kernel-ark/arch/i386/kernel/cpu/intel_cacheinfo.c
Tim Schmielau 4e57b68178 [PATCH] fix missing includes
I recently picked up my older work to remove unnecessary #includes of
sched.h, starting from a patch by Dave Jones to not include sched.h
from module.h. This reduces the number of indirect includes of sched.h
by ~300. Another ~400 pointless direct includes can be removed after
this disentangling (patch to follow later).
However, quite a few indirect includes need to be fixed up for this.

In order to feed the patches through -mm with as little disturbance as
possible, I've split out the fixes I accumulated up to now (complete for
i386 and x86_64, more archs to follow later) and post them before the real
patch.  This way this large part of the patch is kept simple with only
adding #includes, and all hunks are independent of each other.  So if any
hunk rejects or gets in the way of other patches, just drop it.  My scripts
will pick it up again in the next round.

Signed-off-by: Tim Schmielau <tim@physik3.uni-rostock.de>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-10-30 17:37:32 -08:00

627 lines
16 KiB
C

/*
* Routines to indentify caches on Intel CPU.
*
* Changes:
* Venkatesh Pallipadi : Adding cache identification through cpuid(4)
* Ashok Raj <ashok.raj@intel.com>: Work with CPU hotplug infrastructure.
*/
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/device.h>
#include <linux/compiler.h>
#include <linux/cpu.h>
#include <linux/sched.h>
#include <asm/processor.h>
#include <asm/smp.h>
#define LVL_1_INST 1
#define LVL_1_DATA 2
#define LVL_2 3
#define LVL_3 4
#define LVL_TRACE 5
struct _cache_table
{
unsigned char descriptor;
char cache_type;
short size;
};
/* all the cache descriptor types we care about (no TLB or trace cache entries) */
static struct _cache_table cache_table[] __cpuinitdata =
{
{ 0x06, LVL_1_INST, 8 }, /* 4-way set assoc, 32 byte line size */
{ 0x08, LVL_1_INST, 16 }, /* 4-way set assoc, 32 byte line size */
{ 0x0a, LVL_1_DATA, 8 }, /* 2 way set assoc, 32 byte line size */
{ 0x0c, LVL_1_DATA, 16 }, /* 4-way set assoc, 32 byte line size */
{ 0x22, LVL_3, 512 }, /* 4-way set assoc, sectored cache, 64 byte line size */
{ 0x23, LVL_3, 1024 }, /* 8-way set assoc, sectored cache, 64 byte line size */
{ 0x25, LVL_3, 2048 }, /* 8-way set assoc, sectored cache, 64 byte line size */
{ 0x29, LVL_3, 4096 }, /* 8-way set assoc, sectored cache, 64 byte line size */
{ 0x2c, LVL_1_DATA, 32 }, /* 8-way set assoc, 64 byte line size */
{ 0x30, LVL_1_INST, 32 }, /* 8-way set assoc, 64 byte line size */
{ 0x39, LVL_2, 128 }, /* 4-way set assoc, sectored cache, 64 byte line size */
{ 0x3b, LVL_2, 128 }, /* 2-way set assoc, sectored cache, 64 byte line size */
{ 0x3c, LVL_2, 256 }, /* 4-way set assoc, sectored cache, 64 byte line size */
{ 0x41, LVL_2, 128 }, /* 4-way set assoc, 32 byte line size */
{ 0x42, LVL_2, 256 }, /* 4-way set assoc, 32 byte line size */
{ 0x43, LVL_2, 512 }, /* 4-way set assoc, 32 byte line size */
{ 0x44, LVL_2, 1024 }, /* 4-way set assoc, 32 byte line size */
{ 0x45, LVL_2, 2048 }, /* 4-way set assoc, 32 byte line size */
{ 0x60, LVL_1_DATA, 16 }, /* 8-way set assoc, sectored cache, 64 byte line size */
{ 0x66, LVL_1_DATA, 8 }, /* 4-way set assoc, sectored cache, 64 byte line size */
{ 0x67, LVL_1_DATA, 16 }, /* 4-way set assoc, sectored cache, 64 byte line size */
{ 0x68, LVL_1_DATA, 32 }, /* 4-way set assoc, sectored cache, 64 byte line size */
{ 0x70, LVL_TRACE, 12 }, /* 8-way set assoc */
{ 0x71, LVL_TRACE, 16 }, /* 8-way set assoc */
{ 0x72, LVL_TRACE, 32 }, /* 8-way set assoc */
{ 0x78, LVL_2, 1024 }, /* 4-way set assoc, 64 byte line size */
{ 0x79, LVL_2, 128 }, /* 8-way set assoc, sectored cache, 64 byte line size */
{ 0x7a, LVL_2, 256 }, /* 8-way set assoc, sectored cache, 64 byte line size */
{ 0x7b, LVL_2, 512 }, /* 8-way set assoc, sectored cache, 64 byte line size */
{ 0x7c, LVL_2, 1024 }, /* 8-way set assoc, sectored cache, 64 byte line size */
{ 0x7d, LVL_2, 2048 }, /* 8-way set assoc, 64 byte line size */
{ 0x7f, LVL_2, 512 }, /* 2-way set assoc, 64 byte line size */
{ 0x82, LVL_2, 256 }, /* 8-way set assoc, 32 byte line size */
{ 0x83, LVL_2, 512 }, /* 8-way set assoc, 32 byte line size */
{ 0x84, LVL_2, 1024 }, /* 8-way set assoc, 32 byte line size */
{ 0x85, LVL_2, 2048 }, /* 8-way set assoc, 32 byte line size */
{ 0x86, LVL_2, 512 }, /* 4-way set assoc, 64 byte line size */
{ 0x87, LVL_2, 1024 }, /* 8-way set assoc, 64 byte line size */
{ 0x00, 0, 0}
};
enum _cache_type
{
CACHE_TYPE_NULL = 0,
CACHE_TYPE_DATA = 1,
CACHE_TYPE_INST = 2,
CACHE_TYPE_UNIFIED = 3
};
union _cpuid4_leaf_eax {
struct {
enum _cache_type type:5;
unsigned int level:3;
unsigned int is_self_initializing:1;
unsigned int is_fully_associative:1;
unsigned int reserved:4;
unsigned int num_threads_sharing:12;
unsigned int num_cores_on_die:6;
} split;
u32 full;
};
union _cpuid4_leaf_ebx {
struct {
unsigned int coherency_line_size:12;
unsigned int physical_line_partition:10;
unsigned int ways_of_associativity:10;
} split;
u32 full;
};
union _cpuid4_leaf_ecx {
struct {
unsigned int number_of_sets:32;
} split;
u32 full;
};
struct _cpuid4_info {
union _cpuid4_leaf_eax eax;
union _cpuid4_leaf_ebx ebx;
union _cpuid4_leaf_ecx ecx;
unsigned long size;
cpumask_t shared_cpu_map;
};
static unsigned short num_cache_leaves;
static int __cpuinit cpuid4_cache_lookup(int index, struct _cpuid4_info *this_leaf)
{
unsigned int eax, ebx, ecx, edx;
union _cpuid4_leaf_eax cache_eax;
cpuid_count(4, index, &eax, &ebx, &ecx, &edx);
cache_eax.full = eax;
if (cache_eax.split.type == CACHE_TYPE_NULL)
return -EIO; /* better error ? */
this_leaf->eax.full = eax;
this_leaf->ebx.full = ebx;
this_leaf->ecx.full = ecx;
this_leaf->size = (this_leaf->ecx.split.number_of_sets + 1) *
(this_leaf->ebx.split.coherency_line_size + 1) *
(this_leaf->ebx.split.physical_line_partition + 1) *
(this_leaf->ebx.split.ways_of_associativity + 1);
return 0;
}
static int __init find_num_cache_leaves(void)
{
unsigned int eax, ebx, ecx, edx;
union _cpuid4_leaf_eax cache_eax;
int i = -1;
do {
++i;
/* Do cpuid(4) loop to find out num_cache_leaves */
cpuid_count(4, i, &eax, &ebx, &ecx, &edx);
cache_eax.full = eax;
} while (cache_eax.split.type != CACHE_TYPE_NULL);
return i;
}
unsigned int __cpuinit init_intel_cacheinfo(struct cpuinfo_x86 *c)
{
unsigned int trace = 0, l1i = 0, l1d = 0, l2 = 0, l3 = 0; /* Cache sizes */
unsigned int new_l1d = 0, new_l1i = 0; /* Cache sizes from cpuid(4) */
unsigned int new_l2 = 0, new_l3 = 0, i; /* Cache sizes from cpuid(4) */
if (c->cpuid_level > 4) {
static int is_initialized;
if (is_initialized == 0) {
/* Init num_cache_leaves from boot CPU */
num_cache_leaves = find_num_cache_leaves();
is_initialized++;
}
/*
* Whenever possible use cpuid(4), deterministic cache
* parameters cpuid leaf to find the cache details
*/
for (i = 0; i < num_cache_leaves; i++) {
struct _cpuid4_info this_leaf;
int retval;
retval = cpuid4_cache_lookup(i, &this_leaf);
if (retval >= 0) {
switch(this_leaf.eax.split.level) {
case 1:
if (this_leaf.eax.split.type ==
CACHE_TYPE_DATA)
new_l1d = this_leaf.size/1024;
else if (this_leaf.eax.split.type ==
CACHE_TYPE_INST)
new_l1i = this_leaf.size/1024;
break;
case 2:
new_l2 = this_leaf.size/1024;
break;
case 3:
new_l3 = this_leaf.size/1024;
break;
default:
break;
}
}
}
}
if (c->cpuid_level > 1) {
/* supports eax=2 call */
int i, j, n;
int regs[4];
unsigned char *dp = (unsigned char *)regs;
/* Number of times to iterate */
n = cpuid_eax(2) & 0xFF;
for ( i = 0 ; i < n ; i++ ) {
cpuid(2, &regs[0], &regs[1], &regs[2], &regs[3]);
/* If bit 31 is set, this is an unknown format */
for ( j = 0 ; j < 3 ; j++ ) {
if ( regs[j] < 0 ) regs[j] = 0;
}
/* Byte 0 is level count, not a descriptor */
for ( j = 1 ; j < 16 ; j++ ) {
unsigned char des = dp[j];
unsigned char k = 0;
/* look up this descriptor in the table */
while (cache_table[k].descriptor != 0)
{
if (cache_table[k].descriptor == des) {
switch (cache_table[k].cache_type) {
case LVL_1_INST:
l1i += cache_table[k].size;
break;
case LVL_1_DATA:
l1d += cache_table[k].size;
break;
case LVL_2:
l2 += cache_table[k].size;
break;
case LVL_3:
l3 += cache_table[k].size;
break;
case LVL_TRACE:
trace += cache_table[k].size;
break;
}
break;
}
k++;
}
}
}
if (new_l1d)
l1d = new_l1d;
if (new_l1i)
l1i = new_l1i;
if (new_l2)
l2 = new_l2;
if (new_l3)
l3 = new_l3;
if ( trace )
printk (KERN_INFO "CPU: Trace cache: %dK uops", trace);
else if ( l1i )
printk (KERN_INFO "CPU: L1 I cache: %dK", l1i);
if ( l1d )
printk(", L1 D cache: %dK\n", l1d);
else
printk("\n");
if ( l2 )
printk(KERN_INFO "CPU: L2 cache: %dK\n", l2);
if ( l3 )
printk(KERN_INFO "CPU: L3 cache: %dK\n", l3);
c->x86_cache_size = l3 ? l3 : (l2 ? l2 : (l1i+l1d));
}
return l2;
}
/* pointer to _cpuid4_info array (for each cache leaf) */
static struct _cpuid4_info *cpuid4_info[NR_CPUS];
#define CPUID4_INFO_IDX(x,y) (&((cpuid4_info[x])[y]))
#ifdef CONFIG_SMP
static void __cpuinit cache_shared_cpu_map_setup(unsigned int cpu, int index)
{
struct _cpuid4_info *this_leaf;
unsigned long num_threads_sharing;
#ifdef CONFIG_X86_HT
struct cpuinfo_x86 *c = cpu_data + cpu;
#endif
this_leaf = CPUID4_INFO_IDX(cpu, index);
num_threads_sharing = 1 + this_leaf->eax.split.num_threads_sharing;
if (num_threads_sharing == 1)
cpu_set(cpu, this_leaf->shared_cpu_map);
#ifdef CONFIG_X86_HT
else if (num_threads_sharing == smp_num_siblings)
this_leaf->shared_cpu_map = cpu_sibling_map[cpu];
else if (num_threads_sharing == (c->x86_num_cores * smp_num_siblings))
this_leaf->shared_cpu_map = cpu_core_map[cpu];
else
printk(KERN_DEBUG "Number of CPUs sharing cache didn't match "
"any known set of CPUs\n");
#endif
}
#else
static void __init cache_shared_cpu_map_setup(unsigned int cpu, int index) {}
#endif
static void free_cache_attributes(unsigned int cpu)
{
kfree(cpuid4_info[cpu]);
cpuid4_info[cpu] = NULL;
}
static int __cpuinit detect_cache_attributes(unsigned int cpu)
{
struct _cpuid4_info *this_leaf;
unsigned long j;
int retval;
cpumask_t oldmask;
if (num_cache_leaves == 0)
return -ENOENT;
cpuid4_info[cpu] = kmalloc(
sizeof(struct _cpuid4_info) * num_cache_leaves, GFP_KERNEL);
if (unlikely(cpuid4_info[cpu] == NULL))
return -ENOMEM;
memset(cpuid4_info[cpu], 0,
sizeof(struct _cpuid4_info) * num_cache_leaves);
oldmask = current->cpus_allowed;
retval = set_cpus_allowed(current, cpumask_of_cpu(cpu));
if (retval)
goto out;
/* Do cpuid and store the results */
retval = 0;
for (j = 0; j < num_cache_leaves; j++) {
this_leaf = CPUID4_INFO_IDX(cpu, j);
retval = cpuid4_cache_lookup(j, this_leaf);
if (unlikely(retval < 0))
break;
cache_shared_cpu_map_setup(cpu, j);
}
set_cpus_allowed(current, oldmask);
out:
if (retval)
free_cache_attributes(cpu);
return retval;
}
#ifdef CONFIG_SYSFS
#include <linux/kobject.h>
#include <linux/sysfs.h>
extern struct sysdev_class cpu_sysdev_class; /* from drivers/base/cpu.c */
/* pointer to kobject for cpuX/cache */
static struct kobject * cache_kobject[NR_CPUS];
struct _index_kobject {
struct kobject kobj;
unsigned int cpu;
unsigned short index;
};
/* pointer to array of kobjects for cpuX/cache/indexY */
static struct _index_kobject *index_kobject[NR_CPUS];
#define INDEX_KOBJECT_PTR(x,y) (&((index_kobject[x])[y]))
#define show_one_plus(file_name, object, val) \
static ssize_t show_##file_name \
(struct _cpuid4_info *this_leaf, char *buf) \
{ \
return sprintf (buf, "%lu\n", (unsigned long)this_leaf->object + val); \
}
show_one_plus(level, eax.split.level, 0);
show_one_plus(coherency_line_size, ebx.split.coherency_line_size, 1);
show_one_plus(physical_line_partition, ebx.split.physical_line_partition, 1);
show_one_plus(ways_of_associativity, ebx.split.ways_of_associativity, 1);
show_one_plus(number_of_sets, ecx.split.number_of_sets, 1);
static ssize_t show_size(struct _cpuid4_info *this_leaf, char *buf)
{
return sprintf (buf, "%luK\n", this_leaf->size / 1024);
}
static ssize_t show_shared_cpu_map(struct _cpuid4_info *this_leaf, char *buf)
{
char mask_str[NR_CPUS];
cpumask_scnprintf(mask_str, NR_CPUS, this_leaf->shared_cpu_map);
return sprintf(buf, "%s\n", mask_str);
}
static ssize_t show_type(struct _cpuid4_info *this_leaf, char *buf) {
switch(this_leaf->eax.split.type) {
case CACHE_TYPE_DATA:
return sprintf(buf, "Data\n");
break;
case CACHE_TYPE_INST:
return sprintf(buf, "Instruction\n");
break;
case CACHE_TYPE_UNIFIED:
return sprintf(buf, "Unified\n");
break;
default:
return sprintf(buf, "Unknown\n");
break;
}
}
struct _cache_attr {
struct attribute attr;
ssize_t (*show)(struct _cpuid4_info *, char *);
ssize_t (*store)(struct _cpuid4_info *, const char *, size_t count);
};
#define define_one_ro(_name) \
static struct _cache_attr _name = \
__ATTR(_name, 0444, show_##_name, NULL)
define_one_ro(level);
define_one_ro(type);
define_one_ro(coherency_line_size);
define_one_ro(physical_line_partition);
define_one_ro(ways_of_associativity);
define_one_ro(number_of_sets);
define_one_ro(size);
define_one_ro(shared_cpu_map);
static struct attribute * default_attrs[] = {
&type.attr,
&level.attr,
&coherency_line_size.attr,
&physical_line_partition.attr,
&ways_of_associativity.attr,
&number_of_sets.attr,
&size.attr,
&shared_cpu_map.attr,
NULL
};
#define to_object(k) container_of(k, struct _index_kobject, kobj)
#define to_attr(a) container_of(a, struct _cache_attr, attr)
static ssize_t show(struct kobject * kobj, struct attribute * attr, char * buf)
{
struct _cache_attr *fattr = to_attr(attr);
struct _index_kobject *this_leaf = to_object(kobj);
ssize_t ret;
ret = fattr->show ?
fattr->show(CPUID4_INFO_IDX(this_leaf->cpu, this_leaf->index),
buf) :
0;
return ret;
}
static ssize_t store(struct kobject * kobj, struct attribute * attr,
const char * buf, size_t count)
{
return 0;
}
static struct sysfs_ops sysfs_ops = {
.show = show,
.store = store,
};
static struct kobj_type ktype_cache = {
.sysfs_ops = &sysfs_ops,
.default_attrs = default_attrs,
};
static struct kobj_type ktype_percpu_entry = {
.sysfs_ops = &sysfs_ops,
};
static void cpuid4_cache_sysfs_exit(unsigned int cpu)
{
kfree(cache_kobject[cpu]);
kfree(index_kobject[cpu]);
cache_kobject[cpu] = NULL;
index_kobject[cpu] = NULL;
free_cache_attributes(cpu);
}
static int __cpuinit cpuid4_cache_sysfs_init(unsigned int cpu)
{
if (num_cache_leaves == 0)
return -ENOENT;
detect_cache_attributes(cpu);
if (cpuid4_info[cpu] == NULL)
return -ENOENT;
/* Allocate all required memory */
cache_kobject[cpu] = kmalloc(sizeof(struct kobject), GFP_KERNEL);
if (unlikely(cache_kobject[cpu] == NULL))
goto err_out;
memset(cache_kobject[cpu], 0, sizeof(struct kobject));
index_kobject[cpu] = kmalloc(
sizeof(struct _index_kobject ) * num_cache_leaves, GFP_KERNEL);
if (unlikely(index_kobject[cpu] == NULL))
goto err_out;
memset(index_kobject[cpu], 0,
sizeof(struct _index_kobject) * num_cache_leaves);
return 0;
err_out:
cpuid4_cache_sysfs_exit(cpu);
return -ENOMEM;
}
/* Add/Remove cache interface for CPU device */
static int __cpuinit cache_add_dev(struct sys_device * sys_dev)
{
unsigned int cpu = sys_dev->id;
unsigned long i, j;
struct _index_kobject *this_object;
int retval = 0;
retval = cpuid4_cache_sysfs_init(cpu);
if (unlikely(retval < 0))
return retval;
cache_kobject[cpu]->parent = &sys_dev->kobj;
kobject_set_name(cache_kobject[cpu], "%s", "cache");
cache_kobject[cpu]->ktype = &ktype_percpu_entry;
retval = kobject_register(cache_kobject[cpu]);
for (i = 0; i < num_cache_leaves; i++) {
this_object = INDEX_KOBJECT_PTR(cpu,i);
this_object->cpu = cpu;
this_object->index = i;
this_object->kobj.parent = cache_kobject[cpu];
kobject_set_name(&(this_object->kobj), "index%1lu", i);
this_object->kobj.ktype = &ktype_cache;
retval = kobject_register(&(this_object->kobj));
if (unlikely(retval)) {
for (j = 0; j < i; j++) {
kobject_unregister(
&(INDEX_KOBJECT_PTR(cpu,j)->kobj));
}
kobject_unregister(cache_kobject[cpu]);
cpuid4_cache_sysfs_exit(cpu);
break;
}
}
return retval;
}
static void __cpuexit cache_remove_dev(struct sys_device * sys_dev)
{
unsigned int cpu = sys_dev->id;
unsigned long i;
for (i = 0; i < num_cache_leaves; i++)
kobject_unregister(&(INDEX_KOBJECT_PTR(cpu,i)->kobj));
kobject_unregister(cache_kobject[cpu]);
cpuid4_cache_sysfs_exit(cpu);
return;
}
static int __cpuinit cacheinfo_cpu_callback(struct notifier_block *nfb,
unsigned long action, void *hcpu)
{
unsigned int cpu = (unsigned long)hcpu;
struct sys_device *sys_dev;
sys_dev = get_cpu_sysdev(cpu);
switch (action) {
case CPU_ONLINE:
cache_add_dev(sys_dev);
break;
case CPU_DEAD:
cache_remove_dev(sys_dev);
break;
}
return NOTIFY_OK;
}
static struct notifier_block cacheinfo_cpu_notifier =
{
.notifier_call = cacheinfo_cpu_callback,
};
static int __cpuinit cache_sysfs_init(void)
{
int i;
if (num_cache_leaves == 0)
return 0;
register_cpu_notifier(&cacheinfo_cpu_notifier);
for_each_online_cpu(i) {
cacheinfo_cpu_callback(&cacheinfo_cpu_notifier, CPU_ONLINE,
(void *)(long)i);
}
return 0;
}
device_initcall(cache_sysfs_init);
#endif