kernel-ark/drivers/net/wireless/ath9k/rc.c
Johannes Berg 4b7679a561 mac80211: clean up rate control API
Long awaited, hard work. This patch totally cleans up the rate control
API to remove the requirement to include internal headers outside of
net/mac80211/.

There's one internal use in the PID algorithm left for mesh networking,
we'll have to figure out a way to clean that one up and decide how to
do the peer link evaluation, possibly independent of the rate control
algorithm or via new API.

Additionally, ath9k is left using the cross-inclusion hack for now, we
will add new API where necessary to make this work properly, but right
now I'm not expert enough to do it. It's still off better than before.

Signed-off-by: Johannes Berg <johannes@sipsolutions.net>
Signed-off-by: John W. Linville <linville@tuxdriver.com>
2008-09-24 16:18:03 -04:00

2113 lines
61 KiB
C

/*
* Copyright (c) 2004 Video54 Technologies, Inc.
* Copyright (c) 2004-2008 Atheros Communications, Inc.
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
/*
* Atheros rate control algorithm
*/
#include "core.h"
/* FIXME: remove this include! */
#include "../net/mac80211/rate.h"
static u32 tx_triglevel_max;
static struct ath_rate_table ar5416_11na_ratetable = {
42,
{
{ TRUE, TRUE, WLAN_PHY_OFDM, 6000, /* 6 Mb */
5400, 0x0b, 0x00, 12,
0, 2, 1, 0, 0, 0, 0, 0 },
{ TRUE, TRUE, WLAN_PHY_OFDM, 9000, /* 9 Mb */
7800, 0x0f, 0x00, 18,
0, 3, 1, 1, 1, 1, 1, 0 },
{ TRUE, TRUE, WLAN_PHY_OFDM, 12000, /* 12 Mb */
10000, 0x0a, 0x00, 24,
2, 4, 2, 2, 2, 2, 2, 0 },
{ TRUE, TRUE, WLAN_PHY_OFDM, 18000, /* 18 Mb */
13900, 0x0e, 0x00, 36,
2, 6, 2, 3, 3, 3, 3, 0 },
{ TRUE, TRUE, WLAN_PHY_OFDM, 24000, /* 24 Mb */
17300, 0x09, 0x00, 48,
4, 10, 3, 4, 4, 4, 4, 0 },
{ TRUE, TRUE, WLAN_PHY_OFDM, 36000, /* 36 Mb */
23000, 0x0d, 0x00, 72,
4, 14, 3, 5, 5, 5, 5, 0 },
{ TRUE, TRUE, WLAN_PHY_OFDM, 48000, /* 48 Mb */
27400, 0x08, 0x00, 96,
4, 20, 3, 6, 6, 6, 6, 0 },
{ TRUE, TRUE, WLAN_PHY_OFDM, 54000, /* 54 Mb */
29300, 0x0c, 0x00, 108,
4, 23, 3, 7, 7, 7, 7, 0 },
{ TRUE_20, TRUE_20, WLAN_PHY_HT_20_SS, 6500, /* 6.5 Mb */
6400, 0x80, 0x00, 0,
0, 2, 3, 8, 24, 8, 24, 3216 },
{ TRUE_20, TRUE_20, WLAN_PHY_HT_20_SS, 13000, /* 13 Mb */
12700, 0x81, 0x00, 1,
2, 4, 3, 9, 25, 9, 25, 6434 },
{ TRUE_20, TRUE_20, WLAN_PHY_HT_20_SS, 19500, /* 19.5 Mb */
18800, 0x82, 0x00, 2,
2, 6, 3, 10, 26, 10, 26, 9650 },
{ TRUE_20, TRUE_20, WLAN_PHY_HT_20_SS, 26000, /* 26 Mb */
25000, 0x83, 0x00, 3,
4, 10, 3, 11, 27, 11, 27, 12868 },
{ TRUE_20, TRUE_20, WLAN_PHY_HT_20_SS, 39000, /* 39 Mb */
36700, 0x84, 0x00, 4,
4, 14, 3, 12, 28, 12, 28, 19304 },
{ FALSE, TRUE_20, WLAN_PHY_HT_20_SS, 52000, /* 52 Mb */
48100, 0x85, 0x00, 5,
4, 20, 3, 13, 29, 13, 29, 25740 },
{ FALSE, TRUE_20, WLAN_PHY_HT_20_SS, 58500, /* 58.5 Mb */
53500, 0x86, 0x00, 6,
4, 23, 3, 14, 30, 14, 30, 28956 },
{ FALSE, TRUE_20, WLAN_PHY_HT_20_SS, 65000, /* 65 Mb */
59000, 0x87, 0x00, 7,
4, 25, 3, 15, 31, 15, 32, 32180 },
{ FALSE, FALSE, WLAN_PHY_HT_20_DS, 13000, /* 13 Mb */
12700, 0x88, 0x00,
8, 0, 2, 3, 16, 33, 16, 33, 6430 },
{ FALSE, FALSE, WLAN_PHY_HT_20_DS, 26000, /* 26 Mb */
24800, 0x89, 0x00, 9,
2, 4, 3, 17, 34, 17, 34, 12860 },
{ FALSE, FALSE, WLAN_PHY_HT_20_DS, 39000, /* 39 Mb */
36600, 0x8a, 0x00, 10,
2, 6, 3, 18, 35, 18, 35, 19300 },
{ TRUE_20, FALSE, WLAN_PHY_HT_20_DS, 52000, /* 52 Mb */
48100, 0x8b, 0x00, 11,
4, 10, 3, 19, 36, 19, 36, 25736 },
{ TRUE_20, FALSE, WLAN_PHY_HT_20_DS, 78000, /* 78 Mb */
69500, 0x8c, 0x00, 12,
4, 14, 3, 20, 37, 20, 37, 38600 },
{ TRUE_20, FALSE, WLAN_PHY_HT_20_DS, 104000, /* 104 Mb */
89500, 0x8d, 0x00, 13,
4, 20, 3, 21, 38, 21, 38, 51472 },
{ TRUE_20, FALSE, WLAN_PHY_HT_20_DS, 117000, /* 117 Mb */
98900, 0x8e, 0x00, 14,
4, 23, 3, 22, 39, 22, 39, 57890 },
{ TRUE_20, FALSE, WLAN_PHY_HT_20_DS, 130000, /* 130 Mb */
108300, 0x8f, 0x00, 15,
4, 25, 3, 23, 40, 23, 41, 64320 },
{ TRUE_40, TRUE_40, WLAN_PHY_HT_40_SS, 13500, /* 13.5 Mb */
13200, 0x80, 0x00, 0,
0, 2, 3, 8, 24, 24, 24, 6684 },
{ TRUE_40, TRUE_40, WLAN_PHY_HT_40_SS, 27500, /* 27.0 Mb */
25900, 0x81, 0x00, 1,
2, 4, 3, 9, 25, 25, 25, 13368 },
{ TRUE_40, TRUE_40, WLAN_PHY_HT_40_SS, 40500, /* 40.5 Mb */
38600, 0x82, 0x00, 2,
2, 6, 3, 10, 26, 26, 26, 20052 },
{ TRUE_40, TRUE_40, WLAN_PHY_HT_40_SS, 54000, /* 54 Mb */
49800, 0x83, 0x00, 3,
4, 10, 3, 11, 27, 27, 27, 26738 },
{ TRUE_40, TRUE_40, WLAN_PHY_HT_40_SS, 81500, /* 81 Mb */
72200, 0x84, 0x00, 4,
4, 14, 3, 12, 28, 28, 28, 40104 },
{ FALSE, TRUE_40, WLAN_PHY_HT_40_SS, 108000, /* 108 Mb */
92900, 0x85, 0x00, 5,
4, 20, 3, 13, 29, 29, 29, 53476 },
{ FALSE, TRUE_40, WLAN_PHY_HT_40_SS, 121500, /* 121.5 Mb */
102700, 0x86, 0x00, 6,
4, 23, 3, 14, 30, 30, 30, 60156 },
{ FALSE, TRUE_40, WLAN_PHY_HT_40_SS, 135000, /* 135 Mb */
112000, 0x87, 0x00, 7,
4, 25, 3, 15, 31, 32, 32, 66840 },
{ FALSE, TRUE_40, WLAN_PHY_HT_40_SS_HGI, 150000, /* 150 Mb */
122000, 0x87, 0x00, 7,
4, 25, 3, 15, 31, 32, 32, 74200 },
{ FALSE, FALSE, WLAN_PHY_HT_40_DS, 27000, /* 27 Mb */
25800, 0x88, 0x00, 8,
0, 2, 3, 16, 33, 33, 33, 13360 },
{ FALSE, FALSE, WLAN_PHY_HT_40_DS, 54000, /* 54 Mb */
49800, 0x89, 0x00, 9,
2, 4, 3, 17, 34, 34, 34, 26720 },
{ FALSE, FALSE, WLAN_PHY_HT_40_DS, 81000, /* 81 Mb */
71900, 0x8a, 0x00, 10,
2, 6, 3, 18, 35, 35, 35, 40080 },
{ TRUE_40, FALSE, WLAN_PHY_HT_40_DS, 108000, /* 108 Mb */
92500, 0x8b, 0x00, 11,
4, 10, 3, 19, 36, 36, 36, 53440 },
{ TRUE_40, FALSE, WLAN_PHY_HT_40_DS, 162000, /* 162 Mb */
130300, 0x8c, 0x00, 12,
4, 14, 3, 20, 37, 37, 37, 80160 },
{ TRUE_40, FALSE, WLAN_PHY_HT_40_DS, 216000, /* 216 Mb */
162800, 0x8d, 0x00, 13,
4, 20, 3, 21, 38, 38, 38, 106880 },
{ TRUE_40, FALSE, WLAN_PHY_HT_40_DS, 243000, /* 243 Mb */
178200, 0x8e, 0x00, 14,
4, 23, 3, 22, 39, 39, 39, 120240 },
{ TRUE_40, FALSE, WLAN_PHY_HT_40_DS, 270000, /* 270 Mb */
192100, 0x8f, 0x00, 15,
4, 25, 3, 23, 40, 41, 41, 133600 },
{ TRUE_40, FALSE, WLAN_PHY_HT_40_DS_HGI, 300000, /* 300 Mb */
207000, 0x8f, 0x00, 15,
4, 25, 3, 23, 40, 41, 41, 148400 },
},
50, /* probe interval */
50, /* rssi reduce interval */
WLAN_RC_HT_FLAG, /* Phy rates allowed initially */
};
/* TRUE_ALL - valid for 20/40/Legacy,
* TRUE - Legacy only,
* TRUE_20 - HT 20 only,
* TRUE_40 - HT 40 only */
/* 4ms frame limit not used for NG mode. The values filled
* for HT are the 64K max aggregate limit */
static struct ath_rate_table ar5416_11ng_ratetable = {
46,
{
{ TRUE_ALL, TRUE_ALL, WLAN_PHY_CCK, 1000, /* 1 Mb */
900, 0x1b, 0x00, 2,
0, 0, 1, 0, 0, 0, 0, 0 },
{ TRUE_ALL, TRUE_ALL, WLAN_PHY_CCK, 2000, /* 2 Mb */
1900, 0x1a, 0x04, 4,
1, 1, 1, 1, 1, 1, 1, 0 },
{ TRUE_ALL, TRUE_ALL, WLAN_PHY_CCK, 5500, /* 5.5 Mb */
4900, 0x19, 0x04, 11,
2, 2, 2, 2, 2, 2, 2, 0 },
{ TRUE_ALL, TRUE_ALL, WLAN_PHY_CCK, 11000, /* 11 Mb */
8100, 0x18, 0x04, 22,
3, 3, 2, 3, 3, 3, 3, 0 },
{ FALSE, FALSE, WLAN_PHY_OFDM, 6000, /* 6 Mb */
5400, 0x0b, 0x00, 12,
4, 2, 1, 4, 4, 4, 4, 0 },
{ FALSE, FALSE, WLAN_PHY_OFDM, 9000, /* 9 Mb */
7800, 0x0f, 0x00, 18,
4, 3, 1, 5, 5, 5, 5, 0 },
{ TRUE, TRUE, WLAN_PHY_OFDM, 12000, /* 12 Mb */
10100, 0x0a, 0x00, 24,
6, 4, 1, 6, 6, 6, 6, 0 },
{ TRUE, TRUE, WLAN_PHY_OFDM, 18000, /* 18 Mb */
14100, 0x0e, 0x00, 36,
6, 6, 2, 7, 7, 7, 7, 0 },
{ TRUE, TRUE, WLAN_PHY_OFDM, 24000, /* 24 Mb */
17700, 0x09, 0x00, 48,
8, 10, 3, 8, 8, 8, 8, 0 },
{ TRUE, TRUE, WLAN_PHY_OFDM, 36000, /* 36 Mb */
23700, 0x0d, 0x00, 72,
8, 14, 3, 9, 9, 9, 9, 0 },
{ TRUE, TRUE, WLAN_PHY_OFDM, 48000, /* 48 Mb */
27400, 0x08, 0x00, 96,
8, 20, 3, 10, 10, 10, 10, 0 },
{ TRUE, TRUE, WLAN_PHY_OFDM, 54000, /* 54 Mb */
30900, 0x0c, 0x00, 108,
8, 23, 3, 11, 11, 11, 11, 0 },
{ FALSE, FALSE, WLAN_PHY_HT_20_SS, 6500, /* 6.5 Mb */
6400, 0x80, 0x00, 0,
4, 2, 3, 12, 28, 12, 28, 3216 },
{ TRUE_20, TRUE_20, WLAN_PHY_HT_20_SS, 13000, /* 13 Mb */
12700, 0x81, 0x00, 1,
6, 4, 3, 13, 29, 13, 29, 6434 },
{ TRUE_20, TRUE_20, WLAN_PHY_HT_20_SS, 19500, /* 19.5 Mb */
18800, 0x82, 0x00, 2,
6, 6, 3, 14, 30, 14, 30, 9650 },
{ TRUE_20, TRUE_20, WLAN_PHY_HT_20_SS, 26000, /* 26 Mb */
25000, 0x83, 0x00, 3,
8, 10, 3, 15, 31, 15, 31, 12868 },
{ TRUE_20, TRUE_20, WLAN_PHY_HT_20_SS, 39000, /* 39 Mb */
36700, 0x84, 0x00, 4,
8, 14, 3, 16, 32, 16, 32, 19304 },
{ FALSE, TRUE_20, WLAN_PHY_HT_20_SS, 52000, /* 52 Mb */
48100, 0x85, 0x00, 5,
8, 20, 3, 17, 33, 17, 33, 25740 },
{ FALSE, TRUE_20, WLAN_PHY_HT_20_SS, 58500, /* 58.5 Mb */
53500, 0x86, 0x00, 6,
8, 23, 3, 18, 34, 18, 34, 28956 },
{ FALSE, TRUE_20, WLAN_PHY_HT_20_SS, 65000, /* 65 Mb */
59000, 0x87, 0x00, 7,
8, 25, 3, 19, 35, 19, 36, 32180 },
{ FALSE, FALSE, WLAN_PHY_HT_20_DS, 13000, /* 13 Mb */
12700, 0x88, 0x00, 8,
4, 2, 3, 20, 37, 20, 37, 6430 },
{ FALSE, FALSE, WLAN_PHY_HT_20_DS, 26000, /* 26 Mb */
24800, 0x89, 0x00, 9,
6, 4, 3, 21, 38, 21, 38, 12860 },
{ FALSE, FALSE, WLAN_PHY_HT_20_DS, 39000, /* 39 Mb */
36600, 0x8a, 0x00, 10,
6, 6, 3, 22, 39, 22, 39, 19300 },
{ TRUE_20, FALSE, WLAN_PHY_HT_20_DS, 52000, /* 52 Mb */
48100, 0x8b, 0x00, 11,
8, 10, 3, 23, 40, 23, 40, 25736 },
{ TRUE_20, FALSE, WLAN_PHY_HT_20_DS, 78000, /* 78 Mb */
69500, 0x8c, 0x00, 12,
8, 14, 3, 24, 41, 24, 41, 38600 },
{ TRUE_20, FALSE, WLAN_PHY_HT_20_DS, 104000, /* 104 Mb */
89500, 0x8d, 0x00, 13,
8, 20, 3, 25, 42, 25, 42, 51472 },
{ TRUE_20, FALSE, WLAN_PHY_HT_20_DS, 117000, /* 117 Mb */
98900, 0x8e, 0x00, 14,
8, 23, 3, 26, 43, 26, 44, 57890 },
{ TRUE_20, FALSE, WLAN_PHY_HT_20_DS, 130000, /* 130 Mb */
108300, 0x8f, 0x00, 15,
8, 25, 3, 27, 44, 27, 45, 64320 },
{ TRUE_40, TRUE_40, WLAN_PHY_HT_40_SS, 13500, /* 13.5 Mb */
13200, 0x80, 0x00, 0,
8, 2, 3, 12, 28, 28, 28, 6684 },
{ TRUE_40, TRUE_40, WLAN_PHY_HT_40_SS, 27500, /* 27.0 Mb */
25900, 0x81, 0x00, 1,
8, 4, 3, 13, 29, 29, 29, 13368 },
{ TRUE_40, TRUE_40, WLAN_PHY_HT_40_SS, 40500, /* 40.5 Mb */
38600, 0x82, 0x00, 2,
8, 6, 3, 14, 30, 30, 30, 20052 },
{ TRUE_40, TRUE_40, WLAN_PHY_HT_40_SS, 54000, /* 54 Mb */
49800, 0x83, 0x00, 3,
8, 10, 3, 15, 31, 31, 31, 26738 },
{ TRUE_40, TRUE_40, WLAN_PHY_HT_40_SS, 81500, /* 81 Mb */
72200, 0x84, 0x00, 4,
8, 14, 3, 16, 32, 32, 32, 40104 },
{ FALSE, TRUE_40, WLAN_PHY_HT_40_SS, 108000, /* 108 Mb */
92900, 0x85, 0x00, 5,
8, 20, 3, 17, 33, 33, 33, 53476 },
{ FALSE, TRUE_40, WLAN_PHY_HT_40_SS, 121500, /* 121.5 Mb */
102700, 0x86, 0x00, 6,
8, 23, 3, 18, 34, 34, 34, 60156 },
{ FALSE, TRUE_40, WLAN_PHY_HT_40_SS, 135000, /* 135 Mb */
112000, 0x87, 0x00, 7,
8, 23, 3, 19, 35, 36, 36, 66840 },
{ FALSE, TRUE_40, WLAN_PHY_HT_40_SS_HGI, 150000, /* 150 Mb */
122000, 0x87, 0x00, 7,
8, 25, 3, 19, 35, 36, 36, 74200 },
{ FALSE, FALSE, WLAN_PHY_HT_40_DS, 27000, /* 27 Mb */
25800, 0x88, 0x00, 8,
8, 2, 3, 20, 37, 37, 37, 13360 },
{ FALSE, FALSE, WLAN_PHY_HT_40_DS, 54000, /* 54 Mb */
49800, 0x89, 0x00, 9,
8, 4, 3, 21, 38, 38, 38, 26720 },
{ FALSE, FALSE, WLAN_PHY_HT_40_DS, 81000, /* 81 Mb */
71900, 0x8a, 0x00, 10,
8, 6, 3, 22, 39, 39, 39, 40080 },
{ TRUE_40, FALSE, WLAN_PHY_HT_40_DS, 108000, /* 108 Mb */
92500, 0x8b, 0x00, 11,
8, 10, 3, 23, 40, 40, 40, 53440 },
{ TRUE_40, FALSE, WLAN_PHY_HT_40_DS, 162000, /* 162 Mb */
130300, 0x8c, 0x00, 12,
8, 14, 3, 24, 41, 41, 41, 80160 },
{ TRUE_40, FALSE, WLAN_PHY_HT_40_DS, 216000, /* 216 Mb */
162800, 0x8d, 0x00, 13,
8, 20, 3, 25, 42, 42, 42, 106880 },
{ TRUE_40, FALSE, WLAN_PHY_HT_40_DS, 243000, /* 243 Mb */
178200, 0x8e, 0x00, 14,
8, 23, 3, 26, 43, 43, 43, 120240 },
{ TRUE_40, FALSE, WLAN_PHY_HT_40_DS, 270000, /* 270 Mb */
192100, 0x8f, 0x00, 15,
8, 23, 3, 27, 44, 45, 45, 133600 },
{ TRUE_40, FALSE, WLAN_PHY_HT_40_DS_HGI, 300000, /* 300 Mb */
207000, 0x8f, 0x00, 15,
8, 25, 3, 27, 44, 45, 45, 148400 },
},
50, /* probe interval */
50, /* rssi reduce interval */
WLAN_RC_HT_FLAG, /* Phy rates allowed initially */
};
static struct ath_rate_table ar5416_11a_ratetable = {
8,
{
{ TRUE, TRUE, WLAN_PHY_OFDM, 6000, /* 6 Mb */
5400, 0x0b, 0x00, (0x80|12),
0, 2, 1, 0, 0 },
{ TRUE, TRUE, WLAN_PHY_OFDM, 9000, /* 9 Mb */
7800, 0x0f, 0x00, 18,
0, 3, 1, 1, 0 },
{ TRUE, TRUE, WLAN_PHY_OFDM, 12000, /* 12 Mb */
10000, 0x0a, 0x00, (0x80|24),
2, 4, 2, 2, 0 },
{ TRUE, TRUE, WLAN_PHY_OFDM, 18000, /* 18 Mb */
13900, 0x0e, 0x00, 36,
2, 6, 2, 3, 0 },
{ TRUE, TRUE, WLAN_PHY_OFDM, 24000, /* 24 Mb */
17300, 0x09, 0x00, (0x80|48),
4, 10, 3, 4, 0 },
{ TRUE, TRUE, WLAN_PHY_OFDM, 36000, /* 36 Mb */
23000, 0x0d, 0x00, 72,
4, 14, 3, 5, 0 },
{ TRUE, TRUE, WLAN_PHY_OFDM, 48000, /* 48 Mb */
27400, 0x08, 0x00, 96,
4, 19, 3, 6, 0 },
{ TRUE, TRUE, WLAN_PHY_OFDM, 54000, /* 54 Mb */
29300, 0x0c, 0x00, 108,
4, 23, 3, 7, 0 },
},
50, /* probe interval */
50, /* rssi reduce interval */
0, /* Phy rates allowed initially */
};
static struct ath_rate_table ar5416_11a_ratetable_Half = {
8,
{
{ TRUE, TRUE, WLAN_PHY_OFDM, 3000, /* 6 Mb */
2700, 0x0b, 0x00, (0x80|6),
0, 2, 1, 0, 0},
{ TRUE, TRUE, WLAN_PHY_OFDM, 4500, /* 9 Mb */
3900, 0x0f, 0x00, 9,
0, 3, 1, 1, 0 },
{ TRUE, TRUE, WLAN_PHY_OFDM, 6000, /* 12 Mb */
5000, 0x0a, 0x00, (0x80|12),
2, 4, 2, 2, 0 },
{ TRUE, TRUE, WLAN_PHY_OFDM, 9000, /* 18 Mb */
6950, 0x0e, 0x00, 18,
2, 6, 2, 3, 0 },
{ TRUE, TRUE, WLAN_PHY_OFDM, 12000, /* 24 Mb */
8650, 0x09, 0x00, (0x80|24),
4, 10, 3, 4, 0 },
{ TRUE, TRUE, WLAN_PHY_OFDM, 18000, /* 36 Mb */
11500, 0x0d, 0x00, 36,
4, 14, 3, 5, 0 },
{ TRUE, TRUE, WLAN_PHY_OFDM, 24000, /* 48 Mb */
13700, 0x08, 0x00, 48,
4, 19, 3, 6, 0 },
{ TRUE, TRUE, WLAN_PHY_OFDM, 27000, /* 54 Mb */
14650, 0x0c, 0x00, 54,
4, 23, 3, 7, 0 },
},
50, /* probe interval */
50, /* rssi reduce interval */
0, /* Phy rates allowed initially */
};
static struct ath_rate_table ar5416_11a_ratetable_Quarter = {
8,
{
{ TRUE, TRUE, WLAN_PHY_OFDM, 1500, /* 6 Mb */
1350, 0x0b, 0x00, (0x80|3),
0, 2, 1, 0, 0 },
{ TRUE, TRUE, WLAN_PHY_OFDM, 2250, /* 9 Mb */
1950, 0x0f, 0x00, 4,
0, 3, 1, 1, 0 },
{ TRUE, TRUE, WLAN_PHY_OFDM, 3000, /* 12 Mb */
2500, 0x0a, 0x00, (0x80|6),
2, 4, 2, 2, 0 },
{ TRUE, TRUE, WLAN_PHY_OFDM, 4500, /* 18 Mb */
3475, 0x0e, 0x00, 9,
2, 6, 2, 3, 0 },
{ TRUE, TRUE, WLAN_PHY_OFDM, 6000, /* 25 Mb */
4325, 0x09, 0x00, (0x80|12),
4, 10, 3, 4, 0 },
{ TRUE, TRUE, WLAN_PHY_OFDM, 9000, /* 36 Mb */
5750, 0x0d, 0x00, 18,
4, 14, 3, 5, 0 },
{ TRUE, TRUE, WLAN_PHY_OFDM, 12000, /* 48 Mb */
6850, 0x08, 0x00, 24,
4, 19, 3, 6, 0 },
{ TRUE, TRUE, WLAN_PHY_OFDM, 13500, /* 54 Mb */
7325, 0x0c, 0x00, 27,
4, 23, 3, 7, 0 },
},
50, /* probe interval */
50, /* rssi reduce interval */
0, /* Phy rates allowed initially */
};
static struct ath_rate_table ar5416_11g_ratetable = {
12,
{
{ TRUE, TRUE, WLAN_PHY_CCK, 1000, /* 1 Mb */
900, 0x1b, 0x00, 2,
0, 0, 1, 0, 0 },
{ TRUE, TRUE, WLAN_PHY_CCK, 2000, /* 2 Mb */
1900, 0x1a, 0x04, 4,
1, 1, 1, 1, 0 },
{ TRUE, TRUE, WLAN_PHY_CCK, 5500, /* 5.5 Mb */
4900, 0x19, 0x04, 11,
2, 2, 2, 2, 0 },
{ TRUE, TRUE, WLAN_PHY_CCK, 11000, /* 11 Mb */
8100, 0x18, 0x04, 22,
3, 3, 2, 3, 0 },
{ FALSE, FALSE, WLAN_PHY_OFDM, 6000, /* 6 Mb */
5400, 0x0b, 0x00, 12,
4, 2, 1, 4, 0 },
{ FALSE, FALSE, WLAN_PHY_OFDM, 9000, /* 9 Mb */
7800, 0x0f, 0x00, 18,
4, 3, 1, 5, 0 },
{ TRUE, TRUE, WLAN_PHY_OFDM, 12000, /* 12 Mb */
10000, 0x0a, 0x00, 24,
6, 4, 1, 6, 0 },
{ TRUE, TRUE, WLAN_PHY_OFDM, 18000, /* 18 Mb */
13900, 0x0e, 0x00, 36,
6, 6, 2, 7, 0 },
{ TRUE, TRUE, WLAN_PHY_OFDM, 24000, /* 24 Mb */
17300, 0x09, 0x00, 48,
8, 10, 3, 8, 0 },
{ TRUE, TRUE, WLAN_PHY_OFDM, 36000, /* 36 Mb */
23000, 0x0d, 0x00, 72,
8, 14, 3, 9, 0 },
{ TRUE, TRUE, WLAN_PHY_OFDM, 48000, /* 48 Mb */
27400, 0x08, 0x00, 96,
8, 19, 3, 10, 0 },
{ TRUE, TRUE, WLAN_PHY_OFDM, 54000, /* 54 Mb */
29300, 0x0c, 0x00, 108,
8, 23, 3, 11, 0 },
},
50, /* probe interval */
50, /* rssi reduce interval */
0, /* Phy rates allowed initially */
};
static struct ath_rate_table ar5416_11b_ratetable = {
4,
{
{ TRUE, TRUE, WLAN_PHY_CCK, 1000, /* 1 Mb */
900, 0x1b, 0x00, (0x80|2),
0, 0, 1, 0, 0 },
{ TRUE, TRUE, WLAN_PHY_CCK, 2000, /* 2 Mb */
1800, 0x1a, 0x04, (0x80|4),
1, 1, 1, 1, 0 },
{ TRUE, TRUE, WLAN_PHY_CCK, 5500, /* 5.5 Mb */
4300, 0x19, 0x04, (0x80|11),
1, 2, 2, 2, 0 },
{ TRUE, TRUE, WLAN_PHY_CCK, 11000, /* 11 Mb */
7100, 0x18, 0x04, (0x80|22),
1, 4, 100, 3, 0 },
},
100, /* probe interval */
100, /* rssi reduce interval */
0, /* Phy rates allowed initially */
};
static void ar5416_attach_ratetables(struct ath_rate_softc *sc)
{
/*
* Attach rate tables.
*/
sc->hw_rate_table[ATH9K_MODE_11B] = &ar5416_11b_ratetable;
sc->hw_rate_table[ATH9K_MODE_11A] = &ar5416_11a_ratetable;
sc->hw_rate_table[ATH9K_MODE_11G] = &ar5416_11g_ratetable;
sc->hw_rate_table[ATH9K_MODE_11NA_HT20] = &ar5416_11na_ratetable;
sc->hw_rate_table[ATH9K_MODE_11NG_HT20] = &ar5416_11ng_ratetable;
sc->hw_rate_table[ATH9K_MODE_11NA_HT40PLUS] =
&ar5416_11na_ratetable;
sc->hw_rate_table[ATH9K_MODE_11NA_HT40MINUS] =
&ar5416_11na_ratetable;
sc->hw_rate_table[ATH9K_MODE_11NG_HT40PLUS] =
&ar5416_11ng_ratetable;
sc->hw_rate_table[ATH9K_MODE_11NG_HT40MINUS] =
&ar5416_11ng_ratetable;
}
static void ar5416_setquarter_ratetable(struct ath_rate_softc *sc)
{
sc->hw_rate_table[ATH9K_MODE_11A] = &ar5416_11a_ratetable_Quarter;
return;
}
static void ar5416_sethalf_ratetable(struct ath_rate_softc *sc)
{
sc->hw_rate_table[ATH9K_MODE_11A] = &ar5416_11a_ratetable_Half;
return;
}
static void ar5416_setfull_ratetable(struct ath_rate_softc *sc)
{
sc->hw_rate_table[ATH9K_MODE_11A] = &ar5416_11a_ratetable;
return;
}
/*
* Return the median of three numbers
*/
static inline int8_t median(int8_t a, int8_t b, int8_t c)
{
if (a >= b) {
if (b >= c)
return b;
else if (a > c)
return c;
else
return a;
} else {
if (a >= c)
return a;
else if (b >= c)
return c;
else
return b;
}
}
static void ath_rc_sort_validrates(const struct ath_rate_table *rate_table,
struct ath_tx_ratectrl *rate_ctrl)
{
u8 i, j, idx, idx_next;
for (i = rate_ctrl->max_valid_rate - 1; i > 0; i--) {
for (j = 0; j <= i-1; j++) {
idx = rate_ctrl->valid_rate_index[j];
idx_next = rate_ctrl->valid_rate_index[j+1];
if (rate_table->info[idx].ratekbps >
rate_table->info[idx_next].ratekbps) {
rate_ctrl->valid_rate_index[j] = idx_next;
rate_ctrl->valid_rate_index[j+1] = idx;
}
}
}
}
/* Access functions for valid_txrate_mask */
static void ath_rc_init_valid_txmask(struct ath_tx_ratectrl *rate_ctrl)
{
u8 i;
for (i = 0; i < rate_ctrl->rate_table_size; i++)
rate_ctrl->valid_rate_index[i] = FALSE;
}
static inline void ath_rc_set_valid_txmask(struct ath_tx_ratectrl *rate_ctrl,
u8 index, int valid_tx_rate)
{
ASSERT(index <= rate_ctrl->rate_table_size);
rate_ctrl->valid_rate_index[index] = valid_tx_rate ? TRUE : FALSE;
}
static inline int ath_rc_isvalid_txmask(struct ath_tx_ratectrl *rate_ctrl,
u8 index)
{
ASSERT(index <= rate_ctrl->rate_table_size);
return rate_ctrl->valid_rate_index[index];
}
/* Iterators for valid_txrate_mask */
static inline int
ath_rc_get_nextvalid_txrate(const struct ath_rate_table *rate_table,
struct ath_tx_ratectrl *rate_ctrl,
u8 cur_valid_txrate,
u8 *next_idx)
{
u8 i;
for (i = 0; i < rate_ctrl->max_valid_rate - 1; i++) {
if (rate_ctrl->valid_rate_index[i] == cur_valid_txrate) {
*next_idx = rate_ctrl->valid_rate_index[i+1];
return TRUE;
}
}
/* No more valid rates */
*next_idx = 0;
return FALSE;
}
/* Return true only for single stream */
static int ath_rc_valid_phyrate(u32 phy, u32 capflag, int ignore_cw)
{
if (WLAN_RC_PHY_HT(phy) & !(capflag & WLAN_RC_HT_FLAG))
return FALSE;
if (WLAN_RC_PHY_DS(phy) && !(capflag & WLAN_RC_DS_FLAG))
return FALSE;
if (WLAN_RC_PHY_SGI(phy) && !(capflag & WLAN_RC_SGI_FLAG))
return FALSE;
if (!ignore_cw && WLAN_RC_PHY_HT(phy))
if (WLAN_RC_PHY_40(phy) && !(capflag & WLAN_RC_40_FLAG))
return FALSE;
if (!WLAN_RC_PHY_40(phy) && (capflag & WLAN_RC_40_FLAG))
return FALSE;
return TRUE;
}
static inline int
ath_rc_get_nextlowervalid_txrate(const struct ath_rate_table *rate_table,
struct ath_tx_ratectrl *rate_ctrl,
u8 cur_valid_txrate, u8 *next_idx)
{
int8_t i;
for (i = 1; i < rate_ctrl->max_valid_rate ; i++) {
if (rate_ctrl->valid_rate_index[i] == cur_valid_txrate) {
*next_idx = rate_ctrl->valid_rate_index[i-1];
return TRUE;
}
}
return FALSE;
}
/*
* Initialize the Valid Rate Index from valid entries in Rate Table
*/
static u8
ath_rc_sib_init_validrates(struct ath_rate_node *ath_rc_priv,
const struct ath_rate_table *rate_table,
u32 capflag)
{
struct ath_tx_ratectrl *rate_ctrl;
u8 i, hi = 0;
u32 valid;
rate_ctrl = (struct ath_tx_ratectrl *)(ath_rc_priv);
for (i = 0; i < rate_table->rate_cnt; i++) {
valid = (ath_rc_priv->single_stream ?
rate_table->info[i].valid_single_stream :
rate_table->info[i].valid);
if (valid == TRUE) {
u32 phy = rate_table->info[i].phy;
u8 valid_rate_count = 0;
if (!ath_rc_valid_phyrate(phy, capflag, FALSE))
continue;
valid_rate_count = rate_ctrl->valid_phy_ratecnt[phy];
rate_ctrl->valid_phy_rateidx[phy][valid_rate_count] = i;
rate_ctrl->valid_phy_ratecnt[phy] += 1;
ath_rc_set_valid_txmask(rate_ctrl, i, TRUE);
hi = A_MAX(hi, i);
}
}
return hi;
}
/*
* Initialize the Valid Rate Index from Rate Set
*/
static u8
ath_rc_sib_setvalid_rates(struct ath_rate_node *ath_rc_priv,
const struct ath_rate_table *rate_table,
struct ath_rateset *rateset,
u32 capflag)
{
/* XXX: Clean me up and make identation friendly */
u8 i, j, hi = 0;
struct ath_tx_ratectrl *rate_ctrl =
(struct ath_tx_ratectrl *)(ath_rc_priv);
/* Use intersection of working rates and valid rates */
for (i = 0; i < rateset->rs_nrates; i++) {
for (j = 0; j < rate_table->rate_cnt; j++) {
u32 phy = rate_table->info[j].phy;
u32 valid = (ath_rc_priv->single_stream ?
rate_table->info[j].valid_single_stream :
rate_table->info[j].valid);
/* We allow a rate only if its valid and the
* capflag matches one of the validity
* (TRUE/TRUE_20/TRUE_40) flags */
/* XXX: catch the negative of this branch
* first and then continue */
if (((rateset->rs_rates[i] & 0x7F) ==
(rate_table->info[j].dot11rate & 0x7F)) &&
((valid & WLAN_RC_CAP_MODE(capflag)) ==
WLAN_RC_CAP_MODE(capflag)) &&
!WLAN_RC_PHY_HT(phy)) {
u8 valid_rate_count = 0;
if (!ath_rc_valid_phyrate(phy, capflag, FALSE))
continue;
valid_rate_count =
rate_ctrl->valid_phy_ratecnt[phy];
rate_ctrl->valid_phy_rateidx[phy]
[valid_rate_count] = j;
rate_ctrl->valid_phy_ratecnt[phy] += 1;
ath_rc_set_valid_txmask(rate_ctrl, j, TRUE);
hi = A_MAX(hi, j);
}
}
}
return hi;
}
static u8
ath_rc_sib_setvalid_htrates(struct ath_rate_node *ath_rc_priv,
const struct ath_rate_table *rate_table,
u8 *mcs_set, u32 capflag)
{
u8 i, j, hi = 0;
struct ath_tx_ratectrl *rate_ctrl =
(struct ath_tx_ratectrl *)(ath_rc_priv);
/* Use intersection of working rates and valid rates */
for (i = 0; i < ((struct ath_rateset *)mcs_set)->rs_nrates; i++) {
for (j = 0; j < rate_table->rate_cnt; j++) {
u32 phy = rate_table->info[j].phy;
u32 valid = (ath_rc_priv->single_stream ?
rate_table->info[j].valid_single_stream :
rate_table->info[j].valid);
if (((((struct ath_rateset *)
mcs_set)->rs_rates[i] & 0x7F) !=
(rate_table->info[j].dot11rate & 0x7F)) ||
!WLAN_RC_PHY_HT(phy) ||
!WLAN_RC_PHY_HT_VALID(valid, capflag))
continue;
if (!ath_rc_valid_phyrate(phy, capflag, FALSE))
continue;
rate_ctrl->valid_phy_rateidx[phy]
[rate_ctrl->valid_phy_ratecnt[phy]] = j;
rate_ctrl->valid_phy_ratecnt[phy] += 1;
ath_rc_set_valid_txmask(rate_ctrl, j, TRUE);
hi = A_MAX(hi, j);
}
}
return hi;
}
/*
* Attach to a device instance. Setup the public definition
* of how much per-node space we need and setup the private
* phy tables that have rate control parameters.
*/
struct ath_rate_softc *ath_rate_attach(struct ath_hal *ah)
{
struct ath_rate_softc *asc;
/* we are only in user context so we can sleep for memory */
asc = kzalloc(sizeof(struct ath_rate_softc), GFP_KERNEL);
if (asc == NULL)
return NULL;
ar5416_attach_ratetables(asc);
/* Save Maximum TX Trigger Level (used for 11n) */
tx_triglevel_max = ah->ah_caps.tx_triglevel_max;
/* return alias for ath_rate_softc * */
return asc;
}
static struct ath_rate_node *ath_rate_node_alloc(struct ath_vap *avp,
struct ath_rate_softc *rsc,
gfp_t gfp)
{
struct ath_rate_node *anode;
anode = kzalloc(sizeof(struct ath_rate_node), gfp);
if (anode == NULL)
return NULL;
anode->avp = avp;
anode->asc = rsc;
avp->rc_node = anode;
return anode;
}
static void ath_rate_node_free(struct ath_rate_node *anode)
{
if (anode != NULL)
kfree(anode);
}
void ath_rate_detach(struct ath_rate_softc *asc)
{
if (asc != NULL)
kfree(asc);
}
u8 ath_rate_findrateix(struct ath_softc *sc,
u8 dot11rate)
{
const struct ath_rate_table *ratetable;
struct ath_rate_softc *rsc = sc->sc_rc;
int i;
ratetable = rsc->hw_rate_table[sc->sc_curmode];
if (WARN_ON(!ratetable))
return 0;
for (i = 0; i < ratetable->rate_cnt; i++) {
if ((ratetable->info[i].dot11rate & 0x7f) == (dot11rate & 0x7f))
return i;
}
return 0;
}
/*
* Update rate-control state on a device state change. When
* operating as a station this includes associate/reassociate
* with an AP. Otherwise this gets called, for example, when
* the we transition to run state when operating as an AP.
*/
void ath_rate_newstate(struct ath_softc *sc, struct ath_vap *avp)
{
struct ath_rate_softc *asc = sc->sc_rc;
/* For half and quarter rate channles use different
* rate tables
*/
if (sc->sc_ah->ah_curchan->channelFlags & CHANNEL_HALF)
ar5416_sethalf_ratetable(asc);
else if (sc->sc_ah->ah_curchan->channelFlags & CHANNEL_QUARTER)
ar5416_setquarter_ratetable(asc);
else /* full rate */
ar5416_setfull_ratetable(asc);
if (avp->av_config.av_fixed_rateset != IEEE80211_FIXED_RATE_NONE) {
asc->fixedrix =
sc->sc_rixmap[avp->av_config.av_fixed_rateset & 0xff];
/* NB: check the fixed rate exists */
if (asc->fixedrix == 0xff)
asc->fixedrix = IEEE80211_FIXED_RATE_NONE;
} else {
asc->fixedrix = IEEE80211_FIXED_RATE_NONE;
}
}
static u8 ath_rc_ratefind_ht(struct ath_softc *sc,
struct ath_rate_node *ath_rc_priv,
const struct ath_rate_table *rate_table,
int probe_allowed, int *is_probing,
int is_retry)
{
u32 dt, best_thruput, this_thruput, now_msec;
u8 rate, next_rate, best_rate, maxindex, minindex;
int8_t rssi_last, rssi_reduce = 0, index = 0;
struct ath_tx_ratectrl *rate_ctrl = NULL;
rate_ctrl = (struct ath_tx_ratectrl *)(ath_rc_priv ?
(ath_rc_priv) : NULL);
*is_probing = FALSE;
rssi_last = median(rate_ctrl->rssi_last,
rate_ctrl->rssi_last_prev,
rate_ctrl->rssi_last_prev2);
/*
* Age (reduce) last ack rssi based on how old it is.
* The bizarre numbers are so the delta is 160msec,
* meaning we divide by 16.
* 0msec <= dt <= 25msec: don't derate
* 25msec <= dt <= 185msec: derate linearly from 0 to 10dB
* 185msec <= dt: derate by 10dB
*/
now_msec = jiffies_to_msecs(jiffies);
dt = now_msec - rate_ctrl->rssi_time;
if (dt >= 185)
rssi_reduce = 10;
else if (dt >= 25)
rssi_reduce = (u8)((dt - 25) >> 4);
/* Now reduce rssi_last by rssi_reduce */
if (rssi_last < rssi_reduce)
rssi_last = 0;
else
rssi_last -= rssi_reduce;
/*
* Now look up the rate in the rssi table and return it.
* If no rates match then we return 0 (lowest rate)
*/
best_thruput = 0;
maxindex = rate_ctrl->max_valid_rate-1;
minindex = 0;
best_rate = minindex;
/*
* Try the higher rate first. It will reduce memory moving time
* if we have very good channel characteristics.
*/
for (index = maxindex; index >= minindex ; index--) {
u8 per_thres;
rate = rate_ctrl->valid_rate_index[index];
if (rate > rate_ctrl->rate_max_phy)
continue;
/*
* For TCP the average collision rate is around 11%,
* so we ignore PERs less than this. This is to
* prevent the rate we are currently using (whose
* PER might be in the 10-15 range because of TCP
* collisions) looking worse than the next lower
* rate whose PER has decayed close to 0. If we
* used to next lower rate, its PER would grow to
* 10-15 and we would be worse off then staying
* at the current rate.
*/
per_thres = rate_ctrl->state[rate].per;
if (per_thres < 12)
per_thres = 12;
this_thruput = rate_table->info[rate].user_ratekbps *
(100 - per_thres);
if (best_thruput <= this_thruput) {
best_thruput = this_thruput;
best_rate = rate;
}
}
rate = best_rate;
/* if we are retrying for more than half the number
* of max retries, use the min rate for the next retry
*/
if (is_retry)
rate = rate_ctrl->valid_rate_index[minindex];
rate_ctrl->rssi_last_lookup = rssi_last;
/*
* Must check the actual rate (ratekbps) to account for
* non-monoticity of 11g's rate table
*/
if (rate >= rate_ctrl->rate_max_phy && probe_allowed) {
rate = rate_ctrl->rate_max_phy;
/* Probe the next allowed phy state */
/* FIXME:XXXX Check to make sure ratMax is checked properly */
if (ath_rc_get_nextvalid_txrate(rate_table,
rate_ctrl, rate, &next_rate) &&
(now_msec - rate_ctrl->probe_time >
rate_table->probe_interval) &&
(rate_ctrl->hw_maxretry_pktcnt >= 1)) {
rate = next_rate;
rate_ctrl->probe_rate = rate;
rate_ctrl->probe_time = now_msec;
rate_ctrl->hw_maxretry_pktcnt = 0;
*is_probing = TRUE;
}
}
/*
* Make sure rate is not higher than the allowed maximum.
* We should also enforce the min, but I suspect the min is
* normally 1 rather than 0 because of the rate 9 vs 6 issue
* in the old code.
*/
if (rate > (rate_ctrl->rate_table_size - 1))
rate = rate_ctrl->rate_table_size - 1;
ASSERT((rate_table->info[rate].valid && !ath_rc_priv->single_stream) ||
(rate_table->info[rate].valid_single_stream &&
ath_rc_priv->single_stream));
return rate;
}
static void ath_rc_rate_set_series(const struct ath_rate_table *rate_table ,
struct ath_rc_series *series,
u8 tries,
u8 rix,
int rtsctsenable)
{
series->tries = tries;
series->flags = (rtsctsenable ? ATH_RC_RTSCTS_FLAG : 0) |
(WLAN_RC_PHY_DS(rate_table->info[rix].phy) ?
ATH_RC_DS_FLAG : 0) |
(WLAN_RC_PHY_40(rate_table->info[rix].phy) ?
ATH_RC_CW40_FLAG : 0) |
(WLAN_RC_PHY_SGI(rate_table->info[rix].phy) ?
ATH_RC_SGI_FLAG : 0);
series->rix = rate_table->info[rix].base_index;
series->max_4ms_framelen = rate_table->info[rix].max_4ms_framelen;
}
static u8 ath_rc_rate_getidx(struct ath_softc *sc,
struct ath_rate_node *ath_rc_priv,
const struct ath_rate_table *rate_table,
u8 rix, u16 stepdown,
u16 min_rate)
{
u32 j;
u8 nextindex;
struct ath_tx_ratectrl *rate_ctrl =
(struct ath_tx_ratectrl *)(ath_rc_priv);
if (min_rate) {
for (j = RATE_TABLE_SIZE; j > 0; j--) {
if (ath_rc_get_nextlowervalid_txrate(rate_table,
rate_ctrl, rix, &nextindex))
rix = nextindex;
else
break;
}
} else {
for (j = stepdown; j > 0; j--) {
if (ath_rc_get_nextlowervalid_txrate(rate_table,
rate_ctrl, rix, &nextindex))
rix = nextindex;
else
break;
}
}
return rix;
}
static void ath_rc_ratefind(struct ath_softc *sc,
struct ath_rate_node *ath_rc_priv,
int num_tries, int num_rates, unsigned int rcflag,
struct ath_rc_series series[], int *is_probe,
int is_retry)
{
u8 try_per_rate = 0, i = 0, rix, nrix;
struct ath_rate_softc *asc = (struct ath_rate_softc *)sc->sc_rc;
struct ath_rate_table *rate_table;
rate_table =
(struct ath_rate_table *)asc->hw_rate_table[sc->sc_curmode];
rix = ath_rc_ratefind_ht(sc, ath_rc_priv, rate_table,
(rcflag & ATH_RC_PROBE_ALLOWED) ? 1 : 0,
is_probe, is_retry);
nrix = rix;
if ((rcflag & ATH_RC_PROBE_ALLOWED) && (*is_probe)) {
/* set one try for probe rates. For the
* probes don't enable rts */
ath_rc_rate_set_series(rate_table,
&series[i++], 1, nrix, FALSE);
try_per_rate = (num_tries/num_rates);
/* Get the next tried/allowed rate. No RTS for the next series
* after the probe rate
*/
nrix = ath_rc_rate_getidx(sc,
ath_rc_priv, rate_table, nrix, 1, FALSE);
ath_rc_rate_set_series(rate_table,
&series[i++], try_per_rate, nrix, 0);
} else {
try_per_rate = (num_tries/num_rates);
/* Set the choosen rate. No RTS for first series entry. */
ath_rc_rate_set_series(rate_table,
&series[i++], try_per_rate, nrix, FALSE);
}
/* Fill in the other rates for multirate retry */
for ( ; i < num_rates; i++) {
u8 try_num;
u8 min_rate;
try_num = ((i + 1) == num_rates) ?
num_tries - (try_per_rate * i) : try_per_rate ;
min_rate = (((i + 1) == num_rates) &&
(rcflag & ATH_RC_MINRATE_LASTRATE)) ? 1 : 0;
nrix = ath_rc_rate_getidx(sc, ath_rc_priv,
rate_table, nrix, 1, min_rate);
/* All other rates in the series have RTS enabled */
ath_rc_rate_set_series(rate_table,
&series[i], try_num, nrix, TRUE);
}
/*
* NB:Change rate series to enable aggregation when operating
* at lower MCS rates. When first rate in series is MCS2
* in HT40 @ 2.4GHz, series should look like:
*
* {MCS2, MCS1, MCS0, MCS0}.
*
* When first rate in series is MCS3 in HT20 @ 2.4GHz, series should
* look like:
*
* {MCS3, MCS2, MCS1, MCS1}
*
* So, set fourth rate in series to be same as third one for
* above conditions.
*/
if ((sc->sc_curmode == ATH9K_MODE_11NG_HT20) ||
(sc->sc_curmode == ATH9K_MODE_11NG_HT40PLUS) ||
(sc->sc_curmode == ATH9K_MODE_11NG_HT40MINUS)) {
u8 dot11rate = rate_table->info[rix].dot11rate;
u8 phy = rate_table->info[rix].phy;
if (i == 4 &&
((dot11rate == 2 && phy == WLAN_RC_PHY_HT_40_SS) ||
(dot11rate == 3 && phy == WLAN_RC_PHY_HT_20_SS))) {
series[3].rix = series[2].rix;
series[3].flags = series[2].flags;
series[3].max_4ms_framelen = series[2].max_4ms_framelen;
}
}
}
/*
* Return the Tx rate series.
*/
static void ath_rate_findrate(struct ath_softc *sc,
struct ath_rate_node *ath_rc_priv,
int num_tries,
int num_rates,
unsigned int rcflag,
struct ath_rc_series series[],
int *is_probe,
int is_retry)
{
struct ath_vap *avp = ath_rc_priv->avp;
DPRINTF(sc, ATH_DBG_RATE, "%s\n", __func__);
if (!num_rates || !num_tries)
return;
if (avp->av_config.av_fixed_rateset == IEEE80211_FIXED_RATE_NONE) {
ath_rc_ratefind(sc, ath_rc_priv, num_tries, num_rates,
rcflag, series, is_probe, is_retry);
} else {
/* Fixed rate */
int idx;
u8 flags;
u32 rix;
struct ath_rate_softc *asc = ath_rc_priv->asc;
struct ath_rate_table *rate_table;
rate_table = (struct ath_rate_table *)
asc->hw_rate_table[sc->sc_curmode];
for (idx = 0; idx < 4; idx++) {
unsigned int mcs;
u8 series_rix = 0;
series[idx].tries = IEEE80211_RATE_IDX_ENTRY(
avp->av_config.av_fixed_retryset, idx);
mcs = IEEE80211_RATE_IDX_ENTRY(
avp->av_config.av_fixed_rateset, idx);
if (idx == 3 && (mcs & 0xf0) == 0x70)
mcs = (mcs & ~0xf0)|0x80;
if (!(mcs & 0x80))
flags = 0;
else
flags = ((ath_rc_priv->ht_cap &
WLAN_RC_DS_FLAG) ?
ATH_RC_DS_FLAG : 0) |
((ath_rc_priv->ht_cap &
WLAN_RC_40_FLAG) ?
ATH_RC_CW40_FLAG : 0) |
((ath_rc_priv->ht_cap &
WLAN_RC_SGI_FLAG) ?
((ath_rc_priv->ht_cap &
WLAN_RC_40_FLAG) ?
ATH_RC_SGI_FLAG : 0) : 0);
series[idx].rix = sc->sc_rixmap[mcs];
series_rix = series[idx].rix;
/* XXX: Give me some cleanup love */
if ((flags & ATH_RC_CW40_FLAG) &&
(flags & ATH_RC_SGI_FLAG))
rix = rate_table->info[series_rix].ht_index;
else if (flags & ATH_RC_SGI_FLAG)
rix = rate_table->info[series_rix].sgi_index;
else if (flags & ATH_RC_CW40_FLAG)
rix = rate_table->info[series_rix].cw40index;
else
rix = rate_table->info[series_rix].base_index;
series[idx].max_4ms_framelen =
rate_table->info[rix].max_4ms_framelen;
series[idx].flags = flags;
}
}
}
static void ath_rc_update_ht(struct ath_softc *sc,
struct ath_rate_node *ath_rc_priv,
struct ath_tx_info_priv *info_priv,
int tx_rate, int xretries, int retries)
{
struct ath_tx_ratectrl *rate_ctrl;
u32 now_msec = jiffies_to_msecs(jiffies);
int state_change = FALSE, rate, count;
u8 last_per;
struct ath_rate_softc *asc = (struct ath_rate_softc *)sc->sc_rc;
struct ath_rate_table *rate_table =
(struct ath_rate_table *)asc->hw_rate_table[sc->sc_curmode];
static u32 nretry_to_per_lookup[10] = {
100 * 0 / 1,
100 * 1 / 4,
100 * 1 / 2,
100 * 3 / 4,
100 * 4 / 5,
100 * 5 / 6,
100 * 6 / 7,
100 * 7 / 8,
100 * 8 / 9,
100 * 9 / 10
};
if (!ath_rc_priv)
return;
rate_ctrl = (struct ath_tx_ratectrl *)(ath_rc_priv);
ASSERT(tx_rate >= 0);
if (tx_rate < 0)
return;
/* To compensate for some imbalance between ctrl and ext. channel */
if (WLAN_RC_PHY_40(rate_table->info[tx_rate].phy))
info_priv->tx.ts_rssi =
info_priv->tx.ts_rssi < 3 ? 0 :
info_priv->tx.ts_rssi - 3;
last_per = rate_ctrl->state[tx_rate].per;
if (xretries) {
/* Update the PER. */
if (xretries == 1) {
rate_ctrl->state[tx_rate].per += 30;
if (rate_ctrl->state[tx_rate].per > 100)
rate_ctrl->state[tx_rate].per = 100;
} else {
/* xretries == 2 */
count = sizeof(nretry_to_per_lookup) /
sizeof(nretry_to_per_lookup[0]);
if (retries >= count)
retries = count - 1;
/* new_PER = 7/8*old_PER + 1/8*(currentPER) */
rate_ctrl->state[tx_rate].per =
(u8)(rate_ctrl->state[tx_rate].per -
(rate_ctrl->state[tx_rate].per >> 3) +
((100) >> 3));
}
/* xretries == 1 or 2 */
if (rate_ctrl->probe_rate == tx_rate)
rate_ctrl->probe_rate = 0;
} else { /* xretries == 0 */
/* Update the PER. */
/* Make sure it doesn't index out of array's bounds. */
count = sizeof(nretry_to_per_lookup) /
sizeof(nretry_to_per_lookup[0]);
if (retries >= count)
retries = count - 1;
if (info_priv->n_bad_frames) {
/* new_PER = 7/8*old_PER + 1/8*(currentPER)
* Assuming that n_frames is not 0. The current PER
* from the retries is 100 * retries / (retries+1),
* since the first retries attempts failed, and the
* next one worked. For the one that worked,
* n_bad_frames subframes out of n_frames wored,
* so the PER for that part is
* 100 * n_bad_frames / n_frames, and it contributes
* 100 * n_bad_frames / (n_frames * (retries+1)) to
* the above PER. The expression below is a
* simplified version of the sum of these two terms.
*/
if (info_priv->n_frames > 0)
rate_ctrl->state[tx_rate].per
= (u8)
(rate_ctrl->state[tx_rate].per -
(rate_ctrl->state[tx_rate].per >> 3) +
((100*(retries*info_priv->n_frames +
info_priv->n_bad_frames) /
(info_priv->n_frames *
(retries+1))) >> 3));
} else {
/* new_PER = 7/8*old_PER + 1/8*(currentPER) */
rate_ctrl->state[tx_rate].per = (u8)
(rate_ctrl->state[tx_rate].per -
(rate_ctrl->state[tx_rate].per >> 3) +
(nretry_to_per_lookup[retries] >> 3));
}
rate_ctrl->rssi_last_prev2 = rate_ctrl->rssi_last_prev;
rate_ctrl->rssi_last_prev = rate_ctrl->rssi_last;
rate_ctrl->rssi_last = info_priv->tx.ts_rssi;
rate_ctrl->rssi_time = now_msec;
/*
* If we got at most one retry then increase the max rate if
* this was a probe. Otherwise, ignore the probe.
*/
if (rate_ctrl->probe_rate && rate_ctrl->probe_rate == tx_rate) {
if (retries > 0 || 2 * info_priv->n_bad_frames >
info_priv->n_frames) {
/*
* Since we probed with just a single attempt,
* any retries means the probe failed. Also,
* if the attempt worked, but more than half
* the subframes were bad then also consider
* the probe a failure.
*/
rate_ctrl->probe_rate = 0;
} else {
u8 probe_rate = 0;
rate_ctrl->rate_max_phy = rate_ctrl->probe_rate;
probe_rate = rate_ctrl->probe_rate;
if (rate_ctrl->state[probe_rate].per > 30)
rate_ctrl->state[probe_rate].per = 20;
rate_ctrl->probe_rate = 0;
/*
* Since this probe succeeded, we allow the next
* probe twice as soon. This allows the maxRate
* to move up faster if the probes are
* succesful.
*/
rate_ctrl->probe_time = now_msec -
rate_table->probe_interval / 2;
}
}
if (retries > 0) {
/*
* Don't update anything. We don't know if
* this was because of collisions or poor signal.
*
* Later: if rssi_ack is close to
* rate_ctrl->state[txRate].rssi_thres and we see lots
* of retries, then we could increase
* rate_ctrl->state[txRate].rssi_thres.
*/
rate_ctrl->hw_maxretry_pktcnt = 0;
} else {
/*
* It worked with no retries. First ignore bogus (small)
* rssi_ack values.
*/
if (tx_rate == rate_ctrl->rate_max_phy &&
rate_ctrl->hw_maxretry_pktcnt < 255) {
rate_ctrl->hw_maxretry_pktcnt++;
}
if (info_priv->tx.ts_rssi >=
rate_table->info[tx_rate].rssi_ack_validmin) {
/* Average the rssi */
if (tx_rate != rate_ctrl->rssi_sum_rate) {
rate_ctrl->rssi_sum_rate = tx_rate;
rate_ctrl->rssi_sum =
rate_ctrl->rssi_sum_cnt = 0;
}
rate_ctrl->rssi_sum += info_priv->tx.ts_rssi;
rate_ctrl->rssi_sum_cnt++;
if (rate_ctrl->rssi_sum_cnt > 4) {
int32_t rssi_ackAvg =
(rate_ctrl->rssi_sum + 2) / 4;
int8_t rssi_thres =
rate_ctrl->state[tx_rate].
rssi_thres;
int8_t rssi_ack_vmin =
rate_table->info[tx_rate].
rssi_ack_validmin;
rate_ctrl->rssi_sum =
rate_ctrl->rssi_sum_cnt = 0;
/* Now reduce the current
* rssi threshold. */
if ((rssi_ackAvg < rssi_thres + 2) &&
(rssi_thres > rssi_ack_vmin)) {
rate_ctrl->state[tx_rate].
rssi_thres--;
}
state_change = TRUE;
}
}
}
}
/* For all cases */
/*
* If this rate looks bad (high PER) then stop using it for
* a while (except if we are probing).
*/
if (rate_ctrl->state[tx_rate].per >= 55 && tx_rate > 0 &&
rate_table->info[tx_rate].ratekbps <=
rate_table->info[rate_ctrl->rate_max_phy].ratekbps) {
ath_rc_get_nextlowervalid_txrate(rate_table, rate_ctrl,
(u8) tx_rate, &rate_ctrl->rate_max_phy);
/* Don't probe for a little while. */
rate_ctrl->probe_time = now_msec;
}
if (state_change) {
/*
* Make sure the rates above this have higher rssi thresholds.
* (Note: Monotonicity is kept within the OFDM rates and
* within the CCK rates. However, no adjustment is
* made to keep the rssi thresholds monotonically
* increasing between the CCK and OFDM rates.)
*/
for (rate = tx_rate; rate <
rate_ctrl->rate_table_size - 1; rate++) {
if (rate_table->info[rate+1].phy !=
rate_table->info[tx_rate].phy)
break;
if (rate_ctrl->state[rate].rssi_thres +
rate_table->info[rate].rssi_ack_deltamin >
rate_ctrl->state[rate+1].rssi_thres) {
rate_ctrl->state[rate+1].rssi_thres =
rate_ctrl->state[rate].
rssi_thres +
rate_table->info[rate].
rssi_ack_deltamin;
}
}
/* Make sure the rates below this have lower rssi thresholds. */
for (rate = tx_rate - 1; rate >= 0; rate--) {
if (rate_table->info[rate].phy !=
rate_table->info[tx_rate].phy)
break;
if (rate_ctrl->state[rate].rssi_thres +
rate_table->info[rate].rssi_ack_deltamin >
rate_ctrl->state[rate+1].rssi_thres) {
if (rate_ctrl->state[rate+1].rssi_thres <
rate_table->info[rate].
rssi_ack_deltamin)
rate_ctrl->state[rate].rssi_thres = 0;
else {
rate_ctrl->state[rate].rssi_thres =
rate_ctrl->state[rate+1].
rssi_thres -
rate_table->info[rate].
rssi_ack_deltamin;
}
if (rate_ctrl->state[rate].rssi_thres <
rate_table->info[rate].
rssi_ack_validmin) {
rate_ctrl->state[rate].rssi_thres =
rate_table->info[rate].
rssi_ack_validmin;
}
}
}
}
/* Make sure the rates below this have lower PER */
/* Monotonicity is kept only for rates below the current rate. */
if (rate_ctrl->state[tx_rate].per < last_per) {
for (rate = tx_rate - 1; rate >= 0; rate--) {
if (rate_table->info[rate].phy !=
rate_table->info[tx_rate].phy)
break;
if (rate_ctrl->state[rate].per >
rate_ctrl->state[rate+1].per) {
rate_ctrl->state[rate].per =
rate_ctrl->state[rate+1].per;
}
}
}
/* Maintain monotonicity for rates above the current rate */
for (rate = tx_rate; rate < rate_ctrl->rate_table_size - 1; rate++) {
if (rate_ctrl->state[rate+1].per < rate_ctrl->state[rate].per)
rate_ctrl->state[rate+1].per =
rate_ctrl->state[rate].per;
}
/* Every so often, we reduce the thresholds and
* PER (different for CCK and OFDM). */
if (now_msec - rate_ctrl->rssi_down_time >=
rate_table->rssi_reduce_interval) {
for (rate = 0; rate < rate_ctrl->rate_table_size; rate++) {
if (rate_ctrl->state[rate].rssi_thres >
rate_table->info[rate].rssi_ack_validmin)
rate_ctrl->state[rate].rssi_thres -= 1;
}
rate_ctrl->rssi_down_time = now_msec;
}
/* Every so often, we reduce the thresholds
* and PER (different for CCK and OFDM). */
if (now_msec - rate_ctrl->per_down_time >=
rate_table->rssi_reduce_interval) {
for (rate = 0; rate < rate_ctrl->rate_table_size; rate++) {
rate_ctrl->state[rate].per =
7 * rate_ctrl->state[rate].per / 8;
}
rate_ctrl->per_down_time = now_msec;
}
}
/*
* This routine is called in rate control callback tx_status() to give
* the status of previous frames.
*/
static void ath_rc_update(struct ath_softc *sc,
struct ath_rate_node *ath_rc_priv,
struct ath_tx_info_priv *info_priv, int final_ts_idx,
int xretries, int long_retry)
{
struct ath_rate_softc *asc = (struct ath_rate_softc *)sc->sc_rc;
struct ath_rate_table *rate_table;
struct ath_tx_ratectrl *rate_ctrl;
struct ath_rc_series rcs[4];
u8 flags;
u32 series = 0, rix;
memcpy(rcs, info_priv->rcs, 4 * sizeof(rcs[0]));
rate_table = (struct ath_rate_table *)
asc->hw_rate_table[sc->sc_curmode];
rate_ctrl = (struct ath_tx_ratectrl *)(ath_rc_priv);
ASSERT(rcs[0].tries != 0);
/*
* If the first rate is not the final index, there
* are intermediate rate failures to be processed.
*/
if (final_ts_idx != 0) {
/* Process intermediate rates that failed.*/
for (series = 0; series < final_ts_idx ; series++) {
if (rcs[series].tries != 0) {
flags = rcs[series].flags;
/* If HT40 and we have switched mode from
* 40 to 20 => don't update */
if ((flags & ATH_RC_CW40_FLAG) &&
(rate_ctrl->rc_phy_mode !=
(flags & ATH_RC_CW40_FLAG)))
return;
if ((flags & ATH_RC_CW40_FLAG) &&
(flags & ATH_RC_SGI_FLAG))
rix = rate_table->info[
rcs[series].rix].ht_index;
else if (flags & ATH_RC_SGI_FLAG)
rix = rate_table->info[
rcs[series].rix].sgi_index;
else if (flags & ATH_RC_CW40_FLAG)
rix = rate_table->info[
rcs[series].rix].cw40index;
else
rix = rate_table->info[
rcs[series].rix].base_index;
ath_rc_update_ht(sc, ath_rc_priv,
info_priv, rix,
xretries ? 1 : 2,
rcs[series].tries);
}
}
} else {
/*
* Handle the special case of MIMO PS burst, where the second
* aggregate is sent out with only one rate and one try.
* Treating it as an excessive retry penalizes the rate
* inordinately.
*/
if (rcs[0].tries == 1 && xretries == 1)
xretries = 2;
}
flags = rcs[series].flags;
/* If HT40 and we have switched mode from 40 to 20 => don't update */
if ((flags & ATH_RC_CW40_FLAG) &&
(rate_ctrl->rc_phy_mode != (flags & ATH_RC_CW40_FLAG)))
return;
if ((flags & ATH_RC_CW40_FLAG) && (flags & ATH_RC_SGI_FLAG))
rix = rate_table->info[rcs[series].rix].ht_index;
else if (flags & ATH_RC_SGI_FLAG)
rix = rate_table->info[rcs[series].rix].sgi_index;
else if (flags & ATH_RC_CW40_FLAG)
rix = rate_table->info[rcs[series].rix].cw40index;
else
rix = rate_table->info[rcs[series].rix].base_index;
ath_rc_update_ht(sc, ath_rc_priv, info_priv, rix,
xretries, long_retry);
}
/*
* Process a tx descriptor for a completed transmit (success or failure).
*/
static void ath_rate_tx_complete(struct ath_softc *sc,
struct ath_node *an,
struct ath_rate_node *rc_priv,
struct ath_tx_info_priv *info_priv)
{
int final_ts_idx = info_priv->tx.ts_rateindex;
int tx_status = 0, is_underrun = 0;
struct ath_vap *avp;
avp = rc_priv->avp;
if ((avp->av_config.av_fixed_rateset != IEEE80211_FIXED_RATE_NONE) ||
(info_priv->tx.ts_status & ATH9K_TXERR_FILT))
return;
if (info_priv->tx.ts_rssi > 0) {
ATH_RSSI_LPF(an->an_chainmask_sel.tx_avgrssi,
info_priv->tx.ts_rssi);
}
/*
* If underrun error is seen assume it as an excessive retry only
* if prefetch trigger level have reached the max (0x3f for 5416)
* Adjust the long retry as if the frame was tried ATH_11N_TXMAXTRY
* times. This affects how ratectrl updates PER for the failed rate.
*/
if (info_priv->tx.ts_flags &
(ATH9K_TX_DATA_UNDERRUN | ATH9K_TX_DELIM_UNDERRUN) &&
((sc->sc_ah->ah_txTrigLevel) >= tx_triglevel_max)) {
tx_status = 1;
is_underrun = 1;
}
if ((info_priv->tx.ts_status & ATH9K_TXERR_XRETRY) ||
(info_priv->tx.ts_status & ATH9K_TXERR_FIFO))
tx_status = 1;
ath_rc_update(sc, rc_priv, info_priv, final_ts_idx, tx_status,
(is_underrun) ? ATH_11N_TXMAXTRY :
info_priv->tx.ts_longretry);
}
/*
* Update the SIB's rate control information
*
* This should be called when the supported rates change
* (e.g. SME operation, wireless mode change)
*
* It will determine which rates are valid for use.
*/
static void ath_rc_sib_update(struct ath_softc *sc,
struct ath_rate_node *ath_rc_priv,
u32 capflag, int keep_state,
struct ath_rateset *negotiated_rates,
struct ath_rateset *negotiated_htrates)
{
struct ath_rate_table *rate_table = NULL;
struct ath_rate_softc *asc = (struct ath_rate_softc *)sc->sc_rc;
struct ath_rateset *rateset = negotiated_rates;
u8 *ht_mcs = (u8 *)negotiated_htrates;
struct ath_tx_ratectrl *rate_ctrl =
(struct ath_tx_ratectrl *)ath_rc_priv;
u8 i, j, k, hi = 0, hthi = 0;
rate_table = (struct ath_rate_table *)
asc->hw_rate_table[sc->sc_curmode];
/* Initial rate table size. Will change depending
* on the working rate set */
rate_ctrl->rate_table_size = MAX_TX_RATE_TBL;
/* Initialize thresholds according to the global rate table */
for (i = 0 ; (i < rate_ctrl->rate_table_size) && (!keep_state); i++) {
rate_ctrl->state[i].rssi_thres =
rate_table->info[i].rssi_ack_validmin;
rate_ctrl->state[i].per = 0;
}
/* Determine the valid rates */
ath_rc_init_valid_txmask(rate_ctrl);
for (i = 0; i < WLAN_RC_PHY_MAX; i++) {
for (j = 0; j < MAX_TX_RATE_PHY; j++)
rate_ctrl->valid_phy_rateidx[i][j] = 0;
rate_ctrl->valid_phy_ratecnt[i] = 0;
}
rate_ctrl->rc_phy_mode = (capflag & WLAN_RC_40_FLAG);
/* Set stream capability */
ath_rc_priv->single_stream = (capflag & WLAN_RC_DS_FLAG) ? 0 : 1;
if (!rateset->rs_nrates) {
/* No working rate, just initialize valid rates */
hi = ath_rc_sib_init_validrates(ath_rc_priv, rate_table,
capflag);
} else {
/* Use intersection of working rates and valid rates */
hi = ath_rc_sib_setvalid_rates(ath_rc_priv, rate_table,
rateset, capflag);
if (capflag & WLAN_RC_HT_FLAG) {
hthi = ath_rc_sib_setvalid_htrates(ath_rc_priv,
rate_table,
ht_mcs,
capflag);
}
hi = A_MAX(hi, hthi);
}
rate_ctrl->rate_table_size = hi + 1;
rate_ctrl->rate_max_phy = 0;
ASSERT(rate_ctrl->rate_table_size <= MAX_TX_RATE_TBL);
for (i = 0, k = 0; i < WLAN_RC_PHY_MAX; i++) {
for (j = 0; j < rate_ctrl->valid_phy_ratecnt[i]; j++) {
rate_ctrl->valid_rate_index[k++] =
rate_ctrl->valid_phy_rateidx[i][j];
}
if (!ath_rc_valid_phyrate(i, rate_table->initial_ratemax, TRUE)
|| !rate_ctrl->valid_phy_ratecnt[i])
continue;
rate_ctrl->rate_max_phy = rate_ctrl->valid_phy_rateidx[i][j-1];
}
ASSERT(rate_ctrl->rate_table_size <= MAX_TX_RATE_TBL);
ASSERT(k <= MAX_TX_RATE_TBL);
rate_ctrl->max_valid_rate = k;
/*
* Some third party vendors don't send the supported rate series in
* order. So sorting to make sure its in order, otherwise our RateFind
* Algo will select wrong rates
*/
ath_rc_sort_validrates(rate_table, rate_ctrl);
rate_ctrl->rate_max_phy = rate_ctrl->valid_rate_index[k-4];
}
/*
* Update rate-control state on station associate/reassociate.
*/
static int ath_rate_newassoc(struct ath_softc *sc,
struct ath_rate_node *ath_rc_priv,
unsigned int capflag,
struct ath_rateset *negotiated_rates,
struct ath_rateset *negotiated_htrates)
{
ath_rc_priv->ht_cap =
((capflag & ATH_RC_DS_FLAG) ? WLAN_RC_DS_FLAG : 0) |
((capflag & ATH_RC_SGI_FLAG) ? WLAN_RC_SGI_FLAG : 0) |
((capflag & ATH_RC_HT_FLAG) ? WLAN_RC_HT_FLAG : 0) |
((capflag & ATH_RC_CW40_FLAG) ? WLAN_RC_40_FLAG : 0);
ath_rc_sib_update(sc, ath_rc_priv, ath_rc_priv->ht_cap, 0,
negotiated_rates, negotiated_htrates);
return 0;
}
/*
* This routine is called to initialize the rate control parameters
* in the SIB. It is called initially during system initialization
* or when a station is associated with the AP.
*/
static void ath_rc_sib_init(struct ath_rate_node *ath_rc_priv)
{
struct ath_tx_ratectrl *rate_ctrl;
rate_ctrl = (struct ath_tx_ratectrl *)(ath_rc_priv);
rate_ctrl->rssi_down_time = jiffies_to_msecs(jiffies);
}
static void ath_setup_rates(struct ath_softc *sc,
struct ieee80211_supported_band *sband,
struct ieee80211_sta *sta,
struct ath_rate_node *rc_priv)
{
int i, j = 0;
DPRINTF(sc, ATH_DBG_RATE, "%s\n", __func__);
for (i = 0; i < sband->n_bitrates; i++) {
if (sta->supp_rates[sband->band] & BIT(i)) {
rc_priv->neg_rates.rs_rates[j]
= (sband->bitrates[i].bitrate * 2) / 10;
j++;
}
}
rc_priv->neg_rates.rs_nrates = j;
}
void ath_rc_node_update(struct ieee80211_hw *hw, struct ath_rate_node *rc_priv)
{
struct ath_softc *sc = hw->priv;
u32 capflag = 0;
if (hw->conf.ht_conf.ht_supported) {
capflag |= ATH_RC_HT_FLAG | ATH_RC_DS_FLAG;
if (sc->sc_ht_info.tx_chan_width == ATH9K_HT_MACMODE_2040)
capflag |= ATH_RC_CW40_FLAG;
}
ath_rate_newassoc(sc, rc_priv, capflag,
&rc_priv->neg_rates,
&rc_priv->neg_ht_rates);
}
/* Rate Control callbacks */
static void ath_tx_status(void *priv, struct ieee80211_supported_band *sband,
struct ieee80211_sta *sta, void *priv_sta,
struct sk_buff *skb)
{
struct ath_softc *sc = priv;
struct ath_tx_info_priv *tx_info_priv;
struct ath_node *an;
struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
struct ieee80211_hdr *hdr;
__le16 fc;
hdr = (struct ieee80211_hdr *)skb->data;
fc = hdr->frame_control;
tx_info_priv = (struct ath_tx_info_priv *)tx_info->driver_data[0];
spin_lock_bh(&sc->node_lock);
an = ath_node_find(sc, hdr->addr1);
spin_unlock_bh(&sc->node_lock);
if (!an || !priv_sta || !ieee80211_is_data(fc)) {
if (tx_info->driver_data[0] != NULL) {
kfree(tx_info->driver_data[0]);
tx_info->driver_data[0] = NULL;
}
return;
}
if (tx_info->driver_data[0] != NULL) {
ath_rate_tx_complete(sc, an, priv_sta, tx_info_priv);
kfree(tx_info->driver_data[0]);
tx_info->driver_data[0] = NULL;
}
}
static void ath_tx_aggr_resp(struct ath_softc *sc,
struct ieee80211_supported_band *sband,
struct ieee80211_sta *sta,
struct ath_node *an,
u8 tidno)
{
struct ath_atx_tid *txtid;
u16 buffersize = 0;
int state;
struct sta_info *si;
if (!(sc->sc_flags & SC_OP_TXAGGR))
return;
txtid = ATH_AN_2_TID(an, tidno);
if (!txtid->paused)
return;
/*
* XXX: This is entirely busted, we aren't supposed to
* access the sta from here because it's internal
* to mac80211, and looking at the state without
* locking is wrong too.
*/
si = container_of(sta, struct sta_info, sta);
buffersize = IEEE80211_MIN_AMPDU_BUF <<
sband->ht_info.ampdu_factor; /* FIXME */
state = si->ampdu_mlme.tid_state_tx[tidno];
if (state & HT_ADDBA_RECEIVED_MSK) {
txtid->addba_exchangecomplete = 1;
txtid->addba_exchangeinprogress = 0;
txtid->baw_size = buffersize;
DPRINTF(sc, ATH_DBG_AGGR,
"%s: Resuming tid, buffersize: %d\n",
__func__,
buffersize);
ath_tx_resume_tid(sc, txtid);
}
}
static void ath_get_rate(void *priv, struct ieee80211_supported_band *sband,
struct ieee80211_sta *sta, void *priv_sta,
struct sk_buff *skb, struct rate_selection *sel)
{
struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
struct ath_softc *sc = priv;
struct ieee80211_hw *hw = sc->hw;
struct ath_tx_info_priv *tx_info_priv;
struct ath_rate_node *ath_rc_priv = priv_sta;
struct ath_node *an;
struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
int is_probe = FALSE, chk, ret;
s8 lowest_idx;
__le16 fc = hdr->frame_control;
u8 *qc, tid;
DECLARE_MAC_BUF(mac);
DPRINTF(sc, ATH_DBG_RATE, "%s\n", __func__);
/* allocate driver private area of tx_info */
tx_info->driver_data[0] = kzalloc(sizeof(*tx_info_priv), GFP_ATOMIC);
ASSERT(tx_info->driver_data[0] != NULL);
tx_info_priv = (struct ath_tx_info_priv *)tx_info->driver_data[0];
lowest_idx = rate_lowest_index(sband, sta);
tx_info_priv->min_rate = (sband->bitrates[lowest_idx].bitrate * 2) / 10;
/* lowest rate for management and multicast/broadcast frames */
if (!ieee80211_is_data(fc) ||
is_multicast_ether_addr(hdr->addr1) || !sta) {
sel->rate_idx = lowest_idx;
return;
}
/* Find tx rate for unicast frames */
ath_rate_findrate(sc, ath_rc_priv,
ATH_11N_TXMAXTRY, 4,
ATH_RC_PROBE_ALLOWED,
tx_info_priv->rcs,
&is_probe,
false);
if (is_probe)
sel->probe_idx = ath_rc_priv->tx_ratectrl.probe_rate;
/* Ratecontrol sometimes returns invalid rate index */
if (tx_info_priv->rcs[0].rix != 0xff)
ath_rc_priv->prev_data_rix = tx_info_priv->rcs[0].rix;
else
tx_info_priv->rcs[0].rix = ath_rc_priv->prev_data_rix;
sel->rate_idx = tx_info_priv->rcs[0].rix;
/* Check if aggregation has to be enabled for this tid */
if (hw->conf.ht_conf.ht_supported) {
if (ieee80211_is_data_qos(fc)) {
qc = ieee80211_get_qos_ctl(hdr);
tid = qc[0] & 0xf;
spin_lock_bh(&sc->node_lock);
an = ath_node_find(sc, hdr->addr1);
spin_unlock_bh(&sc->node_lock);
if (!an) {
DPRINTF(sc, ATH_DBG_AGGR,
"%s: Node not found to "
"init/chk TX aggr\n", __func__);
return;
}
chk = ath_tx_aggr_check(sc, an, tid);
if (chk == AGGR_REQUIRED) {
ret = ieee80211_start_tx_ba_session(hw,
hdr->addr1, tid);
if (ret)
DPRINTF(sc, ATH_DBG_AGGR,
"%s: Unable to start tx "
"aggr for: %s\n",
__func__,
print_mac(mac, hdr->addr1));
else
DPRINTF(sc, ATH_DBG_AGGR,
"%s: Started tx aggr for: %s\n",
__func__,
print_mac(mac, hdr->addr1));
} else if (chk == AGGR_EXCHANGE_PROGRESS)
ath_tx_aggr_resp(sc, sband, sta, an, tid);
}
}
}
static void ath_rate_init(void *priv, struct ieee80211_supported_band *sband,
struct ieee80211_sta *sta, void *priv_sta)
{
struct ath_softc *sc = priv;
struct ath_rate_node *ath_rc_priv = priv_sta;
int i, j = 0;
DPRINTF(sc, ATH_DBG_RATE, "%s\n", __func__);
ath_setup_rates(sc, sband, sta, ath_rc_priv);
if (sc->hw->conf.flags & IEEE80211_CONF_SUPPORT_HT_MODE) {
for (i = 0; i < MCS_SET_SIZE; i++) {
if (sc->hw->conf.ht_conf.supp_mcs_set[i/8] & (1<<(i%8)))
ath_rc_priv->neg_ht_rates.rs_rates[j++] = i;
if (j == ATH_RATE_MAX)
break;
}
ath_rc_priv->neg_ht_rates.rs_nrates = j;
}
ath_rc_node_update(sc->hw, priv_sta);
}
static void ath_rate_clear(void *priv)
{
return;
}
static void *ath_rate_alloc(struct ieee80211_hw *hw, struct dentry *debugfsdir)
{
struct ath_softc *sc = hw->priv;
DPRINTF(sc, ATH_DBG_RATE, "%s\n", __func__);
return hw->priv;
}
static void ath_rate_free(void *priv)
{
return;
}
static void *ath_rate_alloc_sta(void *priv, struct ieee80211_sta *sta, gfp_t gfp)
{
struct ath_softc *sc = priv;
struct ath_vap *avp = sc->sc_vaps[0];
struct ath_rate_node *rate_priv;
DPRINTF(sc, ATH_DBG_RATE, "%s\n", __func__);
rate_priv = ath_rate_node_alloc(avp, sc->sc_rc, gfp);
if (!rate_priv) {
DPRINTF(sc, ATH_DBG_FATAL,
"%s: Unable to allocate private rc structure\n",
__func__);
return NULL;
}
ath_rc_sib_init(rate_priv);
return rate_priv;
}
static void ath_rate_free_sta(void *priv, struct ieee80211_sta *sta,
void *priv_sta)
{
struct ath_rate_node *rate_priv = priv_sta;
struct ath_softc *sc = priv;
DPRINTF(sc, ATH_DBG_RATE, "%s", __func__);
ath_rate_node_free(rate_priv);
}
static struct rate_control_ops ath_rate_ops = {
.module = NULL,
.name = "ath9k_rate_control",
.tx_status = ath_tx_status,
.get_rate = ath_get_rate,
.rate_init = ath_rate_init,
.clear = ath_rate_clear,
.alloc = ath_rate_alloc,
.free = ath_rate_free,
.alloc_sta = ath_rate_alloc_sta,
.free_sta = ath_rate_free_sta,
};
int ath_rate_control_register(void)
{
return ieee80211_rate_control_register(&ath_rate_ops);
}
void ath_rate_control_unregister(void)
{
ieee80211_rate_control_unregister(&ath_rate_ops);
}