kernel-ark/crypto/simd.c
Eric Biggers 8b8d91d4ce crypto: simd - convert to use crypto_simd_usable()
Replace all calls to may_use_simd() in the shared SIMD helpers with
crypto_simd_usable(), in order to allow testing the no-SIMD code paths.

Signed-off-by: Eric Biggers <ebiggers@google.com>
Reviewed-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2019-03-22 20:57:27 +08:00

545 lines
14 KiB
C

/*
* Shared crypto simd helpers
*
* Copyright (c) 2012 Jussi Kivilinna <jussi.kivilinna@mbnet.fi>
* Copyright (c) 2016 Herbert Xu <herbert@gondor.apana.org.au>
* Copyright (c) 2019 Google LLC
*
* Based on aesni-intel_glue.c by:
* Copyright (C) 2008, Intel Corp.
* Author: Huang Ying <ying.huang@intel.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
/*
* Shared crypto SIMD helpers. These functions dynamically create and register
* an skcipher or AEAD algorithm that wraps another, internal algorithm. The
* wrapper ensures that the internal algorithm is only executed in a context
* where SIMD instructions are usable, i.e. where may_use_simd() returns true.
* If SIMD is already usable, the wrapper directly calls the internal algorithm.
* Otherwise it defers execution to a workqueue via cryptd.
*
* This is an alternative to the internal algorithm implementing a fallback for
* the !may_use_simd() case itself.
*
* Note that the wrapper algorithm is asynchronous, i.e. it has the
* CRYPTO_ALG_ASYNC flag set. Therefore it won't be found by users who
* explicitly allocate a synchronous algorithm.
*/
#include <crypto/cryptd.h>
#include <crypto/internal/aead.h>
#include <crypto/internal/simd.h>
#include <crypto/internal/skcipher.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/preempt.h>
#include <asm/simd.h>
/* skcipher support */
struct simd_skcipher_alg {
const char *ialg_name;
struct skcipher_alg alg;
};
struct simd_skcipher_ctx {
struct cryptd_skcipher *cryptd_tfm;
};
static int simd_skcipher_setkey(struct crypto_skcipher *tfm, const u8 *key,
unsigned int key_len)
{
struct simd_skcipher_ctx *ctx = crypto_skcipher_ctx(tfm);
struct crypto_skcipher *child = &ctx->cryptd_tfm->base;
int err;
crypto_skcipher_clear_flags(child, CRYPTO_TFM_REQ_MASK);
crypto_skcipher_set_flags(child, crypto_skcipher_get_flags(tfm) &
CRYPTO_TFM_REQ_MASK);
err = crypto_skcipher_setkey(child, key, key_len);
crypto_skcipher_set_flags(tfm, crypto_skcipher_get_flags(child) &
CRYPTO_TFM_RES_MASK);
return err;
}
static int simd_skcipher_encrypt(struct skcipher_request *req)
{
struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
struct simd_skcipher_ctx *ctx = crypto_skcipher_ctx(tfm);
struct skcipher_request *subreq;
struct crypto_skcipher *child;
subreq = skcipher_request_ctx(req);
*subreq = *req;
if (!crypto_simd_usable() ||
(in_atomic() && cryptd_skcipher_queued(ctx->cryptd_tfm)))
child = &ctx->cryptd_tfm->base;
else
child = cryptd_skcipher_child(ctx->cryptd_tfm);
skcipher_request_set_tfm(subreq, child);
return crypto_skcipher_encrypt(subreq);
}
static int simd_skcipher_decrypt(struct skcipher_request *req)
{
struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
struct simd_skcipher_ctx *ctx = crypto_skcipher_ctx(tfm);
struct skcipher_request *subreq;
struct crypto_skcipher *child;
subreq = skcipher_request_ctx(req);
*subreq = *req;
if (!crypto_simd_usable() ||
(in_atomic() && cryptd_skcipher_queued(ctx->cryptd_tfm)))
child = &ctx->cryptd_tfm->base;
else
child = cryptd_skcipher_child(ctx->cryptd_tfm);
skcipher_request_set_tfm(subreq, child);
return crypto_skcipher_decrypt(subreq);
}
static void simd_skcipher_exit(struct crypto_skcipher *tfm)
{
struct simd_skcipher_ctx *ctx = crypto_skcipher_ctx(tfm);
cryptd_free_skcipher(ctx->cryptd_tfm);
}
static int simd_skcipher_init(struct crypto_skcipher *tfm)
{
struct simd_skcipher_ctx *ctx = crypto_skcipher_ctx(tfm);
struct cryptd_skcipher *cryptd_tfm;
struct simd_skcipher_alg *salg;
struct skcipher_alg *alg;
unsigned reqsize;
alg = crypto_skcipher_alg(tfm);
salg = container_of(alg, struct simd_skcipher_alg, alg);
cryptd_tfm = cryptd_alloc_skcipher(salg->ialg_name,
CRYPTO_ALG_INTERNAL,
CRYPTO_ALG_INTERNAL);
if (IS_ERR(cryptd_tfm))
return PTR_ERR(cryptd_tfm);
ctx->cryptd_tfm = cryptd_tfm;
reqsize = crypto_skcipher_reqsize(cryptd_skcipher_child(cryptd_tfm));
reqsize = max(reqsize, crypto_skcipher_reqsize(&cryptd_tfm->base));
reqsize += sizeof(struct skcipher_request);
crypto_skcipher_set_reqsize(tfm, reqsize);
return 0;
}
struct simd_skcipher_alg *simd_skcipher_create_compat(const char *algname,
const char *drvname,
const char *basename)
{
struct simd_skcipher_alg *salg;
struct crypto_skcipher *tfm;
struct skcipher_alg *ialg;
struct skcipher_alg *alg;
int err;
tfm = crypto_alloc_skcipher(basename, CRYPTO_ALG_INTERNAL,
CRYPTO_ALG_INTERNAL | CRYPTO_ALG_ASYNC);
if (IS_ERR(tfm))
return ERR_CAST(tfm);
ialg = crypto_skcipher_alg(tfm);
salg = kzalloc(sizeof(*salg), GFP_KERNEL);
if (!salg) {
salg = ERR_PTR(-ENOMEM);
goto out_put_tfm;
}
salg->ialg_name = basename;
alg = &salg->alg;
err = -ENAMETOOLONG;
if (snprintf(alg->base.cra_name, CRYPTO_MAX_ALG_NAME, "%s", algname) >=
CRYPTO_MAX_ALG_NAME)
goto out_free_salg;
if (snprintf(alg->base.cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s",
drvname) >= CRYPTO_MAX_ALG_NAME)
goto out_free_salg;
alg->base.cra_flags = CRYPTO_ALG_ASYNC;
alg->base.cra_priority = ialg->base.cra_priority;
alg->base.cra_blocksize = ialg->base.cra_blocksize;
alg->base.cra_alignmask = ialg->base.cra_alignmask;
alg->base.cra_module = ialg->base.cra_module;
alg->base.cra_ctxsize = sizeof(struct simd_skcipher_ctx);
alg->ivsize = ialg->ivsize;
alg->chunksize = ialg->chunksize;
alg->min_keysize = ialg->min_keysize;
alg->max_keysize = ialg->max_keysize;
alg->init = simd_skcipher_init;
alg->exit = simd_skcipher_exit;
alg->setkey = simd_skcipher_setkey;
alg->encrypt = simd_skcipher_encrypt;
alg->decrypt = simd_skcipher_decrypt;
err = crypto_register_skcipher(alg);
if (err)
goto out_free_salg;
out_put_tfm:
crypto_free_skcipher(tfm);
return salg;
out_free_salg:
kfree(salg);
salg = ERR_PTR(err);
goto out_put_tfm;
}
EXPORT_SYMBOL_GPL(simd_skcipher_create_compat);
struct simd_skcipher_alg *simd_skcipher_create(const char *algname,
const char *basename)
{
char drvname[CRYPTO_MAX_ALG_NAME];
if (snprintf(drvname, CRYPTO_MAX_ALG_NAME, "simd-%s", basename) >=
CRYPTO_MAX_ALG_NAME)
return ERR_PTR(-ENAMETOOLONG);
return simd_skcipher_create_compat(algname, drvname, basename);
}
EXPORT_SYMBOL_GPL(simd_skcipher_create);
void simd_skcipher_free(struct simd_skcipher_alg *salg)
{
crypto_unregister_skcipher(&salg->alg);
kfree(salg);
}
EXPORT_SYMBOL_GPL(simd_skcipher_free);
int simd_register_skciphers_compat(struct skcipher_alg *algs, int count,
struct simd_skcipher_alg **simd_algs)
{
int err;
int i;
const char *algname;
const char *drvname;
const char *basename;
struct simd_skcipher_alg *simd;
err = crypto_register_skciphers(algs, count);
if (err)
return err;
for (i = 0; i < count; i++) {
WARN_ON(strncmp(algs[i].base.cra_name, "__", 2));
WARN_ON(strncmp(algs[i].base.cra_driver_name, "__", 2));
algname = algs[i].base.cra_name + 2;
drvname = algs[i].base.cra_driver_name + 2;
basename = algs[i].base.cra_driver_name;
simd = simd_skcipher_create_compat(algname, drvname, basename);
err = PTR_ERR(simd);
if (IS_ERR(simd))
goto err_unregister;
simd_algs[i] = simd;
}
return 0;
err_unregister:
simd_unregister_skciphers(algs, count, simd_algs);
return err;
}
EXPORT_SYMBOL_GPL(simd_register_skciphers_compat);
void simd_unregister_skciphers(struct skcipher_alg *algs, int count,
struct simd_skcipher_alg **simd_algs)
{
int i;
crypto_unregister_skciphers(algs, count);
for (i = 0; i < count; i++) {
if (simd_algs[i]) {
simd_skcipher_free(simd_algs[i]);
simd_algs[i] = NULL;
}
}
}
EXPORT_SYMBOL_GPL(simd_unregister_skciphers);
/* AEAD support */
struct simd_aead_alg {
const char *ialg_name;
struct aead_alg alg;
};
struct simd_aead_ctx {
struct cryptd_aead *cryptd_tfm;
};
static int simd_aead_setkey(struct crypto_aead *tfm, const u8 *key,
unsigned int key_len)
{
struct simd_aead_ctx *ctx = crypto_aead_ctx(tfm);
struct crypto_aead *child = &ctx->cryptd_tfm->base;
int err;
crypto_aead_clear_flags(child, CRYPTO_TFM_REQ_MASK);
crypto_aead_set_flags(child, crypto_aead_get_flags(tfm) &
CRYPTO_TFM_REQ_MASK);
err = crypto_aead_setkey(child, key, key_len);
crypto_aead_set_flags(tfm, crypto_aead_get_flags(child) &
CRYPTO_TFM_RES_MASK);
return err;
}
static int simd_aead_setauthsize(struct crypto_aead *tfm, unsigned int authsize)
{
struct simd_aead_ctx *ctx = crypto_aead_ctx(tfm);
struct crypto_aead *child = &ctx->cryptd_tfm->base;
return crypto_aead_setauthsize(child, authsize);
}
static int simd_aead_encrypt(struct aead_request *req)
{
struct crypto_aead *tfm = crypto_aead_reqtfm(req);
struct simd_aead_ctx *ctx = crypto_aead_ctx(tfm);
struct aead_request *subreq;
struct crypto_aead *child;
subreq = aead_request_ctx(req);
*subreq = *req;
if (!crypto_simd_usable() ||
(in_atomic() && cryptd_aead_queued(ctx->cryptd_tfm)))
child = &ctx->cryptd_tfm->base;
else
child = cryptd_aead_child(ctx->cryptd_tfm);
aead_request_set_tfm(subreq, child);
return crypto_aead_encrypt(subreq);
}
static int simd_aead_decrypt(struct aead_request *req)
{
struct crypto_aead *tfm = crypto_aead_reqtfm(req);
struct simd_aead_ctx *ctx = crypto_aead_ctx(tfm);
struct aead_request *subreq;
struct crypto_aead *child;
subreq = aead_request_ctx(req);
*subreq = *req;
if (!crypto_simd_usable() ||
(in_atomic() && cryptd_aead_queued(ctx->cryptd_tfm)))
child = &ctx->cryptd_tfm->base;
else
child = cryptd_aead_child(ctx->cryptd_tfm);
aead_request_set_tfm(subreq, child);
return crypto_aead_decrypt(subreq);
}
static void simd_aead_exit(struct crypto_aead *tfm)
{
struct simd_aead_ctx *ctx = crypto_aead_ctx(tfm);
cryptd_free_aead(ctx->cryptd_tfm);
}
static int simd_aead_init(struct crypto_aead *tfm)
{
struct simd_aead_ctx *ctx = crypto_aead_ctx(tfm);
struct cryptd_aead *cryptd_tfm;
struct simd_aead_alg *salg;
struct aead_alg *alg;
unsigned reqsize;
alg = crypto_aead_alg(tfm);
salg = container_of(alg, struct simd_aead_alg, alg);
cryptd_tfm = cryptd_alloc_aead(salg->ialg_name, CRYPTO_ALG_INTERNAL,
CRYPTO_ALG_INTERNAL);
if (IS_ERR(cryptd_tfm))
return PTR_ERR(cryptd_tfm);
ctx->cryptd_tfm = cryptd_tfm;
reqsize = crypto_aead_reqsize(cryptd_aead_child(cryptd_tfm));
reqsize = max(reqsize, crypto_aead_reqsize(&cryptd_tfm->base));
reqsize += sizeof(struct aead_request);
crypto_aead_set_reqsize(tfm, reqsize);
return 0;
}
struct simd_aead_alg *simd_aead_create_compat(const char *algname,
const char *drvname,
const char *basename)
{
struct simd_aead_alg *salg;
struct crypto_aead *tfm;
struct aead_alg *ialg;
struct aead_alg *alg;
int err;
tfm = crypto_alloc_aead(basename, CRYPTO_ALG_INTERNAL,
CRYPTO_ALG_INTERNAL | CRYPTO_ALG_ASYNC);
if (IS_ERR(tfm))
return ERR_CAST(tfm);
ialg = crypto_aead_alg(tfm);
salg = kzalloc(sizeof(*salg), GFP_KERNEL);
if (!salg) {
salg = ERR_PTR(-ENOMEM);
goto out_put_tfm;
}
salg->ialg_name = basename;
alg = &salg->alg;
err = -ENAMETOOLONG;
if (snprintf(alg->base.cra_name, CRYPTO_MAX_ALG_NAME, "%s", algname) >=
CRYPTO_MAX_ALG_NAME)
goto out_free_salg;
if (snprintf(alg->base.cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s",
drvname) >= CRYPTO_MAX_ALG_NAME)
goto out_free_salg;
alg->base.cra_flags = CRYPTO_ALG_ASYNC;
alg->base.cra_priority = ialg->base.cra_priority;
alg->base.cra_blocksize = ialg->base.cra_blocksize;
alg->base.cra_alignmask = ialg->base.cra_alignmask;
alg->base.cra_module = ialg->base.cra_module;
alg->base.cra_ctxsize = sizeof(struct simd_aead_ctx);
alg->ivsize = ialg->ivsize;
alg->maxauthsize = ialg->maxauthsize;
alg->chunksize = ialg->chunksize;
alg->init = simd_aead_init;
alg->exit = simd_aead_exit;
alg->setkey = simd_aead_setkey;
alg->setauthsize = simd_aead_setauthsize;
alg->encrypt = simd_aead_encrypt;
alg->decrypt = simd_aead_decrypt;
err = crypto_register_aead(alg);
if (err)
goto out_free_salg;
out_put_tfm:
crypto_free_aead(tfm);
return salg;
out_free_salg:
kfree(salg);
salg = ERR_PTR(err);
goto out_put_tfm;
}
EXPORT_SYMBOL_GPL(simd_aead_create_compat);
struct simd_aead_alg *simd_aead_create(const char *algname,
const char *basename)
{
char drvname[CRYPTO_MAX_ALG_NAME];
if (snprintf(drvname, CRYPTO_MAX_ALG_NAME, "simd-%s", basename) >=
CRYPTO_MAX_ALG_NAME)
return ERR_PTR(-ENAMETOOLONG);
return simd_aead_create_compat(algname, drvname, basename);
}
EXPORT_SYMBOL_GPL(simd_aead_create);
void simd_aead_free(struct simd_aead_alg *salg)
{
crypto_unregister_aead(&salg->alg);
kfree(salg);
}
EXPORT_SYMBOL_GPL(simd_aead_free);
int simd_register_aeads_compat(struct aead_alg *algs, int count,
struct simd_aead_alg **simd_algs)
{
int err;
int i;
const char *algname;
const char *drvname;
const char *basename;
struct simd_aead_alg *simd;
err = crypto_register_aeads(algs, count);
if (err)
return err;
for (i = 0; i < count; i++) {
WARN_ON(strncmp(algs[i].base.cra_name, "__", 2));
WARN_ON(strncmp(algs[i].base.cra_driver_name, "__", 2));
algname = algs[i].base.cra_name + 2;
drvname = algs[i].base.cra_driver_name + 2;
basename = algs[i].base.cra_driver_name;
simd = simd_aead_create_compat(algname, drvname, basename);
err = PTR_ERR(simd);
if (IS_ERR(simd))
goto err_unregister;
simd_algs[i] = simd;
}
return 0;
err_unregister:
simd_unregister_aeads(algs, count, simd_algs);
return err;
}
EXPORT_SYMBOL_GPL(simd_register_aeads_compat);
void simd_unregister_aeads(struct aead_alg *algs, int count,
struct simd_aead_alg **simd_algs)
{
int i;
crypto_unregister_aeads(algs, count);
for (i = 0; i < count; i++) {
if (simd_algs[i]) {
simd_aead_free(simd_algs[i]);
simd_algs[i] = NULL;
}
}
}
EXPORT_SYMBOL_GPL(simd_unregister_aeads);
MODULE_LICENSE("GPL");