0;
sinfo = info->par;
cancel_work_sync(&sinfo->task);
exit_backlight(sinfo);
if (sinfo->atmel_lcdfb_power_control)
sinfo->atmel_lcdfb_power_control(0);
unregister_framebuffer(info);
atmel_lcdfb_stop_clock(sinfo);
clk_put(sinfo->lcdc_clk);
if (sinfo->bus_clk)
clk_put(sinfo->bus_clk);
fb_dealloc_cmap(&info->cmap);
free_irq(sinfo->irq_base, info);
iounmap(sinfo->mmio);
release_mem_region(info->fix.mmio_start, info->fix.mmio_len);
if (platform_get_resource(pdev, IORESOURCE_MEM, 1)) {
iounmap(info->screen_base);
release_mem_region(info->fix.smem_start, info->fix.smem_len);
} else {
atmel_lcdfb_free_video_memory(sinfo);
}
dev_set_drvdata(dev, NULL);
framebuffer_release(info);
return 0;
}
#ifdef CONFIG_PM
static int atmel_lcdfb_suspend(struct platform_device *pdev, pm_message_t mesg)
{
struct fb_info *info = platform_get_drvdata(pdev);
struct atmel_lcdfb_info *sinfo = info->par;
/*
* We don't want to handle interrupts while the clock is
* stopped. It may take forever.
*/
lcdc_writel(sinfo, ATMEL_LCDC_IDR, ~0UL);
sinfo->saved_lcdcon = lcdc_readl(sinfo, ATMEL_LCDC_CONTRAST_VAL);
lcdc_writel(sinfo, ATMEL_LCDC_CONTRAST_CTR, 0);
if (sinfo->atmel_lcdfb_power_control)
sinfo->atmel_lcdfb_power_control(0);
atmel_lcdfb_stop(sinfo);
atmel_lcdfb_stop_clock(sinfo);
return 0;
}
static int atmel_lcdfb_resume(struct platform_device *pdev)
{
struct fb_info *info = platform_get_drvdata(pdev);
struct atmel_lcdfb_info *sinfo = info->par;
atmel_lcdfb_start_clock(sinfo);
atmel_lcdfb_start(sinfo);
if (sinfo->atmel_lcdfb_power_control)
sinfo->atmel_lcdfb_power_control(1);
lcdc_writel(sinfo, ATMEL_LCDC_CONTRAST_CTR, sinfo->saved_lcdcon);
/* Enable FIFO & DMA errors */
lcdc_writel(sinfo, ATMEL_LCDC_IER, ATMEL_LCDC_UFLWI
| ATMEL_LCDC_OWRI | ATMEL_LCDC_MERI);
return 0;
}
#else
#define atmel_lcdfb_suspend NULL
#define atmel_lcdfb_resume NULL
#endif
static struct platform_driver atmel_lcdfb_driver = {
.remove = __exit_p(atmel_lcdfb_remove),
.suspend = atmel_lcdfb_suspend,
.resume = atmel_lcdfb_resume,
.driver = {
.name = "atmel_lcdfb",
.owner = THIS_MODULE,
},
};
static int __init atmel_lcdfb_init(void)
{
return platform_driver_probe(&atmel_lcdfb_driver, atmel_lcdfb_probe);
}
static void __exit atmel_lcdfb_exit(void)
{
platform_driver_unregister(&atmel_lcdfb_driver);
}
module_init(atmel_lcdfb_init);
module_exit(atmel_lcdfb_exit);
MODULE_DESCRIPTION("AT91/AT32 LCD Controller framebuffer driver");
MODULE_AUTHOR("Nicolas Ferre <nicolas.ferre@atmel.com>");
MODULE_LICENSE("GPL");