b3ce1debe2
Some manual fixups for clashing kfree() cleanups etc.
1278 lines
36 KiB
C
1278 lines
36 KiB
C
/*
|
|
* JFFS2 -- Journalling Flash File System, Version 2.
|
|
*
|
|
* Copyright (C) 2001-2003 Red Hat, Inc.
|
|
* Copyright (C) 2004 Thomas Gleixner <tglx@linutronix.de>
|
|
*
|
|
* Created by David Woodhouse <dwmw2@infradead.org>
|
|
* Modified debugged and enhanced by Thomas Gleixner <tglx@linutronix.de>
|
|
*
|
|
* For licensing information, see the file 'LICENCE' in this directory.
|
|
*
|
|
* $Id: wbuf.c,v 1.100 2005/09/30 13:59:13 dedekind Exp $
|
|
*
|
|
*/
|
|
|
|
#include <linux/kernel.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/mtd/mtd.h>
|
|
#include <linux/crc32.h>
|
|
#include <linux/mtd/nand.h>
|
|
#include <linux/jiffies.h>
|
|
|
|
#include "nodelist.h"
|
|
|
|
/* For testing write failures */
|
|
#undef BREAKME
|
|
#undef BREAKMEHEADER
|
|
|
|
#ifdef BREAKME
|
|
static unsigned char *brokenbuf;
|
|
#endif
|
|
|
|
#define PAGE_DIV(x) ( ((unsigned long)(x) / (unsigned long)(c->wbuf_pagesize)) * (unsigned long)(c->wbuf_pagesize) )
|
|
#define PAGE_MOD(x) ( (unsigned long)(x) % (unsigned long)(c->wbuf_pagesize) )
|
|
|
|
/* max. erase failures before we mark a block bad */
|
|
#define MAX_ERASE_FAILURES 2
|
|
|
|
struct jffs2_inodirty {
|
|
uint32_t ino;
|
|
struct jffs2_inodirty *next;
|
|
};
|
|
|
|
static struct jffs2_inodirty inodirty_nomem;
|
|
|
|
static int jffs2_wbuf_pending_for_ino(struct jffs2_sb_info *c, uint32_t ino)
|
|
{
|
|
struct jffs2_inodirty *this = c->wbuf_inodes;
|
|
|
|
/* If a malloc failed, consider _everything_ dirty */
|
|
if (this == &inodirty_nomem)
|
|
return 1;
|
|
|
|
/* If ino == 0, _any_ non-GC writes mean 'yes' */
|
|
if (this && !ino)
|
|
return 1;
|
|
|
|
/* Look to see if the inode in question is pending in the wbuf */
|
|
while (this) {
|
|
if (this->ino == ino)
|
|
return 1;
|
|
this = this->next;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static void jffs2_clear_wbuf_ino_list(struct jffs2_sb_info *c)
|
|
{
|
|
struct jffs2_inodirty *this;
|
|
|
|
this = c->wbuf_inodes;
|
|
|
|
if (this != &inodirty_nomem) {
|
|
while (this) {
|
|
struct jffs2_inodirty *next = this->next;
|
|
kfree(this);
|
|
this = next;
|
|
}
|
|
}
|
|
c->wbuf_inodes = NULL;
|
|
}
|
|
|
|
static void jffs2_wbuf_dirties_inode(struct jffs2_sb_info *c, uint32_t ino)
|
|
{
|
|
struct jffs2_inodirty *new;
|
|
|
|
/* Mark the superblock dirty so that kupdated will flush... */
|
|
jffs2_erase_pending_trigger(c);
|
|
|
|
if (jffs2_wbuf_pending_for_ino(c, ino))
|
|
return;
|
|
|
|
new = kmalloc(sizeof(*new), GFP_KERNEL);
|
|
if (!new) {
|
|
D1(printk(KERN_DEBUG "No memory to allocate inodirty. Fallback to all considered dirty\n"));
|
|
jffs2_clear_wbuf_ino_list(c);
|
|
c->wbuf_inodes = &inodirty_nomem;
|
|
return;
|
|
}
|
|
new->ino = ino;
|
|
new->next = c->wbuf_inodes;
|
|
c->wbuf_inodes = new;
|
|
return;
|
|
}
|
|
|
|
static inline void jffs2_refile_wbuf_blocks(struct jffs2_sb_info *c)
|
|
{
|
|
struct list_head *this, *next;
|
|
static int n;
|
|
|
|
if (list_empty(&c->erasable_pending_wbuf_list))
|
|
return;
|
|
|
|
list_for_each_safe(this, next, &c->erasable_pending_wbuf_list) {
|
|
struct jffs2_eraseblock *jeb = list_entry(this, struct jffs2_eraseblock, list);
|
|
|
|
D1(printk(KERN_DEBUG "Removing eraseblock at 0x%08x from erasable_pending_wbuf_list...\n", jeb->offset));
|
|
list_del(this);
|
|
if ((jiffies + (n++)) & 127) {
|
|
/* Most of the time, we just erase it immediately. Otherwise we
|
|
spend ages scanning it on mount, etc. */
|
|
D1(printk(KERN_DEBUG "...and adding to erase_pending_list\n"));
|
|
list_add_tail(&jeb->list, &c->erase_pending_list);
|
|
c->nr_erasing_blocks++;
|
|
jffs2_erase_pending_trigger(c);
|
|
} else {
|
|
/* Sometimes, however, we leave it elsewhere so it doesn't get
|
|
immediately reused, and we spread the load a bit. */
|
|
D1(printk(KERN_DEBUG "...and adding to erasable_list\n"));
|
|
list_add_tail(&jeb->list, &c->erasable_list);
|
|
}
|
|
}
|
|
}
|
|
|
|
#define REFILE_NOTEMPTY 0
|
|
#define REFILE_ANYWAY 1
|
|
|
|
static void jffs2_block_refile(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb, int allow_empty)
|
|
{
|
|
D1(printk("About to refile bad block at %08x\n", jeb->offset));
|
|
|
|
/* File the existing block on the bad_used_list.... */
|
|
if (c->nextblock == jeb)
|
|
c->nextblock = NULL;
|
|
else /* Not sure this should ever happen... need more coffee */
|
|
list_del(&jeb->list);
|
|
if (jeb->first_node) {
|
|
D1(printk("Refiling block at %08x to bad_used_list\n", jeb->offset));
|
|
list_add(&jeb->list, &c->bad_used_list);
|
|
} else {
|
|
BUG_ON(allow_empty == REFILE_NOTEMPTY);
|
|
/* It has to have had some nodes or we couldn't be here */
|
|
D1(printk("Refiling block at %08x to erase_pending_list\n", jeb->offset));
|
|
list_add(&jeb->list, &c->erase_pending_list);
|
|
c->nr_erasing_blocks++;
|
|
jffs2_erase_pending_trigger(c);
|
|
}
|
|
|
|
/* Adjust its size counts accordingly */
|
|
c->wasted_size += jeb->free_size;
|
|
c->free_size -= jeb->free_size;
|
|
jeb->wasted_size += jeb->free_size;
|
|
jeb->free_size = 0;
|
|
|
|
jffs2_dbg_dump_block_lists_nolock(c);
|
|
jffs2_dbg_acct_sanity_check_nolock(c,jeb);
|
|
jffs2_dbg_acct_paranoia_check_nolock(c, jeb);
|
|
}
|
|
|
|
/* Recover from failure to write wbuf. Recover the nodes up to the
|
|
* wbuf, not the one which we were starting to try to write. */
|
|
|
|
static void jffs2_wbuf_recover(struct jffs2_sb_info *c)
|
|
{
|
|
struct jffs2_eraseblock *jeb, *new_jeb;
|
|
struct jffs2_raw_node_ref **first_raw, **raw;
|
|
size_t retlen;
|
|
int ret;
|
|
unsigned char *buf;
|
|
uint32_t start, end, ofs, len;
|
|
|
|
spin_lock(&c->erase_completion_lock);
|
|
|
|
jeb = &c->blocks[c->wbuf_ofs / c->sector_size];
|
|
|
|
jffs2_block_refile(c, jeb, REFILE_NOTEMPTY);
|
|
|
|
/* Find the first node to be recovered, by skipping over every
|
|
node which ends before the wbuf starts, or which is obsolete. */
|
|
first_raw = &jeb->first_node;
|
|
while (*first_raw &&
|
|
(ref_obsolete(*first_raw) ||
|
|
(ref_offset(*first_raw)+ref_totlen(c, jeb, *first_raw)) < c->wbuf_ofs)) {
|
|
D1(printk(KERN_DEBUG "Skipping node at 0x%08x(%d)-0x%08x which is either before 0x%08x or obsolete\n",
|
|
ref_offset(*first_raw), ref_flags(*first_raw),
|
|
(ref_offset(*first_raw) + ref_totlen(c, jeb, *first_raw)),
|
|
c->wbuf_ofs));
|
|
first_raw = &(*first_raw)->next_phys;
|
|
}
|
|
|
|
if (!*first_raw) {
|
|
/* All nodes were obsolete. Nothing to recover. */
|
|
D1(printk(KERN_DEBUG "No non-obsolete nodes to be recovered. Just filing block bad\n"));
|
|
spin_unlock(&c->erase_completion_lock);
|
|
return;
|
|
}
|
|
|
|
start = ref_offset(*first_raw);
|
|
end = ref_offset(*first_raw) + ref_totlen(c, jeb, *first_raw);
|
|
|
|
/* Find the last node to be recovered */
|
|
raw = first_raw;
|
|
while ((*raw)) {
|
|
if (!ref_obsolete(*raw))
|
|
end = ref_offset(*raw) + ref_totlen(c, jeb, *raw);
|
|
|
|
raw = &(*raw)->next_phys;
|
|
}
|
|
spin_unlock(&c->erase_completion_lock);
|
|
|
|
D1(printk(KERN_DEBUG "wbuf recover %08x-%08x\n", start, end));
|
|
|
|
buf = NULL;
|
|
if (start < c->wbuf_ofs) {
|
|
/* First affected node was already partially written.
|
|
* Attempt to reread the old data into our buffer. */
|
|
|
|
buf = kmalloc(end - start, GFP_KERNEL);
|
|
if (!buf) {
|
|
printk(KERN_CRIT "Malloc failure in wbuf recovery. Data loss ensues.\n");
|
|
|
|
goto read_failed;
|
|
}
|
|
|
|
/* Do the read... */
|
|
if (jffs2_cleanmarker_oob(c))
|
|
ret = c->mtd->read_ecc(c->mtd, start, c->wbuf_ofs - start, &retlen, buf, NULL, c->oobinfo);
|
|
else
|
|
ret = c->mtd->read(c->mtd, start, c->wbuf_ofs - start, &retlen, buf);
|
|
|
|
if (ret == -EBADMSG && retlen == c->wbuf_ofs - start) {
|
|
/* ECC recovered */
|
|
ret = 0;
|
|
}
|
|
if (ret || retlen != c->wbuf_ofs - start) {
|
|
printk(KERN_CRIT "Old data are already lost in wbuf recovery. Data loss ensues.\n");
|
|
|
|
kfree(buf);
|
|
buf = NULL;
|
|
read_failed:
|
|
first_raw = &(*first_raw)->next_phys;
|
|
/* If this was the only node to be recovered, give up */
|
|
if (!(*first_raw))
|
|
return;
|
|
|
|
/* It wasn't. Go on and try to recover nodes complete in the wbuf */
|
|
start = ref_offset(*first_raw);
|
|
} else {
|
|
/* Read succeeded. Copy the remaining data from the wbuf */
|
|
memcpy(buf + (c->wbuf_ofs - start), c->wbuf, end - c->wbuf_ofs);
|
|
}
|
|
}
|
|
/* OK... we're to rewrite (end-start) bytes of data from first_raw onwards.
|
|
Either 'buf' contains the data, or we find it in the wbuf */
|
|
|
|
|
|
/* ... and get an allocation of space from a shiny new block instead */
|
|
ret = jffs2_reserve_space_gc(c, end-start, &ofs, &len, JFFS2_SUMMARY_NOSUM_SIZE);
|
|
if (ret) {
|
|
printk(KERN_WARNING "Failed to allocate space for wbuf recovery. Data loss ensues.\n");
|
|
kfree(buf);
|
|
return;
|
|
}
|
|
if (end-start >= c->wbuf_pagesize) {
|
|
/* Need to do another write immediately, but it's possible
|
|
that this is just because the wbuf itself is completely
|
|
full, and there's nothing earlier read back from the
|
|
flash. Hence 'buf' isn't necessarily what we're writing
|
|
from. */
|
|
unsigned char *rewrite_buf = buf?:c->wbuf;
|
|
uint32_t towrite = (end-start) - ((end-start)%c->wbuf_pagesize);
|
|
|
|
D1(printk(KERN_DEBUG "Write 0x%x bytes at 0x%08x in wbuf recover\n",
|
|
towrite, ofs));
|
|
|
|
#ifdef BREAKMEHEADER
|
|
static int breakme;
|
|
if (breakme++ == 20) {
|
|
printk(KERN_NOTICE "Faking write error at 0x%08x\n", ofs);
|
|
breakme = 0;
|
|
c->mtd->write_ecc(c->mtd, ofs, towrite, &retlen,
|
|
brokenbuf, NULL, c->oobinfo);
|
|
ret = -EIO;
|
|
} else
|
|
#endif
|
|
if (jffs2_cleanmarker_oob(c))
|
|
ret = c->mtd->write_ecc(c->mtd, ofs, towrite, &retlen,
|
|
rewrite_buf, NULL, c->oobinfo);
|
|
else
|
|
ret = c->mtd->write(c->mtd, ofs, towrite, &retlen, rewrite_buf);
|
|
|
|
if (ret || retlen != towrite) {
|
|
/* Argh. We tried. Really we did. */
|
|
printk(KERN_CRIT "Recovery of wbuf failed due to a second write error\n");
|
|
kfree(buf);
|
|
|
|
if (retlen) {
|
|
struct jffs2_raw_node_ref *raw2;
|
|
|
|
raw2 = jffs2_alloc_raw_node_ref();
|
|
if (!raw2)
|
|
return;
|
|
|
|
raw2->flash_offset = ofs | REF_OBSOLETE;
|
|
raw2->__totlen = ref_totlen(c, jeb, *first_raw);
|
|
raw2->next_phys = NULL;
|
|
raw2->next_in_ino = NULL;
|
|
|
|
jffs2_add_physical_node_ref(c, raw2);
|
|
}
|
|
return;
|
|
}
|
|
printk(KERN_NOTICE "Recovery of wbuf succeeded to %08x\n", ofs);
|
|
|
|
c->wbuf_len = (end - start) - towrite;
|
|
c->wbuf_ofs = ofs + towrite;
|
|
memmove(c->wbuf, rewrite_buf + towrite, c->wbuf_len);
|
|
/* Don't muck about with c->wbuf_inodes. False positives are harmless. */
|
|
kfree(buf);
|
|
} else {
|
|
/* OK, now we're left with the dregs in whichever buffer we're using */
|
|
if (buf) {
|
|
memcpy(c->wbuf, buf, end-start);
|
|
kfree(buf);
|
|
} else {
|
|
memmove(c->wbuf, c->wbuf + (start - c->wbuf_ofs), end - start);
|
|
}
|
|
c->wbuf_ofs = ofs;
|
|
c->wbuf_len = end - start;
|
|
}
|
|
|
|
/* Now sort out the jffs2_raw_node_refs, moving them from the old to the next block */
|
|
new_jeb = &c->blocks[ofs / c->sector_size];
|
|
|
|
spin_lock(&c->erase_completion_lock);
|
|
if (new_jeb->first_node) {
|
|
/* Odd, but possible with ST flash later maybe */
|
|
new_jeb->last_node->next_phys = *first_raw;
|
|
} else {
|
|
new_jeb->first_node = *first_raw;
|
|
}
|
|
|
|
raw = first_raw;
|
|
while (*raw) {
|
|
uint32_t rawlen = ref_totlen(c, jeb, *raw);
|
|
|
|
D1(printk(KERN_DEBUG "Refiling block of %08x at %08x(%d) to %08x\n",
|
|
rawlen, ref_offset(*raw), ref_flags(*raw), ofs));
|
|
|
|
if (ref_obsolete(*raw)) {
|
|
/* Shouldn't really happen much */
|
|
new_jeb->dirty_size += rawlen;
|
|
new_jeb->free_size -= rawlen;
|
|
c->dirty_size += rawlen;
|
|
} else {
|
|
new_jeb->used_size += rawlen;
|
|
new_jeb->free_size -= rawlen;
|
|
jeb->dirty_size += rawlen;
|
|
jeb->used_size -= rawlen;
|
|
c->dirty_size += rawlen;
|
|
}
|
|
c->free_size -= rawlen;
|
|
(*raw)->flash_offset = ofs | ref_flags(*raw);
|
|
ofs += rawlen;
|
|
new_jeb->last_node = *raw;
|
|
|
|
raw = &(*raw)->next_phys;
|
|
}
|
|
|
|
/* Fix up the original jeb now it's on the bad_list */
|
|
*first_raw = NULL;
|
|
if (first_raw == &jeb->first_node) {
|
|
jeb->last_node = NULL;
|
|
D1(printk(KERN_DEBUG "Failing block at %08x is now empty. Moving to erase_pending_list\n", jeb->offset));
|
|
list_del(&jeb->list);
|
|
list_add(&jeb->list, &c->erase_pending_list);
|
|
c->nr_erasing_blocks++;
|
|
jffs2_erase_pending_trigger(c);
|
|
}
|
|
else
|
|
jeb->last_node = container_of(first_raw, struct jffs2_raw_node_ref, next_phys);
|
|
|
|
jffs2_dbg_acct_sanity_check_nolock(c, jeb);
|
|
jffs2_dbg_acct_paranoia_check_nolock(c, jeb);
|
|
|
|
jffs2_dbg_acct_sanity_check_nolock(c, new_jeb);
|
|
jffs2_dbg_acct_paranoia_check_nolock(c, new_jeb);
|
|
|
|
spin_unlock(&c->erase_completion_lock);
|
|
|
|
D1(printk(KERN_DEBUG "wbuf recovery completed OK\n"));
|
|
}
|
|
|
|
/* Meaning of pad argument:
|
|
0: Do not pad. Probably pointless - we only ever use this when we can't pad anyway.
|
|
1: Pad, do not adjust nextblock free_size
|
|
2: Pad, adjust nextblock free_size
|
|
*/
|
|
#define NOPAD 0
|
|
#define PAD_NOACCOUNT 1
|
|
#define PAD_ACCOUNTING 2
|
|
|
|
static int __jffs2_flush_wbuf(struct jffs2_sb_info *c, int pad)
|
|
{
|
|
int ret;
|
|
size_t retlen;
|
|
|
|
/* Nothing to do if not write-buffering the flash. In particular, we shouldn't
|
|
del_timer() the timer we never initialised. */
|
|
if (!jffs2_is_writebuffered(c))
|
|
return 0;
|
|
|
|
if (!down_trylock(&c->alloc_sem)) {
|
|
up(&c->alloc_sem);
|
|
printk(KERN_CRIT "jffs2_flush_wbuf() called with alloc_sem not locked!\n");
|
|
BUG();
|
|
}
|
|
|
|
if (!c->wbuf_len) /* already checked c->wbuf above */
|
|
return 0;
|
|
|
|
/* claim remaining space on the page
|
|
this happens, if we have a change to a new block,
|
|
or if fsync forces us to flush the writebuffer.
|
|
if we have a switch to next page, we will not have
|
|
enough remaining space for this.
|
|
*/
|
|
if (pad ) {
|
|
c->wbuf_len = PAD(c->wbuf_len);
|
|
|
|
/* Pad with JFFS2_DIRTY_BITMASK initially. this helps out ECC'd NOR
|
|
with 8 byte page size */
|
|
memset(c->wbuf + c->wbuf_len, 0, c->wbuf_pagesize - c->wbuf_len);
|
|
|
|
if ( c->wbuf_len + sizeof(struct jffs2_unknown_node) < c->wbuf_pagesize) {
|
|
struct jffs2_unknown_node *padnode = (void *)(c->wbuf + c->wbuf_len);
|
|
padnode->magic = cpu_to_je16(JFFS2_MAGIC_BITMASK);
|
|
padnode->nodetype = cpu_to_je16(JFFS2_NODETYPE_PADDING);
|
|
padnode->totlen = cpu_to_je32(c->wbuf_pagesize - c->wbuf_len);
|
|
padnode->hdr_crc = cpu_to_je32(crc32(0, padnode, sizeof(*padnode)-4));
|
|
}
|
|
}
|
|
/* else jffs2_flash_writev has actually filled in the rest of the
|
|
buffer for us, and will deal with the node refs etc. later. */
|
|
|
|
#ifdef BREAKME
|
|
static int breakme;
|
|
if (breakme++ == 20) {
|
|
printk(KERN_NOTICE "Faking write error at 0x%08x\n", c->wbuf_ofs);
|
|
breakme = 0;
|
|
c->mtd->write_ecc(c->mtd, c->wbuf_ofs, c->wbuf_pagesize,
|
|
&retlen, brokenbuf, NULL, c->oobinfo);
|
|
ret = -EIO;
|
|
} else
|
|
#endif
|
|
|
|
if (jffs2_cleanmarker_oob(c))
|
|
ret = c->mtd->write_ecc(c->mtd, c->wbuf_ofs, c->wbuf_pagesize, &retlen, c->wbuf, NULL, c->oobinfo);
|
|
else
|
|
ret = c->mtd->write(c->mtd, c->wbuf_ofs, c->wbuf_pagesize, &retlen, c->wbuf);
|
|
|
|
if (ret || retlen != c->wbuf_pagesize) {
|
|
if (ret)
|
|
printk(KERN_WARNING "jffs2_flush_wbuf(): Write failed with %d\n",ret);
|
|
else {
|
|
printk(KERN_WARNING "jffs2_flush_wbuf(): Write was short: %zd instead of %d\n",
|
|
retlen, c->wbuf_pagesize);
|
|
ret = -EIO;
|
|
}
|
|
|
|
jffs2_wbuf_recover(c);
|
|
|
|
return ret;
|
|
}
|
|
|
|
spin_lock(&c->erase_completion_lock);
|
|
|
|
/* Adjust free size of the block if we padded. */
|
|
if (pad) {
|
|
struct jffs2_eraseblock *jeb;
|
|
|
|
jeb = &c->blocks[c->wbuf_ofs / c->sector_size];
|
|
|
|
D1(printk(KERN_DEBUG "jffs2_flush_wbuf() adjusting free_size of %sblock at %08x\n",
|
|
(jeb==c->nextblock)?"next":"", jeb->offset));
|
|
|
|
/* wbuf_pagesize - wbuf_len is the amount of space that's to be
|
|
padded. If there is less free space in the block than that,
|
|
something screwed up */
|
|
if (jeb->free_size < (c->wbuf_pagesize - c->wbuf_len)) {
|
|
printk(KERN_CRIT "jffs2_flush_wbuf(): Accounting error. wbuf at 0x%08x has 0x%03x bytes, 0x%03x left.\n",
|
|
c->wbuf_ofs, c->wbuf_len, c->wbuf_pagesize-c->wbuf_len);
|
|
printk(KERN_CRIT "jffs2_flush_wbuf(): But free_size for block at 0x%08x is only 0x%08x\n",
|
|
jeb->offset, jeb->free_size);
|
|
BUG();
|
|
}
|
|
jeb->free_size -= (c->wbuf_pagesize - c->wbuf_len);
|
|
c->free_size -= (c->wbuf_pagesize - c->wbuf_len);
|
|
jeb->wasted_size += (c->wbuf_pagesize - c->wbuf_len);
|
|
c->wasted_size += (c->wbuf_pagesize - c->wbuf_len);
|
|
}
|
|
|
|
/* Stick any now-obsoleted blocks on the erase_pending_list */
|
|
jffs2_refile_wbuf_blocks(c);
|
|
jffs2_clear_wbuf_ino_list(c);
|
|
spin_unlock(&c->erase_completion_lock);
|
|
|
|
memset(c->wbuf,0xff,c->wbuf_pagesize);
|
|
/* adjust write buffer offset, else we get a non contiguous write bug */
|
|
c->wbuf_ofs += c->wbuf_pagesize;
|
|
c->wbuf_len = 0;
|
|
return 0;
|
|
}
|
|
|
|
/* Trigger garbage collection to flush the write-buffer.
|
|
If ino arg is zero, do it if _any_ real (i.e. not GC) writes are
|
|
outstanding. If ino arg non-zero, do it only if a write for the
|
|
given inode is outstanding. */
|
|
int jffs2_flush_wbuf_gc(struct jffs2_sb_info *c, uint32_t ino)
|
|
{
|
|
uint32_t old_wbuf_ofs;
|
|
uint32_t old_wbuf_len;
|
|
int ret = 0;
|
|
|
|
D1(printk(KERN_DEBUG "jffs2_flush_wbuf_gc() called for ino #%u...\n", ino));
|
|
|
|
if (!c->wbuf)
|
|
return 0;
|
|
|
|
down(&c->alloc_sem);
|
|
if (!jffs2_wbuf_pending_for_ino(c, ino)) {
|
|
D1(printk(KERN_DEBUG "Ino #%d not pending in wbuf. Returning\n", ino));
|
|
up(&c->alloc_sem);
|
|
return 0;
|
|
}
|
|
|
|
old_wbuf_ofs = c->wbuf_ofs;
|
|
old_wbuf_len = c->wbuf_len;
|
|
|
|
if (c->unchecked_size) {
|
|
/* GC won't make any progress for a while */
|
|
D1(printk(KERN_DEBUG "jffs2_flush_wbuf_gc() padding. Not finished checking\n"));
|
|
down_write(&c->wbuf_sem);
|
|
ret = __jffs2_flush_wbuf(c, PAD_ACCOUNTING);
|
|
/* retry flushing wbuf in case jffs2_wbuf_recover
|
|
left some data in the wbuf */
|
|
if (ret)
|
|
ret = __jffs2_flush_wbuf(c, PAD_ACCOUNTING);
|
|
up_write(&c->wbuf_sem);
|
|
} else while (old_wbuf_len &&
|
|
old_wbuf_ofs == c->wbuf_ofs) {
|
|
|
|
up(&c->alloc_sem);
|
|
|
|
D1(printk(KERN_DEBUG "jffs2_flush_wbuf_gc() calls gc pass\n"));
|
|
|
|
ret = jffs2_garbage_collect_pass(c);
|
|
if (ret) {
|
|
/* GC failed. Flush it with padding instead */
|
|
down(&c->alloc_sem);
|
|
down_write(&c->wbuf_sem);
|
|
ret = __jffs2_flush_wbuf(c, PAD_ACCOUNTING);
|
|
/* retry flushing wbuf in case jffs2_wbuf_recover
|
|
left some data in the wbuf */
|
|
if (ret)
|
|
ret = __jffs2_flush_wbuf(c, PAD_ACCOUNTING);
|
|
up_write(&c->wbuf_sem);
|
|
break;
|
|
}
|
|
down(&c->alloc_sem);
|
|
}
|
|
|
|
D1(printk(KERN_DEBUG "jffs2_flush_wbuf_gc() ends...\n"));
|
|
|
|
up(&c->alloc_sem);
|
|
return ret;
|
|
}
|
|
|
|
/* Pad write-buffer to end and write it, wasting space. */
|
|
int jffs2_flush_wbuf_pad(struct jffs2_sb_info *c)
|
|
{
|
|
int ret;
|
|
|
|
if (!c->wbuf)
|
|
return 0;
|
|
|
|
down_write(&c->wbuf_sem);
|
|
ret = __jffs2_flush_wbuf(c, PAD_NOACCOUNT);
|
|
/* retry - maybe wbuf recover left some data in wbuf. */
|
|
if (ret)
|
|
ret = __jffs2_flush_wbuf(c, PAD_NOACCOUNT);
|
|
up_write(&c->wbuf_sem);
|
|
|
|
return ret;
|
|
}
|
|
int jffs2_flash_writev(struct jffs2_sb_info *c, const struct kvec *invecs, unsigned long count, loff_t to, size_t *retlen, uint32_t ino)
|
|
{
|
|
struct kvec outvecs[3];
|
|
uint32_t totlen = 0;
|
|
uint32_t split_ofs = 0;
|
|
uint32_t old_totlen;
|
|
int ret, splitvec = -1;
|
|
int invec, outvec;
|
|
size_t wbuf_retlen;
|
|
unsigned char *wbuf_ptr;
|
|
size_t donelen = 0;
|
|
uint32_t outvec_to = to;
|
|
|
|
/* If not NAND flash, don't bother */
|
|
if (!jffs2_is_writebuffered(c))
|
|
return jffs2_flash_direct_writev(c, invecs, count, to, retlen);
|
|
|
|
down_write(&c->wbuf_sem);
|
|
|
|
/* If wbuf_ofs is not initialized, set it to target address */
|
|
if (c->wbuf_ofs == 0xFFFFFFFF) {
|
|
c->wbuf_ofs = PAGE_DIV(to);
|
|
c->wbuf_len = PAGE_MOD(to);
|
|
memset(c->wbuf,0xff,c->wbuf_pagesize);
|
|
}
|
|
|
|
/* Fixup the wbuf if we are moving to a new eraseblock. The checks below
|
|
fail for ECC'd NOR because cleanmarker == 16, so a block starts at
|
|
xxx0010. */
|
|
if (jffs2_nor_ecc(c)) {
|
|
if (((c->wbuf_ofs % c->sector_size) == 0) && !c->wbuf_len) {
|
|
c->wbuf_ofs = PAGE_DIV(to);
|
|
c->wbuf_len = PAGE_MOD(to);
|
|
memset(c->wbuf,0xff,c->wbuf_pagesize);
|
|
}
|
|
}
|
|
|
|
/* Sanity checks on target address.
|
|
It's permitted to write at PAD(c->wbuf_len+c->wbuf_ofs),
|
|
and it's permitted to write at the beginning of a new
|
|
erase block. Anything else, and you die.
|
|
New block starts at xxx000c (0-b = block header)
|
|
*/
|
|
if (SECTOR_ADDR(to) != SECTOR_ADDR(c->wbuf_ofs)) {
|
|
/* It's a write to a new block */
|
|
if (c->wbuf_len) {
|
|
D1(printk(KERN_DEBUG "jffs2_flash_writev() to 0x%lx causes flush of wbuf at 0x%08x\n", (unsigned long)to, c->wbuf_ofs));
|
|
ret = __jffs2_flush_wbuf(c, PAD_NOACCOUNT);
|
|
if (ret) {
|
|
/* the underlying layer has to check wbuf_len to do the cleanup */
|
|
D1(printk(KERN_WARNING "jffs2_flush_wbuf() called from jffs2_flash_writev() failed %d\n", ret));
|
|
*retlen = 0;
|
|
goto exit;
|
|
}
|
|
}
|
|
/* set pointer to new block */
|
|
c->wbuf_ofs = PAGE_DIV(to);
|
|
c->wbuf_len = PAGE_MOD(to);
|
|
}
|
|
|
|
if (to != PAD(c->wbuf_ofs + c->wbuf_len)) {
|
|
/* We're not writing immediately after the writebuffer. Bad. */
|
|
printk(KERN_CRIT "jffs2_flash_writev(): Non-contiguous write to %08lx\n", (unsigned long)to);
|
|
if (c->wbuf_len)
|
|
printk(KERN_CRIT "wbuf was previously %08x-%08x\n",
|
|
c->wbuf_ofs, c->wbuf_ofs+c->wbuf_len);
|
|
BUG();
|
|
}
|
|
|
|
/* Note outvecs[3] above. We know count is never greater than 2 */
|
|
if (count > 2) {
|
|
printk(KERN_CRIT "jffs2_flash_writev(): count is %ld\n", count);
|
|
BUG();
|
|
}
|
|
|
|
invec = 0;
|
|
outvec = 0;
|
|
|
|
/* Fill writebuffer first, if already in use */
|
|
if (c->wbuf_len) {
|
|
uint32_t invec_ofs = 0;
|
|
|
|
/* adjust alignment offset */
|
|
if (c->wbuf_len != PAGE_MOD(to)) {
|
|
c->wbuf_len = PAGE_MOD(to);
|
|
/* take care of alignment to next page */
|
|
if (!c->wbuf_len)
|
|
c->wbuf_len = c->wbuf_pagesize;
|
|
}
|
|
|
|
while(c->wbuf_len < c->wbuf_pagesize) {
|
|
uint32_t thislen;
|
|
|
|
if (invec == count)
|
|
goto alldone;
|
|
|
|
thislen = c->wbuf_pagesize - c->wbuf_len;
|
|
|
|
if (thislen >= invecs[invec].iov_len)
|
|
thislen = invecs[invec].iov_len;
|
|
|
|
invec_ofs = thislen;
|
|
|
|
memcpy(c->wbuf + c->wbuf_len, invecs[invec].iov_base, thislen);
|
|
c->wbuf_len += thislen;
|
|
donelen += thislen;
|
|
/* Get next invec, if actual did not fill the buffer */
|
|
if (c->wbuf_len < c->wbuf_pagesize)
|
|
invec++;
|
|
}
|
|
|
|
/* write buffer is full, flush buffer */
|
|
ret = __jffs2_flush_wbuf(c, NOPAD);
|
|
if (ret) {
|
|
/* the underlying layer has to check wbuf_len to do the cleanup */
|
|
D1(printk(KERN_WARNING "jffs2_flush_wbuf() called from jffs2_flash_writev() failed %d\n", ret));
|
|
/* Retlen zero to make sure our caller doesn't mark the space dirty.
|
|
We've already done everything that's necessary */
|
|
*retlen = 0;
|
|
goto exit;
|
|
}
|
|
outvec_to += donelen;
|
|
c->wbuf_ofs = outvec_to;
|
|
|
|
/* All invecs done ? */
|
|
if (invec == count)
|
|
goto alldone;
|
|
|
|
/* Set up the first outvec, containing the remainder of the
|
|
invec we partially used */
|
|
if (invecs[invec].iov_len > invec_ofs) {
|
|
outvecs[0].iov_base = invecs[invec].iov_base+invec_ofs;
|
|
totlen = outvecs[0].iov_len = invecs[invec].iov_len-invec_ofs;
|
|
if (totlen > c->wbuf_pagesize) {
|
|
splitvec = outvec;
|
|
split_ofs = outvecs[0].iov_len - PAGE_MOD(totlen);
|
|
}
|
|
outvec++;
|
|
}
|
|
invec++;
|
|
}
|
|
|
|
/* OK, now we've flushed the wbuf and the start of the bits
|
|
we have been asked to write, now to write the rest.... */
|
|
|
|
/* totlen holds the amount of data still to be written */
|
|
old_totlen = totlen;
|
|
for ( ; invec < count; invec++,outvec++ ) {
|
|
outvecs[outvec].iov_base = invecs[invec].iov_base;
|
|
totlen += outvecs[outvec].iov_len = invecs[invec].iov_len;
|
|
if (PAGE_DIV(totlen) != PAGE_DIV(old_totlen)) {
|
|
splitvec = outvec;
|
|
split_ofs = outvecs[outvec].iov_len - PAGE_MOD(totlen);
|
|
old_totlen = totlen;
|
|
}
|
|
}
|
|
|
|
/* Now the outvecs array holds all the remaining data to write */
|
|
/* Up to splitvec,split_ofs is to be written immediately. The rest
|
|
goes into the (now-empty) wbuf */
|
|
|
|
if (splitvec != -1) {
|
|
uint32_t remainder;
|
|
|
|
remainder = outvecs[splitvec].iov_len - split_ofs;
|
|
outvecs[splitvec].iov_len = split_ofs;
|
|
|
|
/* We did cross a page boundary, so we write some now */
|
|
if (jffs2_cleanmarker_oob(c))
|
|
ret = c->mtd->writev_ecc(c->mtd, outvecs, splitvec+1, outvec_to, &wbuf_retlen, NULL, c->oobinfo);
|
|
else
|
|
ret = jffs2_flash_direct_writev(c, outvecs, splitvec+1, outvec_to, &wbuf_retlen);
|
|
|
|
if (ret < 0 || wbuf_retlen != PAGE_DIV(totlen)) {
|
|
/* At this point we have no problem,
|
|
c->wbuf is empty. However refile nextblock to avoid
|
|
writing again to same address.
|
|
*/
|
|
struct jffs2_eraseblock *jeb;
|
|
|
|
spin_lock(&c->erase_completion_lock);
|
|
|
|
jeb = &c->blocks[outvec_to / c->sector_size];
|
|
jffs2_block_refile(c, jeb, REFILE_ANYWAY);
|
|
|
|
*retlen = 0;
|
|
spin_unlock(&c->erase_completion_lock);
|
|
goto exit;
|
|
}
|
|
|
|
donelen += wbuf_retlen;
|
|
c->wbuf_ofs = PAGE_DIV(outvec_to) + PAGE_DIV(totlen);
|
|
|
|
if (remainder) {
|
|
outvecs[splitvec].iov_base += split_ofs;
|
|
outvecs[splitvec].iov_len = remainder;
|
|
} else {
|
|
splitvec++;
|
|
}
|
|
|
|
} else {
|
|
splitvec = 0;
|
|
}
|
|
|
|
/* Now splitvec points to the start of the bits we have to copy
|
|
into the wbuf */
|
|
wbuf_ptr = c->wbuf;
|
|
|
|
for ( ; splitvec < outvec; splitvec++) {
|
|
/* Don't copy the wbuf into itself */
|
|
if (outvecs[splitvec].iov_base == c->wbuf)
|
|
continue;
|
|
memcpy(wbuf_ptr, outvecs[splitvec].iov_base, outvecs[splitvec].iov_len);
|
|
wbuf_ptr += outvecs[splitvec].iov_len;
|
|
donelen += outvecs[splitvec].iov_len;
|
|
}
|
|
c->wbuf_len = wbuf_ptr - c->wbuf;
|
|
|
|
/* If there's a remainder in the wbuf and it's a non-GC write,
|
|
remember that the wbuf affects this ino */
|
|
alldone:
|
|
*retlen = donelen;
|
|
|
|
if (jffs2_sum_active()) {
|
|
int res = jffs2_sum_add_kvec(c, invecs, count, (uint32_t) to);
|
|
if (res)
|
|
return res;
|
|
}
|
|
|
|
if (c->wbuf_len && ino)
|
|
jffs2_wbuf_dirties_inode(c, ino);
|
|
|
|
ret = 0;
|
|
|
|
exit:
|
|
up_write(&c->wbuf_sem);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* This is the entry for flash write.
|
|
* Check, if we work on NAND FLASH, if so build an kvec and write it via vritev
|
|
*/
|
|
int jffs2_flash_write(struct jffs2_sb_info *c, loff_t ofs, size_t len, size_t *retlen, const u_char *buf)
|
|
{
|
|
struct kvec vecs[1];
|
|
|
|
if (!jffs2_is_writebuffered(c))
|
|
return jffs2_flash_direct_write(c, ofs, len, retlen, buf);
|
|
|
|
vecs[0].iov_base = (unsigned char *) buf;
|
|
vecs[0].iov_len = len;
|
|
return jffs2_flash_writev(c, vecs, 1, ofs, retlen, 0);
|
|
}
|
|
|
|
/*
|
|
Handle readback from writebuffer and ECC failure return
|
|
*/
|
|
int jffs2_flash_read(struct jffs2_sb_info *c, loff_t ofs, size_t len, size_t *retlen, u_char *buf)
|
|
{
|
|
loff_t orbf = 0, owbf = 0, lwbf = 0;
|
|
int ret;
|
|
|
|
if (!jffs2_is_writebuffered(c))
|
|
return c->mtd->read(c->mtd, ofs, len, retlen, buf);
|
|
|
|
/* Read flash */
|
|
down_read(&c->wbuf_sem);
|
|
if (jffs2_cleanmarker_oob(c))
|
|
ret = c->mtd->read_ecc(c->mtd, ofs, len, retlen, buf, NULL, c->oobinfo);
|
|
else
|
|
ret = c->mtd->read(c->mtd, ofs, len, retlen, buf);
|
|
|
|
if ( (ret == -EBADMSG) && (*retlen == len) ) {
|
|
printk(KERN_WARNING "mtd->read(0x%zx bytes from 0x%llx) returned ECC error\n",
|
|
len, ofs);
|
|
/*
|
|
* We have the raw data without ECC correction in the buffer, maybe
|
|
* we are lucky and all data or parts are correct. We check the node.
|
|
* If data are corrupted node check will sort it out.
|
|
* We keep this block, it will fail on write or erase and the we
|
|
* mark it bad. Or should we do that now? But we should give him a chance.
|
|
* Maybe we had a system crash or power loss before the ecc write or
|
|
* a erase was completed.
|
|
* So we return success. :)
|
|
*/
|
|
ret = 0;
|
|
}
|
|
|
|
/* if no writebuffer available or write buffer empty, return */
|
|
if (!c->wbuf_pagesize || !c->wbuf_len)
|
|
goto exit;
|
|
|
|
/* if we read in a different block, return */
|
|
if (SECTOR_ADDR(ofs) != SECTOR_ADDR(c->wbuf_ofs))
|
|
goto exit;
|
|
|
|
if (ofs >= c->wbuf_ofs) {
|
|
owbf = (ofs - c->wbuf_ofs); /* offset in write buffer */
|
|
if (owbf > c->wbuf_len) /* is read beyond write buffer ? */
|
|
goto exit;
|
|
lwbf = c->wbuf_len - owbf; /* number of bytes to copy */
|
|
if (lwbf > len)
|
|
lwbf = len;
|
|
} else {
|
|
orbf = (c->wbuf_ofs - ofs); /* offset in read buffer */
|
|
if (orbf > len) /* is write beyond write buffer ? */
|
|
goto exit;
|
|
lwbf = len - orbf; /* number of bytes to copy */
|
|
if (lwbf > c->wbuf_len)
|
|
lwbf = c->wbuf_len;
|
|
}
|
|
if (lwbf > 0)
|
|
memcpy(buf+orbf,c->wbuf+owbf,lwbf);
|
|
|
|
exit:
|
|
up_read(&c->wbuf_sem);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Check, if the out of band area is empty
|
|
*/
|
|
int jffs2_check_oob_empty( struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb, int mode)
|
|
{
|
|
unsigned char *buf;
|
|
int ret = 0;
|
|
int i,len,page;
|
|
size_t retlen;
|
|
int oob_size;
|
|
|
|
/* allocate a buffer for all oob data in this sector */
|
|
oob_size = c->mtd->oobsize;
|
|
len = 4 * oob_size;
|
|
buf = kmalloc(len, GFP_KERNEL);
|
|
if (!buf) {
|
|
printk(KERN_NOTICE "jffs2_check_oob_empty(): allocation of temporary data buffer for oob check failed\n");
|
|
return -ENOMEM;
|
|
}
|
|
/*
|
|
* if mode = 0, we scan for a total empty oob area, else we have
|
|
* to take care of the cleanmarker in the first page of the block
|
|
*/
|
|
ret = jffs2_flash_read_oob(c, jeb->offset, len , &retlen, buf);
|
|
if (ret) {
|
|
D1(printk(KERN_WARNING "jffs2_check_oob_empty(): Read OOB failed %d for block at %08x\n", ret, jeb->offset));
|
|
goto out;
|
|
}
|
|
|
|
if (retlen < len) {
|
|
D1(printk(KERN_WARNING "jffs2_check_oob_empty(): Read OOB return short read "
|
|
"(%zd bytes not %d) for block at %08x\n", retlen, len, jeb->offset));
|
|
ret = -EIO;
|
|
goto out;
|
|
}
|
|
|
|
/* Special check for first page */
|
|
for(i = 0; i < oob_size ; i++) {
|
|
/* Yeah, we know about the cleanmarker. */
|
|
if (mode && i >= c->fsdata_pos &&
|
|
i < c->fsdata_pos + c->fsdata_len)
|
|
continue;
|
|
|
|
if (buf[i] != 0xFF) {
|
|
D2(printk(KERN_DEBUG "Found %02x at %x in OOB for %08x\n",
|
|
buf[i], i, jeb->offset));
|
|
ret = 1;
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
/* we know, we are aligned :) */
|
|
for (page = oob_size; page < len; page += sizeof(long)) {
|
|
unsigned long dat = *(unsigned long *)(&buf[page]);
|
|
if(dat != -1) {
|
|
ret = 1;
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
out:
|
|
kfree(buf);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Scan for a valid cleanmarker and for bad blocks
|
|
* For virtual blocks (concatenated physical blocks) check the cleanmarker
|
|
* only in the first page of the first physical block, but scan for bad blocks in all
|
|
* physical blocks
|
|
*/
|
|
int jffs2_check_nand_cleanmarker (struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb)
|
|
{
|
|
struct jffs2_unknown_node n;
|
|
unsigned char buf[2 * NAND_MAX_OOBSIZE];
|
|
unsigned char *p;
|
|
int ret, i, cnt, retval = 0;
|
|
size_t retlen, offset;
|
|
int oob_size;
|
|
|
|
offset = jeb->offset;
|
|
oob_size = c->mtd->oobsize;
|
|
|
|
/* Loop through the physical blocks */
|
|
for (cnt = 0; cnt < (c->sector_size / c->mtd->erasesize); cnt++) {
|
|
/* Check first if the block is bad. */
|
|
if (c->mtd->block_isbad (c->mtd, offset)) {
|
|
D1 (printk (KERN_WARNING "jffs2_check_nand_cleanmarker(): Bad block at %08x\n", jeb->offset));
|
|
return 2;
|
|
}
|
|
/*
|
|
* We read oob data from page 0 and 1 of the block.
|
|
* page 0 contains cleanmarker and badblock info
|
|
* page 1 contains failure count of this block
|
|
*/
|
|
ret = c->mtd->read_oob (c->mtd, offset, oob_size << 1, &retlen, buf);
|
|
|
|
if (ret) {
|
|
D1 (printk (KERN_WARNING "jffs2_check_nand_cleanmarker(): Read OOB failed %d for block at %08x\n", ret, jeb->offset));
|
|
return ret;
|
|
}
|
|
if (retlen < (oob_size << 1)) {
|
|
D1 (printk (KERN_WARNING "jffs2_check_nand_cleanmarker(): Read OOB return short read (%zd bytes not %d) for block at %08x\n", retlen, oob_size << 1, jeb->offset));
|
|
return -EIO;
|
|
}
|
|
|
|
/* Check cleanmarker only on the first physical block */
|
|
if (!cnt) {
|
|
n.magic = cpu_to_je16 (JFFS2_MAGIC_BITMASK);
|
|
n.nodetype = cpu_to_je16 (JFFS2_NODETYPE_CLEANMARKER);
|
|
n.totlen = cpu_to_je32 (8);
|
|
p = (unsigned char *) &n;
|
|
|
|
for (i = 0; i < c->fsdata_len; i++) {
|
|
if (buf[c->fsdata_pos + i] != p[i]) {
|
|
retval = 1;
|
|
}
|
|
}
|
|
D1(if (retval == 1) {
|
|
printk(KERN_WARNING "jffs2_check_nand_cleanmarker(): Cleanmarker node not detected in block at %08x\n", jeb->offset);
|
|
printk(KERN_WARNING "OOB at %08x was ", offset);
|
|
for (i=0; i < oob_size; i++) {
|
|
printk("%02x ", buf[i]);
|
|
}
|
|
printk("\n");
|
|
})
|
|
}
|
|
offset += c->mtd->erasesize;
|
|
}
|
|
return retval;
|
|
}
|
|
|
|
int jffs2_write_nand_cleanmarker(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb)
|
|
{
|
|
struct jffs2_unknown_node n;
|
|
int ret;
|
|
size_t retlen;
|
|
|
|
n.magic = cpu_to_je16(JFFS2_MAGIC_BITMASK);
|
|
n.nodetype = cpu_to_je16(JFFS2_NODETYPE_CLEANMARKER);
|
|
n.totlen = cpu_to_je32(8);
|
|
|
|
ret = jffs2_flash_write_oob(c, jeb->offset + c->fsdata_pos, c->fsdata_len, &retlen, (unsigned char *)&n);
|
|
|
|
if (ret) {
|
|
D1(printk(KERN_WARNING "jffs2_write_nand_cleanmarker(): Write failed for block at %08x: error %d\n", jeb->offset, ret));
|
|
return ret;
|
|
}
|
|
if (retlen != c->fsdata_len) {
|
|
D1(printk(KERN_WARNING "jffs2_write_nand_cleanmarker(): Short write for block at %08x: %zd not %d\n", jeb->offset, retlen, c->fsdata_len));
|
|
return ret;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* On NAND we try to mark this block bad. If the block was erased more
|
|
* than MAX_ERASE_FAILURES we mark it finaly bad.
|
|
* Don't care about failures. This block remains on the erase-pending
|
|
* or badblock list as long as nobody manipulates the flash with
|
|
* a bootloader or something like that.
|
|
*/
|
|
|
|
int jffs2_write_nand_badblock(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb, uint32_t bad_offset)
|
|
{
|
|
int ret;
|
|
|
|
/* if the count is < max, we try to write the counter to the 2nd page oob area */
|
|
if( ++jeb->bad_count < MAX_ERASE_FAILURES)
|
|
return 0;
|
|
|
|
if (!c->mtd->block_markbad)
|
|
return 1; // What else can we do?
|
|
|
|
D1(printk(KERN_WARNING "jffs2_write_nand_badblock(): Marking bad block at %08x\n", bad_offset));
|
|
ret = c->mtd->block_markbad(c->mtd, bad_offset);
|
|
|
|
if (ret) {
|
|
D1(printk(KERN_WARNING "jffs2_write_nand_badblock(): Write failed for block at %08x: error %d\n", jeb->offset, ret));
|
|
return ret;
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
#define NAND_JFFS2_OOB16_FSDALEN 8
|
|
|
|
static struct nand_oobinfo jffs2_oobinfo_docecc = {
|
|
.useecc = MTD_NANDECC_PLACE,
|
|
.eccbytes = 6,
|
|
.eccpos = {0,1,2,3,4,5}
|
|
};
|
|
|
|
|
|
static int jffs2_nand_set_oobinfo(struct jffs2_sb_info *c)
|
|
{
|
|
struct nand_oobinfo *oinfo = &c->mtd->oobinfo;
|
|
|
|
/* Do this only, if we have an oob buffer */
|
|
if (!c->mtd->oobsize)
|
|
return 0;
|
|
|
|
/* Cleanmarker is out-of-band, so inline size zero */
|
|
c->cleanmarker_size = 0;
|
|
|
|
/* Should we use autoplacement ? */
|
|
if (oinfo && oinfo->useecc == MTD_NANDECC_AUTOPLACE) {
|
|
D1(printk(KERN_DEBUG "JFFS2 using autoplace on NAND\n"));
|
|
/* Get the position of the free bytes */
|
|
if (!oinfo->oobfree[0][1]) {
|
|
printk (KERN_WARNING "jffs2_nand_set_oobinfo(): Eeep. Autoplacement selected and no empty space in oob\n");
|
|
return -ENOSPC;
|
|
}
|
|
c->fsdata_pos = oinfo->oobfree[0][0];
|
|
c->fsdata_len = oinfo->oobfree[0][1];
|
|
if (c->fsdata_len > 8)
|
|
c->fsdata_len = 8;
|
|
} else {
|
|
/* This is just a legacy fallback and should go away soon */
|
|
switch(c->mtd->ecctype) {
|
|
case MTD_ECC_RS_DiskOnChip:
|
|
printk(KERN_WARNING "JFFS2 using DiskOnChip hardware ECC without autoplacement. Fix it!\n");
|
|
c->oobinfo = &jffs2_oobinfo_docecc;
|
|
c->fsdata_pos = 6;
|
|
c->fsdata_len = NAND_JFFS2_OOB16_FSDALEN;
|
|
c->badblock_pos = 15;
|
|
break;
|
|
|
|
default:
|
|
D1(printk(KERN_DEBUG "JFFS2 on NAND. No autoplacment info found\n"));
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
int jffs2_nand_flash_setup(struct jffs2_sb_info *c)
|
|
{
|
|
int res;
|
|
|
|
/* Initialise write buffer */
|
|
init_rwsem(&c->wbuf_sem);
|
|
c->wbuf_pagesize = c->mtd->oobblock;
|
|
c->wbuf_ofs = 0xFFFFFFFF;
|
|
|
|
c->wbuf = kmalloc(c->wbuf_pagesize, GFP_KERNEL);
|
|
if (!c->wbuf)
|
|
return -ENOMEM;
|
|
|
|
res = jffs2_nand_set_oobinfo(c);
|
|
|
|
#ifdef BREAKME
|
|
if (!brokenbuf)
|
|
brokenbuf = kmalloc(c->wbuf_pagesize, GFP_KERNEL);
|
|
if (!brokenbuf) {
|
|
kfree(c->wbuf);
|
|
return -ENOMEM;
|
|
}
|
|
memset(brokenbuf, 0xdb, c->wbuf_pagesize);
|
|
#endif
|
|
return res;
|
|
}
|
|
|
|
void jffs2_nand_flash_cleanup(struct jffs2_sb_info *c)
|
|
{
|
|
kfree(c->wbuf);
|
|
}
|
|
|
|
int jffs2_dataflash_setup(struct jffs2_sb_info *c) {
|
|
c->cleanmarker_size = 0; /* No cleanmarkers needed */
|
|
|
|
/* Initialize write buffer */
|
|
init_rwsem(&c->wbuf_sem);
|
|
|
|
|
|
c->wbuf_pagesize = c->mtd->erasesize;
|
|
|
|
/* Find a suitable c->sector_size
|
|
* - Not too much sectors
|
|
* - Sectors have to be at least 4 K + some bytes
|
|
* - All known dataflashes have erase sizes of 528 or 1056
|
|
* - we take at least 8 eraseblocks and want to have at least 8K size
|
|
* - The concatenation should be a power of 2
|
|
*/
|
|
|
|
c->sector_size = 8 * c->mtd->erasesize;
|
|
|
|
while (c->sector_size < 8192) {
|
|
c->sector_size *= 2;
|
|
}
|
|
|
|
/* It may be necessary to adjust the flash size */
|
|
c->flash_size = c->mtd->size;
|
|
|
|
if ((c->flash_size % c->sector_size) != 0) {
|
|
c->flash_size = (c->flash_size / c->sector_size) * c->sector_size;
|
|
printk(KERN_WARNING "JFFS2 flash size adjusted to %dKiB\n", c->flash_size);
|
|
};
|
|
|
|
c->wbuf_ofs = 0xFFFFFFFF;
|
|
c->wbuf = kmalloc(c->wbuf_pagesize, GFP_KERNEL);
|
|
if (!c->wbuf)
|
|
return -ENOMEM;
|
|
|
|
printk(KERN_INFO "JFFS2 write-buffering enabled buffer (%d) erasesize (%d)\n", c->wbuf_pagesize, c->sector_size);
|
|
|
|
return 0;
|
|
}
|
|
|
|
void jffs2_dataflash_cleanup(struct jffs2_sb_info *c) {
|
|
kfree(c->wbuf);
|
|
}
|
|
|
|
int jffs2_nor_ecc_flash_setup(struct jffs2_sb_info *c) {
|
|
/* Cleanmarker is actually larger on the flashes */
|
|
c->cleanmarker_size = 16;
|
|
|
|
/* Initialize write buffer */
|
|
init_rwsem(&c->wbuf_sem);
|
|
c->wbuf_pagesize = c->mtd->eccsize;
|
|
c->wbuf_ofs = 0xFFFFFFFF;
|
|
|
|
c->wbuf = kmalloc(c->wbuf_pagesize, GFP_KERNEL);
|
|
if (!c->wbuf)
|
|
return -ENOMEM;
|
|
|
|
return 0;
|
|
}
|
|
|
|
void jffs2_nor_ecc_flash_cleanup(struct jffs2_sb_info *c) {
|
|
kfree(c->wbuf);
|
|
}
|
|
|
|
int jffs2_nor_wbuf_flash_setup(struct jffs2_sb_info *c) {
|
|
/* Cleanmarker currently occupies a whole programming region */
|
|
c->cleanmarker_size = MTD_PROGREGION_SIZE(c->mtd);
|
|
|
|
/* Initialize write buffer */
|
|
init_rwsem(&c->wbuf_sem);
|
|
c->wbuf_pagesize = MTD_PROGREGION_SIZE(c->mtd);
|
|
c->wbuf_ofs = 0xFFFFFFFF;
|
|
|
|
c->wbuf = kmalloc(c->wbuf_pagesize, GFP_KERNEL);
|
|
if (!c->wbuf)
|
|
return -ENOMEM;
|
|
|
|
return 0;
|
|
}
|
|
|
|
void jffs2_nor_wbuf_flash_cleanup(struct jffs2_sb_info *c) {
|
|
kfree(c->wbuf);
|
|
}
|