204085c52a
8xx: commproc.c: kill unused variable Signed-off-by: Aristeu Sergio Rozanski Filho <aris@cathedrallabs.org> Signed-off-by: Marcelo Tosatti <marcelo.tosatti@cyclades.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
463 lines
12 KiB
C
463 lines
12 KiB
C
/*
|
|
* General Purpose functions for the global management of the
|
|
* Communication Processor Module.
|
|
* Copyright (c) 1997 Dan Malek (dmalek@jlc.net)
|
|
*
|
|
* In addition to the individual control of the communication
|
|
* channels, there are a few functions that globally affect the
|
|
* communication processor.
|
|
*
|
|
* Buffer descriptors must be allocated from the dual ported memory
|
|
* space. The allocator for that is here. When the communication
|
|
* process is reset, we reclaim the memory available. There is
|
|
* currently no deallocator for this memory.
|
|
* The amount of space available is platform dependent. On the
|
|
* MBX, the EPPC software loads additional microcode into the
|
|
* communication processor, and uses some of the DP ram for this
|
|
* purpose. Current, the first 512 bytes and the last 256 bytes of
|
|
* memory are used. Right now I am conservative and only use the
|
|
* memory that can never be used for microcode. If there are
|
|
* applications that require more DP ram, we can expand the boundaries
|
|
* but then we have to be careful of any downloaded microcode.
|
|
*/
|
|
#include <linux/errno.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/dma-mapping.h>
|
|
#include <linux/param.h>
|
|
#include <linux/string.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/irq.h>
|
|
#include <linux/module.h>
|
|
#include <asm/mpc8xx.h>
|
|
#include <asm/page.h>
|
|
#include <asm/pgtable.h>
|
|
#include <asm/8xx_immap.h>
|
|
#include <asm/commproc.h>
|
|
#include <asm/io.h>
|
|
#include <asm/tlbflush.h>
|
|
#include <asm/rheap.h>
|
|
|
|
extern int get_pteptr(struct mm_struct *mm, unsigned long addr, pte_t **ptep);
|
|
|
|
static void m8xx_cpm_dpinit(void);
|
|
static uint host_buffer; /* One page of host buffer */
|
|
static uint host_end; /* end + 1 */
|
|
cpm8xx_t *cpmp; /* Pointer to comm processor space */
|
|
|
|
/* CPM interrupt vector functions.
|
|
*/
|
|
struct cpm_action {
|
|
void (*handler)(void *, struct pt_regs * regs);
|
|
void *dev_id;
|
|
};
|
|
static struct cpm_action cpm_vecs[CPMVEC_NR];
|
|
static irqreturn_t cpm_interrupt(int irq, void * dev, struct pt_regs * regs);
|
|
static irqreturn_t cpm_error_interrupt(int irq, void *dev, struct pt_regs * regs);
|
|
static void alloc_host_memory(void);
|
|
/* Define a table of names to identify CPM interrupt handlers in
|
|
* /proc/interrupts.
|
|
*/
|
|
const char *cpm_int_name[] =
|
|
{ "error", "PC4", "PC5", "SMC2",
|
|
"SMC1", "SPI", "PC6", "Timer 4",
|
|
"", "PC7", "PC8", "PC9",
|
|
"Timer 3", "", "PC10", "PC11",
|
|
"I2C", "RISC Timer", "Timer 2", "",
|
|
"IDMA2", "IDMA1", "SDMA error", "PC12",
|
|
"PC13", "Timer 1", "PC14", "SCC4",
|
|
"SCC3", "SCC2", "SCC1", "PC15"
|
|
};
|
|
|
|
static void
|
|
cpm_mask_irq(unsigned int irq)
|
|
{
|
|
int cpm_vec = irq - CPM_IRQ_OFFSET;
|
|
|
|
((immap_t *)IMAP_ADDR)->im_cpic.cpic_cimr &= ~(1 << cpm_vec);
|
|
}
|
|
|
|
static void
|
|
cpm_unmask_irq(unsigned int irq)
|
|
{
|
|
int cpm_vec = irq - CPM_IRQ_OFFSET;
|
|
|
|
((immap_t *)IMAP_ADDR)->im_cpic.cpic_cimr |= (1 << cpm_vec);
|
|
}
|
|
|
|
static void
|
|
cpm_ack(unsigned int irq)
|
|
{
|
|
/* We do not need to do anything here. */
|
|
}
|
|
|
|
static void
|
|
cpm_eoi(unsigned int irq)
|
|
{
|
|
int cpm_vec = irq - CPM_IRQ_OFFSET;
|
|
|
|
((immap_t *)IMAP_ADDR)->im_cpic.cpic_cisr = (1 << cpm_vec);
|
|
}
|
|
|
|
struct hw_interrupt_type cpm_pic = {
|
|
.typename = " CPM ",
|
|
.enable = cpm_unmask_irq,
|
|
.disable = cpm_mask_irq,
|
|
.ack = cpm_ack,
|
|
.end = cpm_eoi,
|
|
};
|
|
|
|
extern void flush_tlb_page(struct vm_area_struct *vma, unsigned long vmaddr);
|
|
|
|
void
|
|
m8xx_cpm_reset(uint bootpage)
|
|
{
|
|
volatile immap_t *imp;
|
|
volatile cpm8xx_t *commproc;
|
|
pte_t *pte;
|
|
|
|
imp = (immap_t *)IMAP_ADDR;
|
|
commproc = (cpm8xx_t *)&imp->im_cpm;
|
|
|
|
#ifdef CONFIG_UCODE_PATCH
|
|
/* Perform a reset.
|
|
*/
|
|
commproc->cp_cpcr = (CPM_CR_RST | CPM_CR_FLG);
|
|
|
|
/* Wait for it.
|
|
*/
|
|
while (commproc->cp_cpcr & CPM_CR_FLG);
|
|
|
|
cpm_load_patch(imp);
|
|
#endif
|
|
|
|
/* Set SDMA Bus Request priority 5.
|
|
* On 860T, this also enables FEC priority 6. I am not sure
|
|
* this is what we realy want for some applications, but the
|
|
* manual recommends it.
|
|
* Bit 25, FAM can also be set to use FEC aggressive mode (860T).
|
|
*/
|
|
imp->im_siu_conf.sc_sdcr = 1;
|
|
|
|
/* Reclaim the DP memory for our use. */
|
|
m8xx_cpm_dpinit();
|
|
|
|
/* get the PTE for the bootpage */
|
|
if (!get_pteptr(&init_mm, bootpage, &pte))
|
|
panic("get_pteptr failed\n");
|
|
|
|
/* and make it uncachable */
|
|
pte_val(*pte) |= _PAGE_NO_CACHE;
|
|
_tlbie(bootpage);
|
|
|
|
host_buffer = bootpage;
|
|
host_end = host_buffer + PAGE_SIZE;
|
|
|
|
/* Tell everyone where the comm processor resides.
|
|
*/
|
|
cpmp = (cpm8xx_t *)commproc;
|
|
}
|
|
|
|
/* We used to do this earlier, but have to postpone as long as possible
|
|
* to ensure the kernel VM is now running.
|
|
*/
|
|
static void
|
|
alloc_host_memory(void)
|
|
{
|
|
dma_addr_t physaddr;
|
|
|
|
/* Set the host page for allocation.
|
|
*/
|
|
host_buffer = (uint)dma_alloc_coherent(NULL, PAGE_SIZE, &physaddr,
|
|
GFP_KERNEL);
|
|
host_end = host_buffer + PAGE_SIZE;
|
|
}
|
|
|
|
/* This is called during init_IRQ. We used to do it above, but this
|
|
* was too early since init_IRQ was not yet called.
|
|
*/
|
|
static struct irqaction cpm_error_irqaction = {
|
|
.handler = cpm_error_interrupt,
|
|
.mask = CPU_MASK_NONE,
|
|
};
|
|
static struct irqaction cpm_interrupt_irqaction = {
|
|
.handler = cpm_interrupt,
|
|
.mask = CPU_MASK_NONE,
|
|
.name = "CPM cascade",
|
|
};
|
|
|
|
void
|
|
cpm_interrupt_init(void)
|
|
{
|
|
int i;
|
|
|
|
/* Initialize the CPM interrupt controller.
|
|
*/
|
|
((immap_t *)IMAP_ADDR)->im_cpic.cpic_cicr =
|
|
(CICR_SCD_SCC4 | CICR_SCC_SCC3 | CICR_SCB_SCC2 | CICR_SCA_SCC1) |
|
|
((CPM_INTERRUPT/2) << 13) | CICR_HP_MASK;
|
|
((immap_t *)IMAP_ADDR)->im_cpic.cpic_cimr = 0;
|
|
|
|
/* install the CPM interrupt controller routines for the CPM
|
|
* interrupt vectors
|
|
*/
|
|
for ( i = CPM_IRQ_OFFSET ; i < CPM_IRQ_OFFSET + NR_CPM_INTS ; i++ )
|
|
irq_desc[i].handler = &cpm_pic;
|
|
|
|
/* Set our interrupt handler with the core CPU. */
|
|
if (setup_irq(CPM_INTERRUPT, &cpm_interrupt_irqaction))
|
|
panic("Could not allocate CPM IRQ!");
|
|
|
|
/* Install our own error handler. */
|
|
cpm_error_irqaction.name = cpm_int_name[CPMVEC_ERROR];
|
|
if (setup_irq(CPM_IRQ_OFFSET + CPMVEC_ERROR, &cpm_error_irqaction))
|
|
panic("Could not allocate CPM error IRQ!");
|
|
|
|
((immap_t *)IMAP_ADDR)->im_cpic.cpic_cicr |= CICR_IEN;
|
|
}
|
|
|
|
/*
|
|
* Get the CPM interrupt vector.
|
|
*/
|
|
int
|
|
cpm_get_irq(struct pt_regs *regs)
|
|
{
|
|
int cpm_vec;
|
|
|
|
/* Get the vector by setting the ACK bit and then reading
|
|
* the register.
|
|
*/
|
|
((volatile immap_t *)IMAP_ADDR)->im_cpic.cpic_civr = 1;
|
|
cpm_vec = ((volatile immap_t *)IMAP_ADDR)->im_cpic.cpic_civr;
|
|
cpm_vec >>= 11;
|
|
|
|
return cpm_vec;
|
|
}
|
|
|
|
/* CPM interrupt controller cascade interrupt.
|
|
*/
|
|
static irqreturn_t
|
|
cpm_interrupt(int irq, void * dev, struct pt_regs * regs)
|
|
{
|
|
/* This interrupt handler never actually gets called. It is
|
|
* installed only to unmask the CPM cascade interrupt in the SIU
|
|
* and to make the CPM cascade interrupt visible in /proc/interrupts.
|
|
*/
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
/* The CPM can generate the error interrupt when there is a race condition
|
|
* between generating and masking interrupts. All we have to do is ACK it
|
|
* and return. This is a no-op function so we don't need any special
|
|
* tests in the interrupt handler.
|
|
*/
|
|
static irqreturn_t
|
|
cpm_error_interrupt(int irq, void *dev, struct pt_regs *regs)
|
|
{
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
/* A helper function to translate the handler prototype required by
|
|
* request_irq() to the handler prototype required by cpm_install_handler().
|
|
*/
|
|
static irqreturn_t
|
|
cpm_handler_helper(int irq, void *dev_id, struct pt_regs *regs)
|
|
{
|
|
int cpm_vec = irq - CPM_IRQ_OFFSET;
|
|
|
|
(*cpm_vecs[cpm_vec].handler)(dev_id, regs);
|
|
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
/* Install a CPM interrupt handler.
|
|
* This routine accepts a CPM interrupt vector in the range 0 to 31.
|
|
* This routine is retained for backward compatibility. Rather than using
|
|
* this routine to install a CPM interrupt handler, you can now use
|
|
* request_irq() with an IRQ in the range CPM_IRQ_OFFSET to
|
|
* CPM_IRQ_OFFSET + NR_CPM_INTS - 1 (16 to 47).
|
|
*
|
|
* Notice that the prototype of the interrupt handler function must be
|
|
* different depending on whether you install the handler with
|
|
* request_irq() or cpm_install_handler().
|
|
*/
|
|
void
|
|
cpm_install_handler(int cpm_vec, void (*handler)(void *, struct pt_regs *regs),
|
|
void *dev_id)
|
|
{
|
|
int err;
|
|
|
|
/* If null handler, assume we are trying to free the IRQ.
|
|
*/
|
|
if (!handler) {
|
|
free_irq(CPM_IRQ_OFFSET + cpm_vec, dev_id);
|
|
return;
|
|
}
|
|
|
|
if (cpm_vecs[cpm_vec].handler != 0)
|
|
printk(KERN_INFO "CPM interrupt %x replacing %x\n",
|
|
(uint)handler, (uint)cpm_vecs[cpm_vec].handler);
|
|
cpm_vecs[cpm_vec].handler = handler;
|
|
cpm_vecs[cpm_vec].dev_id = dev_id;
|
|
|
|
if ((err = request_irq(CPM_IRQ_OFFSET + cpm_vec, cpm_handler_helper,
|
|
0, cpm_int_name[cpm_vec], dev_id)))
|
|
printk(KERN_ERR "request_irq() returned %d for CPM vector %d\n",
|
|
err, cpm_vec);
|
|
}
|
|
|
|
/* Free a CPM interrupt handler.
|
|
* This routine accepts a CPM interrupt vector in the range 0 to 31.
|
|
* This routine is retained for backward compatibility.
|
|
*/
|
|
void
|
|
cpm_free_handler(int cpm_vec)
|
|
{
|
|
request_irq(CPM_IRQ_OFFSET + cpm_vec, NULL, 0, 0,
|
|
cpm_vecs[cpm_vec].dev_id);
|
|
|
|
cpm_vecs[cpm_vec].handler = NULL;
|
|
cpm_vecs[cpm_vec].dev_id = NULL;
|
|
}
|
|
|
|
/* We also own one page of host buffer space for the allocation of
|
|
* UART "fifos" and the like.
|
|
*/
|
|
uint
|
|
m8xx_cpm_hostalloc(uint size)
|
|
{
|
|
uint retloc;
|
|
|
|
if (host_buffer == 0)
|
|
alloc_host_memory();
|
|
|
|
if ((host_buffer + size) >= host_end)
|
|
return(0);
|
|
|
|
retloc = host_buffer;
|
|
host_buffer += size;
|
|
|
|
return(retloc);
|
|
}
|
|
|
|
/* Set a baud rate generator. This needs lots of work. There are
|
|
* four BRGs, any of which can be wired to any channel.
|
|
* The internal baud rate clock is the system clock divided by 16.
|
|
* This assumes the baudrate is 16x oversampled by the uart.
|
|
*/
|
|
#define BRG_INT_CLK (((bd_t *)__res)->bi_intfreq)
|
|
#define BRG_UART_CLK (BRG_INT_CLK/16)
|
|
#define BRG_UART_CLK_DIV16 (BRG_UART_CLK/16)
|
|
|
|
void
|
|
cpm_setbrg(uint brg, uint rate)
|
|
{
|
|
volatile uint *bp;
|
|
|
|
/* This is good enough to get SMCs running.....
|
|
*/
|
|
bp = (uint *)&cpmp->cp_brgc1;
|
|
bp += brg;
|
|
/* The BRG has a 12-bit counter. For really slow baud rates (or
|
|
* really fast processors), we may have to further divide by 16.
|
|
*/
|
|
if (((BRG_UART_CLK / rate) - 1) < 4096)
|
|
*bp = (((BRG_UART_CLK / rate) - 1) << 1) | CPM_BRG_EN;
|
|
else
|
|
*bp = (((BRG_UART_CLK_DIV16 / rate) - 1) << 1) |
|
|
CPM_BRG_EN | CPM_BRG_DIV16;
|
|
}
|
|
|
|
/*
|
|
* dpalloc / dpfree bits.
|
|
*/
|
|
static spinlock_t cpm_dpmem_lock;
|
|
/*
|
|
* 16 blocks should be enough to satisfy all requests
|
|
* until the memory subsystem goes up...
|
|
*/
|
|
static rh_block_t cpm_boot_dpmem_rh_block[16];
|
|
static rh_info_t cpm_dpmem_info;
|
|
|
|
#define CPM_DPMEM_ALIGNMENT 8
|
|
|
|
void m8xx_cpm_dpinit(void)
|
|
{
|
|
spin_lock_init(&cpm_dpmem_lock);
|
|
|
|
/* Initialize the info header */
|
|
rh_init(&cpm_dpmem_info, CPM_DPMEM_ALIGNMENT,
|
|
sizeof(cpm_boot_dpmem_rh_block) /
|
|
sizeof(cpm_boot_dpmem_rh_block[0]),
|
|
cpm_boot_dpmem_rh_block);
|
|
|
|
/*
|
|
* Attach the usable dpmem area.
|
|
* XXX: This is actually crap. CPM_DATAONLY_BASE and
|
|
* CPM_DATAONLY_SIZE are a subset of the available dparm. It varies
|
|
* with the processor and the microcode patches applied / activated.
|
|
* But the following should be at least safe.
|
|
*/
|
|
rh_attach_region(&cpm_dpmem_info, (void *)CPM_DATAONLY_BASE, CPM_DATAONLY_SIZE);
|
|
}
|
|
|
|
/*
|
|
* Allocate the requested size worth of DP memory.
|
|
* This function used to return an index into the DPRAM area.
|
|
* Now it returns the actuall physical address of that area.
|
|
* use m8xx_cpm_dpram_offset() to get the index
|
|
*/
|
|
uint cpm_dpalloc(uint size, uint align)
|
|
{
|
|
void *start;
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&cpm_dpmem_lock, flags);
|
|
cpm_dpmem_info.alignment = align;
|
|
start = rh_alloc(&cpm_dpmem_info, size, "commproc");
|
|
spin_unlock_irqrestore(&cpm_dpmem_lock, flags);
|
|
|
|
return (uint)start;
|
|
}
|
|
EXPORT_SYMBOL(cpm_dpalloc);
|
|
|
|
int cpm_dpfree(uint offset)
|
|
{
|
|
int ret;
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&cpm_dpmem_lock, flags);
|
|
ret = rh_free(&cpm_dpmem_info, (void *)offset);
|
|
spin_unlock_irqrestore(&cpm_dpmem_lock, flags);
|
|
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL(cpm_dpfree);
|
|
|
|
uint cpm_dpalloc_fixed(uint offset, uint size, uint align)
|
|
{
|
|
void *start;
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&cpm_dpmem_lock, flags);
|
|
cpm_dpmem_info.alignment = align;
|
|
start = rh_alloc_fixed(&cpm_dpmem_info, (void *)offset, size, "commproc");
|
|
spin_unlock_irqrestore(&cpm_dpmem_lock, flags);
|
|
|
|
return (uint)start;
|
|
}
|
|
EXPORT_SYMBOL(cpm_dpalloc_fixed);
|
|
|
|
void cpm_dpdump(void)
|
|
{
|
|
rh_dump(&cpm_dpmem_info);
|
|
}
|
|
EXPORT_SYMBOL(cpm_dpdump);
|
|
|
|
void *cpm_dpram_addr(uint offset)
|
|
{
|
|
return ((immap_t *)IMAP_ADDR)->im_cpm.cp_dpmem + offset;
|
|
}
|
|
EXPORT_SYMBOL(cpm_dpram_addr);
|