kernel-ark/include/linux/regulator/machine.h
Mark Brown f59c8f9fe6 regulator: core: Support bypass mode
Many regulators support a bypass mode where they simply switch their
input supply to the output. This is mainly used in low power retention
states where power consumption is extremely low so higher voltage or
less clean supplies can be used.

Support this by providing ops for the drivers and a consumer API which
allows the device to be put into bypass mode if all consumers enable it
and the machine enables permission for this.

This is not supported as a mode since the existing modes are rarely used
due to fuzzy definition and mostly redundant with modern hardware which is
able to respond promptly to load changes.

Signed-off-by: Mark Brown <broonie@opensource.wolfsonmicro.com>
Reviewed-by: Graeme Gregory <gg@slimlogic.co.uk>
2012-09-10 11:25:10 +08:00

207 lines
6.6 KiB
C

/*
* machine.h -- SoC Regulator support, machine/board driver API.
*
* Copyright (C) 2007, 2008 Wolfson Microelectronics PLC.
*
* Author: Liam Girdwood <lrg@slimlogic.co.uk>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* Regulator Machine/Board Interface.
*/
#ifndef __LINUX_REGULATOR_MACHINE_H_
#define __LINUX_REGULATOR_MACHINE_H_
#include <linux/regulator/consumer.h>
#include <linux/suspend.h>
struct regulator;
/*
* Regulator operation constraint flags. These flags are used to enable
* certain regulator operations and can be OR'ed together.
*
* VOLTAGE: Regulator output voltage can be changed by software on this
* board/machine.
* CURRENT: Regulator output current can be changed by software on this
* board/machine.
* MODE: Regulator operating mode can be changed by software on this
* board/machine.
* STATUS: Regulator can be enabled and disabled.
* DRMS: Dynamic Regulator Mode Switching is enabled for this regulator.
* BYPASS: Regulator can be put into bypass mode
*/
#define REGULATOR_CHANGE_VOLTAGE 0x1
#define REGULATOR_CHANGE_CURRENT 0x2
#define REGULATOR_CHANGE_MODE 0x4
#define REGULATOR_CHANGE_STATUS 0x8
#define REGULATOR_CHANGE_DRMS 0x10
#define REGULATOR_CHANGE_BYPASS 0x20
/**
* struct regulator_state - regulator state during low power system states
*
* This describes a regulators state during a system wide low power
* state. One of enabled or disabled must be set for the
* configuration to be applied.
*
* @uV: Operating voltage during suspend.
* @mode: Operating mode during suspend.
* @enabled: Enabled during suspend.
* @disabled: Disabled during suspend.
*/
struct regulator_state {
int uV; /* suspend voltage */
unsigned int mode; /* suspend regulator operating mode */
int enabled; /* is regulator enabled in this suspend state */
int disabled; /* is the regulator disbled in this suspend state */
};
/**
* struct regulation_constraints - regulator operating constraints.
*
* This struct describes regulator and board/machine specific constraints.
*
* @name: Descriptive name for the constraints, used for display purposes.
*
* @min_uV: Smallest voltage consumers may set.
* @max_uV: Largest voltage consumers may set.
* @uV_offset: Offset applied to voltages from consumer to compensate for
* voltage drops.
*
* @min_uA: Smallest current consumers may set.
* @max_uA: Largest current consumers may set.
*
* @valid_modes_mask: Mask of modes which may be configured by consumers.
* @valid_ops_mask: Operations which may be performed by consumers.
*
* @always_on: Set if the regulator should never be disabled.
* @boot_on: Set if the regulator is enabled when the system is initially
* started. If the regulator is not enabled by the hardware or
* bootloader then it will be enabled when the constraints are
* applied.
* @apply_uV: Apply the voltage constraint when initialising.
*
* @input_uV: Input voltage for regulator when supplied by another regulator.
*
* @state_disk: State for regulator when system is suspended in disk mode.
* @state_mem: State for regulator when system is suspended in mem mode.
* @state_standby: State for regulator when system is suspended in standby
* mode.
* @initial_state: Suspend state to set by default.
* @initial_mode: Mode to set at startup.
* @ramp_delay: Time to settle down after voltage change (unit: uV/us)
*/
struct regulation_constraints {
const char *name;
/* voltage output range (inclusive) - for voltage control */
int min_uV;
int max_uV;
int uV_offset;
/* current output range (inclusive) - for current control */
int min_uA;
int max_uA;
/* valid regulator operating modes for this machine */
unsigned int valid_modes_mask;
/* valid operations for regulator on this machine */
unsigned int valid_ops_mask;
/* regulator input voltage - only if supply is another regulator */
int input_uV;
/* regulator suspend states for global PMIC STANDBY/HIBERNATE */
struct regulator_state state_disk;
struct regulator_state state_mem;
struct regulator_state state_standby;
suspend_state_t initial_state; /* suspend state to set at init */
/* mode to set on startup */
unsigned int initial_mode;
unsigned int ramp_delay;
/* constraint flags */
unsigned always_on:1; /* regulator never off when system is on */
unsigned boot_on:1; /* bootloader/firmware enabled regulator */
unsigned apply_uV:1; /* apply uV constraint if min == max */
};
/**
* struct regulator_consumer_supply - supply -> device mapping
*
* This maps a supply name to a device. Use of dev_name allows support for
* buses which make struct device available late such as I2C.
*
* @dev_name: Result of dev_name() for the consumer.
* @supply: Name for the supply.
*/
struct regulator_consumer_supply {
const char *dev_name; /* dev_name() for consumer */
const char *supply; /* consumer supply - e.g. "vcc" */
};
/* Initialize struct regulator_consumer_supply */
#define REGULATOR_SUPPLY(_name, _dev_name) \
{ \
.supply = _name, \
.dev_name = _dev_name, \
}
/**
* struct regulator_init_data - regulator platform initialisation data.
*
* Initialisation constraints, our supply and consumers supplies.
*
* @supply_regulator: Parent regulator. Specified using the regulator name
* as it appears in the name field in sysfs, which can
* be explicitly set using the constraints field 'name'.
*
* @constraints: Constraints. These must be specified for the regulator to
* be usable.
* @num_consumer_supplies: Number of consumer device supplies.
* @consumer_supplies: Consumer device supply configuration.
*
* @regulator_init: Callback invoked when the regulator has been registered.
* @driver_data: Data passed to regulator_init.
*/
struct regulator_init_data {
const char *supply_regulator; /* or NULL for system supply */
struct regulation_constraints constraints;
int num_consumer_supplies;
struct regulator_consumer_supply *consumer_supplies;
/* optional regulator machine specific init */
int (*regulator_init)(void *driver_data);
void *driver_data; /* core does not touch this */
};
int regulator_suspend_prepare(suspend_state_t state);
int regulator_suspend_finish(void);
#ifdef CONFIG_REGULATOR
void regulator_has_full_constraints(void);
void regulator_use_dummy_regulator(void);
#else
static inline void regulator_has_full_constraints(void)
{
}
static inline void regulator_use_dummy_regulator(void)
{
}
#endif
#endif