kernel-ark/arch/ppc/boot/simple/qspan_pci.c
Linus Torvalds 1da177e4c3 Linux-2.6.12-rc2
Initial git repository build. I'm not bothering with the full history,
even though we have it. We can create a separate "historical" git
archive of that later if we want to, and in the meantime it's about
3.2GB when imported into git - space that would just make the early
git days unnecessarily complicated, when we don't have a lot of good
infrastructure for it.

Let it rip!
2005-04-16 15:20:36 -07:00

270 lines
7.4 KiB
C

/*
* LinuxPPC arch/ppc/kernel/qspan_pci.c Dan Malek (dmalek@jlc.net)
*
* QSpan Motorola bus to PCI bridge. The config address register
* is located 0x500 from the base of the bridge control/status registers.
* The data register is located at 0x504.
* This is a two step operation. First, the address register is written,
* then the data register is read/written as required.
* I don't know what to do about interrupts (yet).
*/
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/pci.h>
#include <asm/mpc8xx.h>
/*
* When reading the configuration space, if something does not respond
* the bus times out and we get a machine check interrupt. So, the
* good ol' exception tables come to mind to trap it and return some
* value.
*
* On an error we just return a -1, since that is what the caller wants
* returned if nothing is present. I copied this from __get_user_asm,
* with the only difference of returning -1 instead of EFAULT.
* There is an associated hack in the machine check trap code.
*
* The QSPAN is also a big endian device, that is it makes the PCI
* look big endian to us. This presents a problem for the Linux PCI
* functions, which assume little endian. For example, we see the
* first 32-bit word like this:
* ------------------------
* | Device ID | Vendor ID |
* ------------------------
* If we read/write as a double word, that's OK. But in our world,
* when read as a word, device ID is at location 0, not location 2 as
* the little endian PCI would believe. We have to switch bits in
* the PCI addresses given to us to get the data to/from the correct
* byte lanes.
*
* The QSPAN only supports 4 bits of "slot" in the dev_fn instead of 5.
* It always forces the MS bit to zero. Therefore, dev_fn values
* greater than 128 are returned as "no device found" errors.
*
* The QSPAN can only perform long word (32-bit) configuration cycles.
* The "offset" must have the two LS bits set to zero. Read operations
* require we read the entire word and then sort out what should be
* returned. Write operations other than long word require that we
* read the long word, update the proper word or byte, then write the
* entire long word back.
*
* PCI Bridge hack. We assume (correctly) that bus 0 is the primary
* PCI bus from the QSPAN. If we are called with a bus number other
* than zero, we create a Type 1 configuration access that a downstream
* PCI bridge will interpret.
*/
#define __get_pci_config(x, addr, op) \
__asm__ __volatile__( \
"1: "op" %0,0(%1)\n" \
" eieio\n" \
"2:\n" \
".section .fixup,\"ax\"\n" \
"3: li %0,-1\n" \
" b 2b\n" \
".section __ex_table,\"a\"\n" \
" .align 2\n" \
" .long 1b,3b\n" \
".text" \
: "=r"(x) : "r"(addr))
#define QS_CONFIG_ADDR ((volatile uint *)(PCI_CSR_ADDR + 0x500))
#define QS_CONFIG_DATA ((volatile uint *)(PCI_CSR_ADDR + 0x504))
#define mk_config_addr(bus, dev, offset) \
(((bus)<<16) | ((dev)<<8) | (offset & 0xfc))
#define mk_config_type1(bus, dev, offset) \
mk_config_addr(bus, dev, offset) | 1;
/* Initialize the QSpan device registers after power up.
*/
void
qspan_init(void)
{
uint *qptr;
qptr = (uint *)PCI_CSR_ADDR;
/* PCI Configuration/status. Upper bits written to clear
* pending interrupt or status. Lower bits enable QSPAN as
* PCI master, enable memory and I/O cycles, and enable PCI
* parity error checking.
* IMPORTANT: The last two bits of this word enable PCI
* master cycles into the QBus. The QSpan is broken and can't
* meet the timing specs of the PQ bus for this to work. Therefore,
* if you don't have external bus arbitration, you can't use
* this function.
*/
#ifdef EXTERNAL_PQ_ARB
qptr[1] = 0xf9000147;
#else
qptr[1] = 0xf9000144;
#endif
/* PCI Misc configuration. Set PCI latency timer resolution
* of 8 cycles, set cache size to 4 x 32.
*/
qptr[3] = 0;
/* Set up PCI Target address mapping. Enable, Posted writes,
* 2Gbyte space (processor memory controller determines actual size).
*/
qptr[64] = 0x8f000080;
/* Map processor 0x80000000 to PCI 0x00000000.
* Processor address bit 1 determines I/O type access (0x80000000)
* or memory type access (0xc0000000).
*/
qptr[65] = 0x80000000;
/* Enable error logging and clear any pending error status.
*/
qptr[80] = 0x90000000;
qptr[512] = 0x000c0003;
/* Set up Qbus slave image.
*/
qptr[960] = 0x01000000;
qptr[961] = 0x000000d1;
qptr[964] = 0x00000000;
qptr[965] = 0x000000d1;
}
/* Functions to support PCI bios-like features to read/write configuration
* space. If the function fails for any reason, a -1 (0xffffffff) value
* must be returned.
*/
#define DEVICE_NOT_FOUND (-1)
#define SUCCESSFUL 0
int qs_pci_read_config_byte(unsigned char bus, unsigned char dev_fn,
unsigned char offset, unsigned char *val)
{
uint temp;
u_char *cp;
if ((bus > 7) || (dev_fn > 127)) {
*val = 0xff;
return DEVICE_NOT_FOUND;
}
if (bus == 0)
*QS_CONFIG_ADDR = mk_config_addr(bus, dev_fn, offset);
else
*QS_CONFIG_ADDR = mk_config_type1(bus, dev_fn, offset);
__get_pci_config(temp, QS_CONFIG_DATA, "lwz");
offset ^= 0x03;
cp = ((u_char *)&temp) + (offset & 0x03);
*val = *cp;
return SUCCESSFUL;
}
int qs_pci_read_config_word(unsigned char bus, unsigned char dev_fn,
unsigned char offset, unsigned short *val)
{
uint temp;
ushort *sp;
if ((bus > 7) || (dev_fn > 127)) {
*val = 0xffff;
return DEVICE_NOT_FOUND;
}
if (bus == 0)
*QS_CONFIG_ADDR = mk_config_addr(bus, dev_fn, offset);
else
*QS_CONFIG_ADDR = mk_config_type1(bus, dev_fn, offset);
__get_pci_config(temp, QS_CONFIG_DATA, "lwz");
offset ^= 0x02;
sp = ((ushort *)&temp) + ((offset >> 1) & 1);
*val = *sp;
return SUCCESSFUL;
}
int qs_pci_read_config_dword(unsigned char bus, unsigned char dev_fn,
unsigned char offset, unsigned int *val)
{
if ((bus > 7) || (dev_fn > 127)) {
*val = 0xffffffff;
return DEVICE_NOT_FOUND;
}
if (bus == 0)
*QS_CONFIG_ADDR = mk_config_addr(bus, dev_fn, offset);
else
*QS_CONFIG_ADDR = mk_config_type1(bus, dev_fn, offset);
__get_pci_config(*val, QS_CONFIG_DATA, "lwz");
return SUCCESSFUL;
}
int qs_pci_write_config_byte(unsigned char bus, unsigned char dev_fn,
unsigned char offset, unsigned char val)
{
uint temp;
u_char *cp;
if ((bus > 7) || (dev_fn > 127))
return DEVICE_NOT_FOUND;
qs_pci_read_config_dword(bus, dev_fn, offset, &temp);
offset ^= 0x03;
cp = ((u_char *)&temp) + (offset & 0x03);
*cp = val;
if (bus == 0)
*QS_CONFIG_ADDR = mk_config_addr(bus, dev_fn, offset);
else
*QS_CONFIG_ADDR = mk_config_type1(bus, dev_fn, offset);
*QS_CONFIG_DATA = temp;
return SUCCESSFUL;
}
int qs_pci_write_config_word(unsigned char bus, unsigned char dev_fn,
unsigned char offset, unsigned short val)
{
uint temp;
ushort *sp;
if ((bus > 7) || (dev_fn > 127))
return DEVICE_NOT_FOUND;
qs_pci_read_config_dword(bus, dev_fn, offset, &temp);
offset ^= 0x02;
sp = ((ushort *)&temp) + ((offset >> 1) & 1);
*sp = val;
if (bus == 0)
*QS_CONFIG_ADDR = mk_config_addr(bus, dev_fn, offset);
else
*QS_CONFIG_ADDR = mk_config_type1(bus, dev_fn, offset);
*QS_CONFIG_DATA = temp;
return SUCCESSFUL;
}
int qs_pci_write_config_dword(unsigned char bus, unsigned char dev_fn,
unsigned char offset, unsigned int val)
{
if ((bus > 7) || (dev_fn > 127))
return DEVICE_NOT_FOUND;
if (bus == 0)
*QS_CONFIG_ADDR = mk_config_addr(bus, dev_fn, offset);
else
*QS_CONFIG_ADDR = mk_config_type1(bus, dev_fn, offset);
*(unsigned int *)QS_CONFIG_DATA = val;
return SUCCESSFUL;
}