kernel-ark/drivers/net/wireless/libertas/if_spi.c
Andrey Yurovsky 88d89526a6 libertas: check valid bits in SPI bus mode reg
The SPI driver writes to the bus mode register and performs a sanity
check by reading back what we wrote, however only the lower four bits of
that register are defined.  In some cases, the device side seems to set
the higher bits, causing us to fail the sanity check unnecessarily.
Check only the lower four bits instead.

Thanks to John Goyette from Schick Technologies for pointing out the
problem.

Signed-off-by: Andrey Yurovsky <andrey@cozybit.com>
Signed-off-by: John W. Linville <linville@tuxdriver.com>
2009-08-04 16:44:21 -04:00

1225 lines
31 KiB
C

/*
* linux/drivers/net/wireless/libertas/if_spi.c
*
* Driver for Marvell SPI WLAN cards.
*
* Copyright 2008 Analog Devices Inc.
*
* Authors:
* Andrey Yurovsky <andrey@cozybit.com>
* Colin McCabe <colin@cozybit.com>
*
* Inspired by if_sdio.c, Copyright 2007-2008 Pierre Ossman
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*/
#include <linux/moduleparam.h>
#include <linux/firmware.h>
#include <linux/jiffies.h>
#include <linux/kthread.h>
#include <linux/list.h>
#include <linux/netdevice.h>
#include <linux/spi/libertas_spi.h>
#include <linux/spi/spi.h>
#include "host.h"
#include "decl.h"
#include "defs.h"
#include "dev.h"
#include "if_spi.h"
struct if_spi_packet {
struct list_head list;
u16 blen;
u8 buffer[0] __attribute__((aligned(4)));
};
struct if_spi_card {
struct spi_device *spi;
struct lbs_private *priv;
struct libertas_spi_platform_data *pdata;
char helper_fw_name[IF_SPI_FW_NAME_MAX];
char main_fw_name[IF_SPI_FW_NAME_MAX];
/* The card ID and card revision, as reported by the hardware. */
u16 card_id;
u8 card_rev;
/* The last time that we initiated an SPU operation */
unsigned long prev_xfer_time;
int use_dummy_writes;
unsigned long spu_port_delay;
unsigned long spu_reg_delay;
/* Handles all SPI communication (except for FW load) */
struct task_struct *spi_thread;
int run_thread;
/* Used to wake up the spi_thread */
struct semaphore spi_ready;
struct semaphore spi_thread_terminated;
u8 cmd_buffer[IF_SPI_CMD_BUF_SIZE];
/* A buffer of incoming packets from libertas core.
* Since we can't sleep in hw_host_to_card, we have to buffer
* them. */
struct list_head cmd_packet_list;
struct list_head data_packet_list;
/* Protects cmd_packet_list and data_packet_list */
spinlock_t buffer_lock;
};
static void free_if_spi_card(struct if_spi_card *card)
{
struct list_head *cursor, *next;
struct if_spi_packet *packet;
BUG_ON(card->run_thread);
list_for_each_safe(cursor, next, &card->cmd_packet_list) {
packet = container_of(cursor, struct if_spi_packet, list);
list_del(&packet->list);
kfree(packet);
}
list_for_each_safe(cursor, next, &card->data_packet_list) {
packet = container_of(cursor, struct if_spi_packet, list);
list_del(&packet->list);
kfree(packet);
}
spi_set_drvdata(card->spi, NULL);
kfree(card);
}
static struct chip_ident chip_id_to_device_name[] = {
{ .chip_id = 0x04, .name = 8385 },
{ .chip_id = 0x0b, .name = 8686 },
};
/*
* SPI Interface Unit Routines
*
* The SPU sits between the host and the WLAN module.
* All communication with the firmware is through SPU transactions.
*
* First we have to put a SPU register name on the bus. Then we can
* either read from or write to that register.
*
*/
static void spu_transaction_init(struct if_spi_card *card)
{
if (!time_after(jiffies, card->prev_xfer_time + 1)) {
/* Unfortunately, the SPU requires a delay between successive
* transactions. If our last transaction was more than a jiffy
* ago, we have obviously already delayed enough.
* If not, we have to busy-wait to be on the safe side. */
ndelay(400);
}
}
static void spu_transaction_finish(struct if_spi_card *card)
{
card->prev_xfer_time = jiffies;
}
/* Write out a byte buffer to an SPI register,
* using a series of 16-bit transfers. */
static int spu_write(struct if_spi_card *card, u16 reg, const u8 *buf, int len)
{
int err = 0;
u16 reg_out = cpu_to_le16(reg | IF_SPI_WRITE_OPERATION_MASK);
struct spi_message m;
struct spi_transfer reg_trans;
struct spi_transfer data_trans;
spi_message_init(&m);
memset(&reg_trans, 0, sizeof(reg_trans));
memset(&data_trans, 0, sizeof(data_trans));
/* You must give an even number of bytes to the SPU, even if it
* doesn't care about the last one. */
BUG_ON(len & 0x1);
spu_transaction_init(card);
/* write SPU register index */
reg_trans.tx_buf = &reg_out;
reg_trans.len = sizeof(reg_out);
data_trans.tx_buf = buf;
data_trans.len = len;
spi_message_add_tail(&reg_trans, &m);
spi_message_add_tail(&data_trans, &m);
err = spi_sync(card->spi, &m);
spu_transaction_finish(card);
return err;
}
static inline int spu_write_u16(struct if_spi_card *card, u16 reg, u16 val)
{
u16 buff;
buff = cpu_to_le16(val);
return spu_write(card, reg, (u8 *)&buff, sizeof(u16));
}
static inline int spu_reg_is_port_reg(u16 reg)
{
switch (reg) {
case IF_SPI_IO_RDWRPORT_REG:
case IF_SPI_CMD_RDWRPORT_REG:
case IF_SPI_DATA_RDWRPORT_REG:
return 1;
default:
return 0;
}
}
static int spu_read(struct if_spi_card *card, u16 reg, u8 *buf, int len)
{
unsigned int delay;
int err = 0;
u16 reg_out = cpu_to_le16(reg | IF_SPI_READ_OPERATION_MASK);
struct spi_message m;
struct spi_transfer reg_trans;
struct spi_transfer dummy_trans;
struct spi_transfer data_trans;
/* You must take an even number of bytes from the SPU, even if you
* don't care about the last one. */
BUG_ON(len & 0x1);
spu_transaction_init(card);
spi_message_init(&m);
memset(&reg_trans, 0, sizeof(reg_trans));
memset(&dummy_trans, 0, sizeof(dummy_trans));
memset(&data_trans, 0, sizeof(data_trans));
/* write SPU register index */
reg_trans.tx_buf = &reg_out;
reg_trans.len = sizeof(reg_out);
spi_message_add_tail(&reg_trans, &m);
delay = spu_reg_is_port_reg(reg) ? card->spu_port_delay :
card->spu_reg_delay;
if (card->use_dummy_writes) {
/* Clock in dummy cycles while the SPU fills the FIFO */
dummy_trans.len = delay / 8;
spi_message_add_tail(&dummy_trans, &m);
} else {
/* Busy-wait while the SPU fills the FIFO */
reg_trans.delay_usecs =
DIV_ROUND_UP((100 + (delay * 10)), 1000);
}
/* read in data */
data_trans.rx_buf = buf;
data_trans.len = len;
spi_message_add_tail(&data_trans, &m);
err = spi_sync(card->spi, &m);
spu_transaction_finish(card);
return err;
}
/* Read 16 bits from an SPI register */
static inline int spu_read_u16(struct if_spi_card *card, u16 reg, u16 *val)
{
u16 buf;
int ret;
ret = spu_read(card, reg, (u8 *)&buf, sizeof(buf));
if (ret == 0)
*val = le16_to_cpup(&buf);
return ret;
}
/* Read 32 bits from an SPI register.
* The low 16 bits are read first. */
static int spu_read_u32(struct if_spi_card *card, u16 reg, u32 *val)
{
u32 buf;
int err;
err = spu_read(card, reg, (u8 *)&buf, sizeof(buf));
if (!err)
*val = le32_to_cpup(&buf);
return err;
}
/* Keep reading 16 bits from an SPI register until you get the correct result.
*
* If mask = 0, the correct result is any non-zero number.
* If mask != 0, the correct result is any number where
* number & target_mask == target
*
* Returns -ETIMEDOUT if a second passes without the correct result. */
static int spu_wait_for_u16(struct if_spi_card *card, u16 reg,
u16 target_mask, u16 target)
{
int err;
unsigned long timeout = jiffies + 5*HZ;
while (1) {
u16 val;
err = spu_read_u16(card, reg, &val);
if (err)
return err;
if (target_mask) {
if ((val & target_mask) == target)
return 0;
} else {
if (val)
return 0;
}
udelay(100);
if (time_after(jiffies, timeout)) {
lbs_pr_err("%s: timeout with val=%02x, "
"target_mask=%02x, target=%02x\n",
__func__, val, target_mask, target);
return -ETIMEDOUT;
}
}
}
/* Read 16 bits from an SPI register until you receive a specific value.
* Returns -ETIMEDOUT if a 4 tries pass without success. */
static int spu_wait_for_u32(struct if_spi_card *card, u32 reg, u32 target)
{
int err, try;
for (try = 0; try < 4; ++try) {
u32 val = 0;
err = spu_read_u32(card, reg, &val);
if (err)
return err;
if (val == target)
return 0;
mdelay(100);
}
return -ETIMEDOUT;
}
static int spu_set_interrupt_mode(struct if_spi_card *card,
int suppress_host_int,
int auto_int)
{
int err = 0;
/* We can suppress a host interrupt by clearing the appropriate
* bit in the "host interrupt status mask" register */
if (suppress_host_int) {
err = spu_write_u16(card, IF_SPI_HOST_INT_STATUS_MASK_REG, 0);
if (err)
return err;
} else {
err = spu_write_u16(card, IF_SPI_HOST_INT_STATUS_MASK_REG,
IF_SPI_HISM_TX_DOWNLOAD_RDY |
IF_SPI_HISM_RX_UPLOAD_RDY |
IF_SPI_HISM_CMD_DOWNLOAD_RDY |
IF_SPI_HISM_CARDEVENT |
IF_SPI_HISM_CMD_UPLOAD_RDY);
if (err)
return err;
}
/* If auto-interrupts are on, the completion of certain transactions
* will trigger an interrupt automatically. If auto-interrupts
* are off, we need to set the "Card Interrupt Cause" register to
* trigger a card interrupt. */
if (auto_int) {
err = spu_write_u16(card, IF_SPI_HOST_INT_CTRL_REG,
IF_SPI_HICT_TX_DOWNLOAD_OVER_AUTO |
IF_SPI_HICT_RX_UPLOAD_OVER_AUTO |
IF_SPI_HICT_CMD_DOWNLOAD_OVER_AUTO |
IF_SPI_HICT_CMD_UPLOAD_OVER_AUTO);
if (err)
return err;
} else {
err = spu_write_u16(card, IF_SPI_HOST_INT_STATUS_MASK_REG, 0);
if (err)
return err;
}
return err;
}
static int spu_get_chip_revision(struct if_spi_card *card,
u16 *card_id, u8 *card_rev)
{
int err = 0;
u32 dev_ctrl;
err = spu_read_u32(card, IF_SPI_DEVICEID_CTRL_REG, &dev_ctrl);
if (err)
return err;
*card_id = IF_SPI_DEVICEID_CTRL_REG_TO_CARD_ID(dev_ctrl);
*card_rev = IF_SPI_DEVICEID_CTRL_REG_TO_CARD_REV(dev_ctrl);
return err;
}
static int spu_set_bus_mode(struct if_spi_card *card, u16 mode)
{
int err = 0;
u16 rval;
/* set bus mode */
err = spu_write_u16(card, IF_SPI_SPU_BUS_MODE_REG, mode);
if (err)
return err;
/* Check that we were able to read back what we just wrote. */
err = spu_read_u16(card, IF_SPI_SPU_BUS_MODE_REG, &rval);
if (err)
return err;
if ((rval & 0xF) != mode) {
lbs_pr_err("Can't read bus mode register.\n");
return -EIO;
}
return 0;
}
static int spu_init(struct if_spi_card *card, int use_dummy_writes)
{
int err = 0;
u32 delay;
/* We have to start up in timed delay mode so that we can safely
* read the Delay Read Register. */
card->use_dummy_writes = 0;
err = spu_set_bus_mode(card,
IF_SPI_BUS_MODE_SPI_CLOCK_PHASE_RISING |
IF_SPI_BUS_MODE_DELAY_METHOD_TIMED |
IF_SPI_BUS_MODE_16_BIT_ADDRESS_16_BIT_DATA);
if (err)
return err;
card->spu_port_delay = 1000;
card->spu_reg_delay = 1000;
err = spu_read_u32(card, IF_SPI_DELAY_READ_REG, &delay);
if (err)
return err;
card->spu_port_delay = delay & 0x0000ffff;
card->spu_reg_delay = (delay & 0xffff0000) >> 16;
/* If dummy clock delay mode has been requested, switch to it now */
if (use_dummy_writes) {
card->use_dummy_writes = 1;
err = spu_set_bus_mode(card,
IF_SPI_BUS_MODE_SPI_CLOCK_PHASE_RISING |
IF_SPI_BUS_MODE_DELAY_METHOD_DUMMY_CLOCK |
IF_SPI_BUS_MODE_16_BIT_ADDRESS_16_BIT_DATA);
if (err)
return err;
}
lbs_deb_spi("Initialized SPU unit. "
"spu_port_delay=0x%04lx, spu_reg_delay=0x%04lx\n",
card->spu_port_delay, card->spu_reg_delay);
return err;
}
/*
* Firmware Loading
*/
static int if_spi_prog_helper_firmware(struct if_spi_card *card)
{
int err = 0;
const struct firmware *firmware = NULL;
int bytes_remaining;
const u8 *fw;
u8 temp[HELPER_FW_LOAD_CHUNK_SZ];
struct spi_device *spi = card->spi;
lbs_deb_enter(LBS_DEB_SPI);
err = spu_set_interrupt_mode(card, 1, 0);
if (err)
goto out;
/* Get helper firmware image */
err = request_firmware(&firmware, card->helper_fw_name, &spi->dev);
if (err) {
lbs_pr_err("request_firmware failed with err = %d\n", err);
goto out;
}
bytes_remaining = firmware->size;
fw = firmware->data;
/* Load helper firmware image */
while (bytes_remaining > 0) {
/* Scratch pad 1 should contain the number of bytes we
* want to download to the firmware */
err = spu_write_u16(card, IF_SPI_SCRATCH_1_REG,
HELPER_FW_LOAD_CHUNK_SZ);
if (err)
goto release_firmware;
err = spu_wait_for_u16(card, IF_SPI_HOST_INT_STATUS_REG,
IF_SPI_HIST_CMD_DOWNLOAD_RDY,
IF_SPI_HIST_CMD_DOWNLOAD_RDY);
if (err)
goto release_firmware;
/* Feed the data into the command read/write port reg
* in chunks of 64 bytes */
memset(temp, 0, sizeof(temp));
memcpy(temp, fw,
min(bytes_remaining, HELPER_FW_LOAD_CHUNK_SZ));
mdelay(10);
err = spu_write(card, IF_SPI_CMD_RDWRPORT_REG,
temp, HELPER_FW_LOAD_CHUNK_SZ);
if (err)
goto release_firmware;
/* Interrupt the boot code */
err = spu_write_u16(card, IF_SPI_HOST_INT_STATUS_REG, 0);
if (err)
goto release_firmware;
err = spu_write_u16(card, IF_SPI_CARD_INT_CAUSE_REG,
IF_SPI_CIC_CMD_DOWNLOAD_OVER);
if (err)
goto release_firmware;
bytes_remaining -= HELPER_FW_LOAD_CHUNK_SZ;
fw += HELPER_FW_LOAD_CHUNK_SZ;
}
/* Once the helper / single stage firmware download is complete,
* write 0 to scratch pad 1 and interrupt the
* bootloader. This completes the helper download. */
err = spu_write_u16(card, IF_SPI_SCRATCH_1_REG, FIRMWARE_DNLD_OK);
if (err)
goto release_firmware;
err = spu_write_u16(card, IF_SPI_HOST_INT_STATUS_REG, 0);
if (err)
goto release_firmware;
err = spu_write_u16(card, IF_SPI_CARD_INT_CAUSE_REG,
IF_SPI_CIC_CMD_DOWNLOAD_OVER);
goto release_firmware;
lbs_deb_spi("waiting for helper to boot...\n");
release_firmware:
release_firmware(firmware);
out:
if (err)
lbs_pr_err("failed to load helper firmware (err=%d)\n", err);
lbs_deb_leave_args(LBS_DEB_SPI, "err %d", err);
return err;
}
/* Returns the length of the next packet the firmware expects us to send
* Sets crc_err if the previous transfer had a CRC error. */
static int if_spi_prog_main_firmware_check_len(struct if_spi_card *card,
int *crc_err)
{
u16 len;
int err = 0;
/* wait until the host interrupt status register indicates
* that we are ready to download */
err = spu_wait_for_u16(card, IF_SPI_HOST_INT_STATUS_REG,
IF_SPI_HIST_CMD_DOWNLOAD_RDY,
IF_SPI_HIST_CMD_DOWNLOAD_RDY);
if (err) {
lbs_pr_err("timed out waiting for host_int_status\n");
return err;
}
/* Ask the device how many bytes of firmware it wants. */
err = spu_read_u16(card, IF_SPI_SCRATCH_1_REG, &len);
if (err)
return err;
if (len > IF_SPI_CMD_BUF_SIZE) {
lbs_pr_err("firmware load device requested a larger "
"tranfer than we are prepared to "
"handle. (len = %d)\n", len);
return -EIO;
}
if (len & 0x1) {
lbs_deb_spi("%s: crc error\n", __func__);
len &= ~0x1;
*crc_err = 1;
} else
*crc_err = 0;
return len;
}
static int if_spi_prog_main_firmware(struct if_spi_card *card)
{
int len, prev_len;
int bytes, crc_err = 0, err = 0;
const struct firmware *firmware = NULL;
const u8 *fw;
struct spi_device *spi = card->spi;
u16 num_crc_errs;
lbs_deb_enter(LBS_DEB_SPI);
err = spu_set_interrupt_mode(card, 1, 0);
if (err)
goto out;
/* Get firmware image */
err = request_firmware(&firmware, card->main_fw_name, &spi->dev);
if (err) {
lbs_pr_err("%s: can't get firmware '%s' from kernel. "
"err = %d\n", __func__, card->main_fw_name, err);
goto out;
}
err = spu_wait_for_u16(card, IF_SPI_SCRATCH_1_REG, 0, 0);
if (err) {
lbs_pr_err("%s: timed out waiting for initial "
"scratch reg = 0\n", __func__);
goto release_firmware;
}
num_crc_errs = 0;
prev_len = 0;
bytes = firmware->size;
fw = firmware->data;
while ((len = if_spi_prog_main_firmware_check_len(card, &crc_err))) {
if (len < 0) {
err = len;
goto release_firmware;
}
if (bytes < 0) {
/* If there are no more bytes left, we would normally
* expect to have terminated with len = 0 */
lbs_pr_err("Firmware load wants more bytes "
"than we have to offer.\n");
break;
}
if (crc_err) {
/* Previous transfer failed. */
if (++num_crc_errs > MAX_MAIN_FW_LOAD_CRC_ERR) {
lbs_pr_err("Too many CRC errors encountered "
"in firmware load.\n");
err = -EIO;
goto release_firmware;
}
} else {
/* Previous transfer succeeded. Advance counters. */
bytes -= prev_len;
fw += prev_len;
}
if (bytes < len) {
memset(card->cmd_buffer, 0, len);
memcpy(card->cmd_buffer, fw, bytes);
} else
memcpy(card->cmd_buffer, fw, len);
err = spu_write_u16(card, IF_SPI_HOST_INT_STATUS_REG, 0);
if (err)
goto release_firmware;
err = spu_write(card, IF_SPI_CMD_RDWRPORT_REG,
card->cmd_buffer, len);
if (err)
goto release_firmware;
err = spu_write_u16(card, IF_SPI_CARD_INT_CAUSE_REG ,
IF_SPI_CIC_CMD_DOWNLOAD_OVER);
if (err)
goto release_firmware;
prev_len = len;
}
if (bytes > prev_len) {
lbs_pr_err("firmware load wants fewer bytes than "
"we have to offer.\n");
}
/* Confirm firmware download */
err = spu_wait_for_u32(card, IF_SPI_SCRATCH_4_REG,
SUCCESSFUL_FW_DOWNLOAD_MAGIC);
if (err) {
lbs_pr_err("failed to confirm the firmware download\n");
goto release_firmware;
}
release_firmware:
release_firmware(firmware);
out:
if (err)
lbs_pr_err("failed to load firmware (err=%d)\n", err);
lbs_deb_leave_args(LBS_DEB_SPI, "err %d", err);
return err;
}
/*
* SPI Transfer Thread
*
* The SPI thread handles all SPI transfers, so there is no need for a lock.
*/
/* Move a command from the card to the host */
static int if_spi_c2h_cmd(struct if_spi_card *card)
{
struct lbs_private *priv = card->priv;
unsigned long flags;
int err = 0;
u16 len;
u8 i;
/* We need a buffer big enough to handle whatever people send to
* hw_host_to_card */
BUILD_BUG_ON(IF_SPI_CMD_BUF_SIZE < LBS_CMD_BUFFER_SIZE);
BUILD_BUG_ON(IF_SPI_CMD_BUF_SIZE < LBS_UPLD_SIZE);
/* It's just annoying if the buffer size isn't a multiple of 4, because
* then we might have len < IF_SPI_CMD_BUF_SIZE but
* ALIGN(len, 4) > IF_SPI_CMD_BUF_SIZE */
BUILD_BUG_ON(IF_SPI_CMD_BUF_SIZE % 4 != 0);
lbs_deb_enter(LBS_DEB_SPI);
/* How many bytes are there to read? */
err = spu_read_u16(card, IF_SPI_SCRATCH_2_REG, &len);
if (err)
goto out;
if (!len) {
lbs_pr_err("%s: error: card has no data for host\n",
__func__);
err = -EINVAL;
goto out;
} else if (len > IF_SPI_CMD_BUF_SIZE) {
lbs_pr_err("%s: error: response packet too large: "
"%d bytes, but maximum is %d\n",
__func__, len, IF_SPI_CMD_BUF_SIZE);
err = -EINVAL;
goto out;
}
/* Read the data from the WLAN module into our command buffer */
err = spu_read(card, IF_SPI_CMD_RDWRPORT_REG,
card->cmd_buffer, ALIGN(len, 4));
if (err)
goto out;
spin_lock_irqsave(&priv->driver_lock, flags);
i = (priv->resp_idx == 0) ? 1 : 0;
BUG_ON(priv->resp_len[i]);
priv->resp_len[i] = len;
memcpy(priv->resp_buf[i], card->cmd_buffer, len);
lbs_notify_command_response(priv, i);
spin_unlock_irqrestore(&priv->driver_lock, flags);
out:
if (err)
lbs_pr_err("%s: err=%d\n", __func__, err);
lbs_deb_leave(LBS_DEB_SPI);
return err;
}
/* Move data from the card to the host */
static int if_spi_c2h_data(struct if_spi_card *card)
{
struct sk_buff *skb;
char *data;
u16 len;
int err = 0;
lbs_deb_enter(LBS_DEB_SPI);
/* How many bytes are there to read? */
err = spu_read_u16(card, IF_SPI_SCRATCH_1_REG, &len);
if (err)
goto out;
if (!len) {
lbs_pr_err("%s: error: card has no data for host\n",
__func__);
err = -EINVAL;
goto out;
} else if (len > MRVDRV_ETH_RX_PACKET_BUFFER_SIZE) {
lbs_pr_err("%s: error: card has %d bytes of data, but "
"our maximum skb size is %zu\n",
__func__, len, MRVDRV_ETH_RX_PACKET_BUFFER_SIZE);
err = -EINVAL;
goto out;
}
/* TODO: should we allocate a smaller skb if we have less data? */
skb = dev_alloc_skb(MRVDRV_ETH_RX_PACKET_BUFFER_SIZE);
if (!skb) {
err = -ENOBUFS;
goto out;
}
skb_reserve(skb, IPFIELD_ALIGN_OFFSET);
data = skb_put(skb, len);
/* Read the data from the WLAN module into our skb... */
err = spu_read(card, IF_SPI_DATA_RDWRPORT_REG, data, ALIGN(len, 4));
if (err)
goto free_skb;
/* pass the SKB to libertas */
err = lbs_process_rxed_packet(card->priv, skb);
if (err)
goto free_skb;
/* success */
goto out;
free_skb:
dev_kfree_skb(skb);
out:
if (err)
lbs_pr_err("%s: err=%d\n", __func__, err);
lbs_deb_leave(LBS_DEB_SPI);
return err;
}
/* Move data or a command from the host to the card. */
static void if_spi_h2c(struct if_spi_card *card,
struct if_spi_packet *packet, int type)
{
int err = 0;
u16 int_type, port_reg;
switch (type) {
case MVMS_DAT:
int_type = IF_SPI_CIC_TX_DOWNLOAD_OVER;
port_reg = IF_SPI_DATA_RDWRPORT_REG;
break;
case MVMS_CMD:
int_type = IF_SPI_CIC_CMD_DOWNLOAD_OVER;
port_reg = IF_SPI_CMD_RDWRPORT_REG;
break;
default:
lbs_pr_err("can't transfer buffer of type %d\n", type);
err = -EINVAL;
goto out;
}
/* Write the data to the card */
err = spu_write(card, port_reg, packet->buffer, packet->blen);
if (err)
goto out;
out:
kfree(packet);
if (err)
lbs_pr_err("%s: error %d\n", __func__, err);
}
/* Inform the host about a card event */
static void if_spi_e2h(struct if_spi_card *card)
{
int err = 0;
u32 cause;
struct lbs_private *priv = card->priv;
err = spu_read_u32(card, IF_SPI_SCRATCH_3_REG, &cause);
if (err)
goto out;
/* re-enable the card event interrupt */
spu_write_u16(card, IF_SPI_HOST_INT_STATUS_REG,
~IF_SPI_HICU_CARD_EVENT);
/* generate a card interrupt */
spu_write_u16(card, IF_SPI_CARD_INT_CAUSE_REG, IF_SPI_CIC_HOST_EVENT);
lbs_queue_event(priv, cause & 0xff);
out:
if (err)
lbs_pr_err("%s: error %d\n", __func__, err);
}
static int lbs_spi_thread(void *data)
{
int err;
struct if_spi_card *card = data;
u16 hiStatus;
unsigned long flags;
struct if_spi_packet *packet;
while (1) {
/* Wait to be woken up by one of two things. First, our ISR
* could tell us that something happened on the WLAN.
* Secondly, libertas could call hw_host_to_card with more
* data, which we might be able to send.
*/
do {
err = down_interruptible(&card->spi_ready);
if (!card->run_thread) {
up(&card->spi_thread_terminated);
do_exit(0);
}
} while (err == EINTR);
/* Read the host interrupt status register to see what we
* can do. */
err = spu_read_u16(card, IF_SPI_HOST_INT_STATUS_REG,
&hiStatus);
if (err) {
lbs_pr_err("I/O error\n");
goto err;
}
if (hiStatus & IF_SPI_HIST_CMD_UPLOAD_RDY)
err = if_spi_c2h_cmd(card);
if (err)
goto err;
if (hiStatus & IF_SPI_HIST_RX_UPLOAD_RDY)
err = if_spi_c2h_data(card);
if (err)
goto err;
/* workaround: in PS mode, the card does not set the Command
* Download Ready bit, but it sets TX Download Ready. */
if (hiStatus & IF_SPI_HIST_CMD_DOWNLOAD_RDY ||
(card->priv->psstate != PS_STATE_FULL_POWER &&
(hiStatus & IF_SPI_HIST_TX_DOWNLOAD_RDY))) {
/* This means two things. First of all,
* if there was a previous command sent, the card has
* successfully received it.
* Secondly, it is now ready to download another
* command.
*/
lbs_host_to_card_done(card->priv);
/* Do we have any command packets from the host to
* send? */
packet = NULL;
spin_lock_irqsave(&card->buffer_lock, flags);
if (!list_empty(&card->cmd_packet_list)) {
packet = (struct if_spi_packet *)(card->
cmd_packet_list.next);
list_del(&packet->list);
}
spin_unlock_irqrestore(&card->buffer_lock, flags);
if (packet)
if_spi_h2c(card, packet, MVMS_CMD);
}
if (hiStatus & IF_SPI_HIST_TX_DOWNLOAD_RDY) {
/* Do we have any data packets from the host to
* send? */
packet = NULL;
spin_lock_irqsave(&card->buffer_lock, flags);
if (!list_empty(&card->data_packet_list)) {
packet = (struct if_spi_packet *)(card->
data_packet_list.next);
list_del(&packet->list);
}
spin_unlock_irqrestore(&card->buffer_lock, flags);
if (packet)
if_spi_h2c(card, packet, MVMS_DAT);
}
if (hiStatus & IF_SPI_HIST_CARD_EVENT)
if_spi_e2h(card);
err:
if (err)
lbs_pr_err("%s: got error %d\n", __func__, err);
}
}
/* Block until lbs_spi_thread thread has terminated */
static void if_spi_terminate_spi_thread(struct if_spi_card *card)
{
/* It would be nice to use kthread_stop here, but that function
* can't wake threads waiting for a semaphore. */
card->run_thread = 0;
up(&card->spi_ready);
down(&card->spi_thread_terminated);
}
/*
* Host to Card
*
* Called from Libertas to transfer some data to the WLAN device
* We can't sleep here. */
static int if_spi_host_to_card(struct lbs_private *priv,
u8 type, u8 *buf, u16 nb)
{
int err = 0;
unsigned long flags;
struct if_spi_card *card = priv->card;
struct if_spi_packet *packet;
u16 blen;
lbs_deb_enter_args(LBS_DEB_SPI, "type %d, bytes %d", type, nb);
if (nb == 0) {
lbs_pr_err("%s: invalid size requested: %d\n", __func__, nb);
err = -EINVAL;
goto out;
}
blen = ALIGN(nb, 4);
packet = kzalloc(sizeof(struct if_spi_packet) + blen, GFP_ATOMIC);
if (!packet) {
err = -ENOMEM;
goto out;
}
packet->blen = blen;
memcpy(packet->buffer, buf, nb);
memset(packet->buffer + nb, 0, blen - nb);
switch (type) {
case MVMS_CMD:
priv->dnld_sent = DNLD_CMD_SENT;
spin_lock_irqsave(&card->buffer_lock, flags);
list_add_tail(&packet->list, &card->cmd_packet_list);
spin_unlock_irqrestore(&card->buffer_lock, flags);
break;
case MVMS_DAT:
priv->dnld_sent = DNLD_DATA_SENT;
spin_lock_irqsave(&card->buffer_lock, flags);
list_add_tail(&packet->list, &card->data_packet_list);
spin_unlock_irqrestore(&card->buffer_lock, flags);
break;
default:
lbs_pr_err("can't transfer buffer of type %d", type);
err = -EINVAL;
break;
}
/* Wake up the spi thread */
up(&card->spi_ready);
out:
lbs_deb_leave_args(LBS_DEB_SPI, "err=%d", err);
return err;
}
/*
* Host Interrupts
*
* Service incoming interrupts from the WLAN device. We can't sleep here, so
* don't try to talk on the SPI bus, just wake up the SPI thread.
*/
static irqreturn_t if_spi_host_interrupt(int irq, void *dev_id)
{
struct if_spi_card *card = dev_id;
up(&card->spi_ready);
return IRQ_HANDLED;
}
/*
* SPI callbacks
*/
static int if_spi_calculate_fw_names(u16 card_id,
char *helper_fw, char *main_fw)
{
int i;
for (i = 0; i < ARRAY_SIZE(chip_id_to_device_name); ++i) {
if (card_id == chip_id_to_device_name[i].chip_id)
break;
}
if (i == ARRAY_SIZE(chip_id_to_device_name)) {
lbs_pr_err("Unsupported chip_id: 0x%02x\n", card_id);
return -EAFNOSUPPORT;
}
snprintf(helper_fw, IF_SPI_FW_NAME_MAX, "libertas/gspi%d_hlp.bin",
chip_id_to_device_name[i].name);
snprintf(main_fw, IF_SPI_FW_NAME_MAX, "libertas/gspi%d.bin",
chip_id_to_device_name[i].name);
return 0;
}
static int __devinit if_spi_probe(struct spi_device *spi)
{
struct if_spi_card *card;
struct lbs_private *priv = NULL;
struct libertas_spi_platform_data *pdata = spi->dev.platform_data;
int err = 0;
u32 scratch;
struct sched_param param = { .sched_priority = 1 };
lbs_deb_enter(LBS_DEB_SPI);
if (!pdata) {
err = -EINVAL;
goto out;
}
if (pdata->setup) {
err = pdata->setup(spi);
if (err)
goto out;
}
/* Allocate card structure to represent this specific device */
card = kzalloc(sizeof(struct if_spi_card), GFP_KERNEL);
if (!card) {
err = -ENOMEM;
goto out;
}
spi_set_drvdata(spi, card);
card->pdata = pdata;
card->spi = spi;
card->prev_xfer_time = jiffies;
sema_init(&card->spi_ready, 0);
sema_init(&card->spi_thread_terminated, 0);
INIT_LIST_HEAD(&card->cmd_packet_list);
INIT_LIST_HEAD(&card->data_packet_list);
spin_lock_init(&card->buffer_lock);
/* Initialize the SPI Interface Unit */
err = spu_init(card, pdata->use_dummy_writes);
if (err)
goto free_card;
err = spu_get_chip_revision(card, &card->card_id, &card->card_rev);
if (err)
goto free_card;
/* Firmware load */
err = spu_read_u32(card, IF_SPI_SCRATCH_4_REG, &scratch);
if (err)
goto free_card;
if (scratch == SUCCESSFUL_FW_DOWNLOAD_MAGIC)
lbs_deb_spi("Firmware is already loaded for "
"Marvell WLAN 802.11 adapter\n");
else {
err = if_spi_calculate_fw_names(card->card_id,
card->helper_fw_name, card->main_fw_name);
if (err)
goto free_card;
lbs_deb_spi("Initializing FW for Marvell WLAN 802.11 adapter "
"(chip_id = 0x%04x, chip_rev = 0x%02x) "
"attached to SPI bus_num %d, chip_select %d. "
"spi->max_speed_hz=%d\n",
card->card_id, card->card_rev,
spi->master->bus_num, spi->chip_select,
spi->max_speed_hz);
err = if_spi_prog_helper_firmware(card);
if (err)
goto free_card;
err = if_spi_prog_main_firmware(card);
if (err)
goto free_card;
lbs_deb_spi("loaded FW for Marvell WLAN 802.11 adapter\n");
}
err = spu_set_interrupt_mode(card, 0, 1);
if (err)
goto free_card;
/* Register our card with libertas.
* This will call alloc_etherdev */
priv = lbs_add_card(card, &spi->dev);
if (!priv) {
err = -ENOMEM;
goto free_card;
}
card->priv = priv;
priv->card = card;
priv->hw_host_to_card = if_spi_host_to_card;
priv->fw_ready = 1;
/* Initialize interrupt handling stuff. */
card->run_thread = 1;
card->spi_thread = kthread_run(lbs_spi_thread, card, "lbs_spi_thread");
if (IS_ERR(card->spi_thread)) {
card->run_thread = 0;
err = PTR_ERR(card->spi_thread);
lbs_pr_err("error creating SPI thread: err=%d\n", err);
goto remove_card;
}
if (sched_setscheduler(card->spi_thread, SCHED_FIFO, &param))
lbs_pr_err("Error setting scheduler, using default.\n");
err = request_irq(spi->irq, if_spi_host_interrupt,
IRQF_TRIGGER_FALLING, "libertas_spi", card);
if (err) {
lbs_pr_err("can't get host irq line-- request_irq failed\n");
goto terminate_thread;
}
/* Start the card.
* This will call register_netdev, and we'll start
* getting interrupts... */
err = lbs_start_card(priv);
if (err)
goto release_irq;
lbs_deb_spi("Finished initializing WLAN module.\n");
/* successful exit */
goto out;
release_irq:
free_irq(spi->irq, card);
terminate_thread:
if_spi_terminate_spi_thread(card);
remove_card:
lbs_remove_card(priv); /* will call free_netdev */
free_card:
free_if_spi_card(card);
out:
lbs_deb_leave_args(LBS_DEB_SPI, "err %d\n", err);
return err;
}
static int __devexit libertas_spi_remove(struct spi_device *spi)
{
struct if_spi_card *card = spi_get_drvdata(spi);
struct lbs_private *priv = card->priv;
lbs_deb_spi("libertas_spi_remove\n");
lbs_deb_enter(LBS_DEB_SPI);
lbs_stop_card(priv);
lbs_remove_card(priv); /* will call free_netdev */
priv->surpriseremoved = 1;
free_irq(spi->irq, card);
if_spi_terminate_spi_thread(card);
if (card->pdata->teardown)
card->pdata->teardown(spi);
free_if_spi_card(card);
lbs_deb_leave(LBS_DEB_SPI);
return 0;
}
static struct spi_driver libertas_spi_driver = {
.probe = if_spi_probe,
.remove = __devexit_p(libertas_spi_remove),
.driver = {
.name = "libertas_spi",
.bus = &spi_bus_type,
.owner = THIS_MODULE,
},
};
/*
* Module functions
*/
static int __init if_spi_init_module(void)
{
int ret = 0;
lbs_deb_enter(LBS_DEB_SPI);
printk(KERN_INFO "libertas_spi: Libertas SPI driver\n");
ret = spi_register_driver(&libertas_spi_driver);
lbs_deb_leave(LBS_DEB_SPI);
return ret;
}
static void __exit if_spi_exit_module(void)
{
lbs_deb_enter(LBS_DEB_SPI);
spi_unregister_driver(&libertas_spi_driver);
lbs_deb_leave(LBS_DEB_SPI);
}
module_init(if_spi_init_module);
module_exit(if_spi_exit_module);
MODULE_DESCRIPTION("Libertas SPI WLAN Driver");
MODULE_AUTHOR("Andrey Yurovsky <andrey@cozybit.com>, "
"Colin McCabe <colin@cozybit.com>");
MODULE_LICENSE("GPL");