kernel-ark/drivers/macintosh/via-pmu.c
Linus Torvalds 5a148af669 Merge branch 'next' of git://git.kernel.org/pub/scm/linux/kernel/git/benh/powerpc
Pull powerpc update from Benjamin Herrenschmidt:
 "The main highlights this time around are:

   - A pile of addition POWER8 bits and nits, such as updated
     performance counter support (Michael Ellerman), new branch history
     buffer support (Anshuman Khandual), base support for the new PCI
     host bridge when not using the hypervisor (Gavin Shan) and other
     random related bits and fixes from various contributors.

   - Some rework of our page table format by Aneesh Kumar which fixes a
     thing or two and paves the way for THP support.  THP itself will
     not make it this time around however.

   - More Freescale updates, including Altivec support on the new e6500
     cores, new PCI controller support, and a pile of new boards support
     and updates.

   - The usual batch of trivial cleanups & fixes"

* 'next' of git://git.kernel.org/pub/scm/linux/kernel/git/benh/powerpc: (156 commits)
  powerpc: Fix build error for book3e
  powerpc: Context switch the new EBB SPRs
  powerpc: Turn on the EBB H/FSCR bits
  powerpc: Replace CPU_FTR_BCTAR with CPU_FTR_ARCH_207S
  powerpc: Setup BHRB instructions facility in HFSCR for POWER8
  powerpc: Fix interrupt range check on debug exception
  powerpc: Update tlbie/tlbiel as per ISA doc
  powerpc: Print page size info during boot
  powerpc: print both base and actual page size on hash failure
  powerpc: Fix hpte_decode to use the correct decoding for page sizes
  powerpc: Decode the pte-lp-encoding bits correctly.
  powerpc: Use encode avpn where we need only avpn values
  powerpc: Reduce PTE table memory wastage
  powerpc: Move the pte free routines from common header
  powerpc: Reduce the PTE_INDEX_SIZE
  powerpc: Switch 16GB and 16MB explicit hugepages to a different page table format
  powerpc: New hugepage directory format
  powerpc: Don't truncate pgd_index wrongly
  powerpc: Don't hard code the size of pte page
  powerpc: Save DAR and DSISR in pt_regs on MCE
  ...
2013-05-02 10:16:16 -07:00

2593 lines
62 KiB
C

/*
* Device driver for the via-pmu on Apple Powermacs.
*
* The VIA (versatile interface adapter) interfaces to the PMU,
* a 6805 microprocessor core whose primary function is to control
* battery charging and system power on the PowerBook 3400 and 2400.
* The PMU also controls the ADB (Apple Desktop Bus) which connects
* to the keyboard and mouse, as well as the non-volatile RAM
* and the RTC (real time clock) chip.
*
* Copyright (C) 1998 Paul Mackerras and Fabio Riccardi.
* Copyright (C) 2001-2002 Benjamin Herrenschmidt
* Copyright (C) 2006-2007 Johannes Berg
*
* THIS DRIVER IS BECOMING A TOTAL MESS !
* - Cleanup atomically disabling reply to PMU events after
* a sleep or a freq. switch
*
*/
#include <stdarg.h>
#include <linux/mutex.h>
#include <linux/types.h>
#include <linux/errno.h>
#include <linux/kernel.h>
#include <linux/delay.h>
#include <linux/sched.h>
#include <linux/miscdevice.h>
#include <linux/blkdev.h>
#include <linux/pci.h>
#include <linux/slab.h>
#include <linux/poll.h>
#include <linux/adb.h>
#include <linux/pmu.h>
#include <linux/cuda.h>
#include <linux/module.h>
#include <linux/spinlock.h>
#include <linux/pm.h>
#include <linux/proc_fs.h>
#include <linux/seq_file.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/device.h>
#include <linux/syscore_ops.h>
#include <linux/freezer.h>
#include <linux/syscalls.h>
#include <linux/suspend.h>
#include <linux/cpu.h>
#include <linux/compat.h>
#include <asm/prom.h>
#include <asm/machdep.h>
#include <asm/io.h>
#include <asm/pgtable.h>
#include <asm/sections.h>
#include <asm/irq.h>
#include <asm/pmac_feature.h>
#include <asm/pmac_pfunc.h>
#include <asm/pmac_low_i2c.h>
#include <asm/uaccess.h>
#include <asm/mmu_context.h>
#include <asm/cputable.h>
#include <asm/time.h>
#include <asm/backlight.h>
#include "via-pmu-event.h"
/* Some compile options */
#undef DEBUG_SLEEP
/* Misc minor number allocated for /dev/pmu */
#define PMU_MINOR 154
/* How many iterations between battery polls */
#define BATTERY_POLLING_COUNT 2
static DEFINE_MUTEX(pmu_info_proc_mutex);
static volatile unsigned char __iomem *via;
/* VIA registers - spaced 0x200 bytes apart */
#define RS 0x200 /* skip between registers */
#define B 0 /* B-side data */
#define A RS /* A-side data */
#define DIRB (2*RS) /* B-side direction (1=output) */
#define DIRA (3*RS) /* A-side direction (1=output) */
#define T1CL (4*RS) /* Timer 1 ctr/latch (low 8 bits) */
#define T1CH (5*RS) /* Timer 1 counter (high 8 bits) */
#define T1LL (6*RS) /* Timer 1 latch (low 8 bits) */
#define T1LH (7*RS) /* Timer 1 latch (high 8 bits) */
#define T2CL (8*RS) /* Timer 2 ctr/latch (low 8 bits) */
#define T2CH (9*RS) /* Timer 2 counter (high 8 bits) */
#define SR (10*RS) /* Shift register */
#define ACR (11*RS) /* Auxiliary control register */
#define PCR (12*RS) /* Peripheral control register */
#define IFR (13*RS) /* Interrupt flag register */
#define IER (14*RS) /* Interrupt enable register */
#define ANH (15*RS) /* A-side data, no handshake */
/* Bits in B data register: both active low */
#define TACK 0x08 /* Transfer acknowledge (input) */
#define TREQ 0x10 /* Transfer request (output) */
/* Bits in ACR */
#define SR_CTRL 0x1c /* Shift register control bits */
#define SR_EXT 0x0c /* Shift on external clock */
#define SR_OUT 0x10 /* Shift out if 1 */
/* Bits in IFR and IER */
#define IER_SET 0x80 /* set bits in IER */
#define IER_CLR 0 /* clear bits in IER */
#define SR_INT 0x04 /* Shift register full/empty */
#define CB2_INT 0x08
#define CB1_INT 0x10 /* transition on CB1 input */
static volatile enum pmu_state {
idle,
sending,
intack,
reading,
reading_intr,
locked,
} pmu_state;
static volatile enum int_data_state {
int_data_empty,
int_data_fill,
int_data_ready,
int_data_flush
} int_data_state[2] = { int_data_empty, int_data_empty };
static struct adb_request *current_req;
static struct adb_request *last_req;
static struct adb_request *req_awaiting_reply;
static unsigned char interrupt_data[2][32];
static int interrupt_data_len[2];
static int int_data_last;
static unsigned char *reply_ptr;
static int data_index;
static int data_len;
static volatile int adb_int_pending;
static volatile int disable_poll;
static struct device_node *vias;
static int pmu_kind = PMU_UNKNOWN;
static int pmu_fully_inited;
static int pmu_has_adb;
static struct device_node *gpio_node;
static unsigned char __iomem *gpio_reg;
static int gpio_irq = NO_IRQ;
static int gpio_irq_enabled = -1;
static volatile int pmu_suspended;
static spinlock_t pmu_lock;
static u8 pmu_intr_mask;
static int pmu_version;
static int drop_interrupts;
#if defined(CONFIG_SUSPEND) && defined(CONFIG_PPC32)
static int option_lid_wakeup = 1;
#endif /* CONFIG_SUSPEND && CONFIG_PPC32 */
static unsigned long async_req_locks;
static unsigned int pmu_irq_stats[11];
static struct proc_dir_entry *proc_pmu_root;
static struct proc_dir_entry *proc_pmu_info;
static struct proc_dir_entry *proc_pmu_irqstats;
static struct proc_dir_entry *proc_pmu_options;
static int option_server_mode;
int pmu_battery_count;
int pmu_cur_battery;
unsigned int pmu_power_flags = PMU_PWR_AC_PRESENT;
struct pmu_battery_info pmu_batteries[PMU_MAX_BATTERIES];
static int query_batt_timer = BATTERY_POLLING_COUNT;
static struct adb_request batt_req;
static struct proc_dir_entry *proc_pmu_batt[PMU_MAX_BATTERIES];
int __fake_sleep;
int asleep;
#ifdef CONFIG_ADB
static int adb_dev_map;
static int pmu_adb_flags;
static int pmu_probe(void);
static int pmu_init(void);
static int pmu_send_request(struct adb_request *req, int sync);
static int pmu_adb_autopoll(int devs);
static int pmu_adb_reset_bus(void);
#endif /* CONFIG_ADB */
static int init_pmu(void);
static void pmu_start(void);
static irqreturn_t via_pmu_interrupt(int irq, void *arg);
static irqreturn_t gpio1_interrupt(int irq, void *arg);
static const struct file_operations pmu_info_proc_fops;
static const struct file_operations pmu_irqstats_proc_fops;
static void pmu_pass_intr(unsigned char *data, int len);
static const struct file_operations pmu_battery_proc_fops;
static const struct file_operations pmu_options_proc_fops;
#ifdef CONFIG_ADB
struct adb_driver via_pmu_driver = {
"PMU",
pmu_probe,
pmu_init,
pmu_send_request,
pmu_adb_autopoll,
pmu_poll_adb,
pmu_adb_reset_bus
};
#endif /* CONFIG_ADB */
extern void low_sleep_handler(void);
extern void enable_kernel_altivec(void);
extern void enable_kernel_fp(void);
#ifdef DEBUG_SLEEP
int pmu_polled_request(struct adb_request *req);
void pmu_blink(int n);
#endif
/*
* This table indicates for each PMU opcode:
* - the number of data bytes to be sent with the command, or -1
* if a length byte should be sent,
* - the number of response bytes which the PMU will return, or
* -1 if it will send a length byte.
*/
static const s8 pmu_data_len[256][2] = {
/* 0 1 2 3 4 5 6 7 */
/*00*/ {-1, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0},
/*08*/ {-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},
/*10*/ { 1, 0},{ 1, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0},
/*18*/ { 0, 1},{ 0, 1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},{ 0, 0},
/*20*/ {-1, 0},{ 0, 0},{ 2, 0},{ 1, 0},{ 1, 0},{-1, 0},{-1, 0},{-1, 0},
/*28*/ { 0,-1},{ 0,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},{ 0,-1},
/*30*/ { 4, 0},{20, 0},{-1, 0},{ 3, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0},
/*38*/ { 0, 4},{ 0,20},{ 2,-1},{ 2, 1},{ 3,-1},{-1,-1},{-1,-1},{ 4, 0},
/*40*/ { 1, 0},{ 1, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0},
/*48*/ { 0, 1},{ 0, 1},{-1,-1},{ 1, 0},{ 1, 0},{-1,-1},{-1,-1},{-1,-1},
/*50*/ { 1, 0},{ 0, 0},{ 2, 0},{ 2, 0},{-1, 0},{ 1, 0},{ 3, 0},{ 1, 0},
/*58*/ { 0, 1},{ 1, 0},{ 0, 2},{ 0, 2},{ 0,-1},{-1,-1},{-1,-1},{-1,-1},
/*60*/ { 2, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0},
/*68*/ { 0, 3},{ 0, 3},{ 0, 2},{ 0, 8},{ 0,-1},{ 0,-1},{-1,-1},{-1,-1},
/*70*/ { 1, 0},{ 1, 0},{ 1, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0},
/*78*/ { 0,-1},{ 0,-1},{-1,-1},{-1,-1},{-1,-1},{ 5, 1},{ 4, 1},{ 4, 1},
/*80*/ { 4, 0},{-1, 0},{ 0, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0},
/*88*/ { 0, 5},{-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},
/*90*/ { 1, 0},{ 2, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0},
/*98*/ { 0, 1},{ 0, 1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},
/*a0*/ { 2, 0},{ 2, 0},{ 2, 0},{ 4, 0},{-1, 0},{ 0, 0},{-1, 0},{-1, 0},
/*a8*/ { 1, 1},{ 1, 0},{ 3, 0},{ 2, 0},{-1,-1},{-1,-1},{-1,-1},{-1,-1},
/*b0*/ {-1, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0},
/*b8*/ {-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},
/*c0*/ {-1, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0},
/*c8*/ {-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},
/*d0*/ { 0, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0},
/*d8*/ { 1, 1},{ 1, 1},{-1,-1},{-1,-1},{ 0, 1},{ 0,-1},{-1,-1},{-1,-1},
/*e0*/ {-1, 0},{ 4, 0},{ 0, 1},{-1, 0},{-1, 0},{ 4, 0},{-1, 0},{-1, 0},
/*e8*/ { 3,-1},{-1,-1},{ 0, 1},{-1,-1},{ 0,-1},{-1,-1},{-1,-1},{ 0, 0},
/*f0*/ {-1, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0},
/*f8*/ {-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},
};
static char *pbook_type[] = {
"Unknown PowerBook",
"PowerBook 2400/3400/3500(G3)",
"PowerBook G3 Series",
"1999 PowerBook G3",
"Core99"
};
int __init find_via_pmu(void)
{
u64 taddr;
const u32 *reg;
if (via != 0)
return 1;
vias = of_find_node_by_name(NULL, "via-pmu");
if (vias == NULL)
return 0;
reg = of_get_property(vias, "reg", NULL);
if (reg == NULL) {
printk(KERN_ERR "via-pmu: No \"reg\" property !\n");
goto fail;
}
taddr = of_translate_address(vias, reg);
if (taddr == OF_BAD_ADDR) {
printk(KERN_ERR "via-pmu: Can't translate address !\n");
goto fail;
}
spin_lock_init(&pmu_lock);
pmu_has_adb = 1;
pmu_intr_mask = PMU_INT_PCEJECT |
PMU_INT_SNDBRT |
PMU_INT_ADB |
PMU_INT_TICK;
if (vias->parent->name && ((strcmp(vias->parent->name, "ohare") == 0)
|| of_device_is_compatible(vias->parent, "ohare")))
pmu_kind = PMU_OHARE_BASED;
else if (of_device_is_compatible(vias->parent, "paddington"))
pmu_kind = PMU_PADDINGTON_BASED;
else if (of_device_is_compatible(vias->parent, "heathrow"))
pmu_kind = PMU_HEATHROW_BASED;
else if (of_device_is_compatible(vias->parent, "Keylargo")
|| of_device_is_compatible(vias->parent, "K2-Keylargo")) {
struct device_node *gpiop;
struct device_node *adbp;
u64 gaddr = OF_BAD_ADDR;
pmu_kind = PMU_KEYLARGO_BASED;
adbp = of_find_node_by_type(NULL, "adb");
pmu_has_adb = (adbp != NULL);
of_node_put(adbp);
pmu_intr_mask = PMU_INT_PCEJECT |
PMU_INT_SNDBRT |
PMU_INT_ADB |
PMU_INT_TICK |
PMU_INT_ENVIRONMENT;
gpiop = of_find_node_by_name(NULL, "gpio");
if (gpiop) {
reg = of_get_property(gpiop, "reg", NULL);
if (reg)
gaddr = of_translate_address(gpiop, reg);
if (gaddr != OF_BAD_ADDR)
gpio_reg = ioremap(gaddr, 0x10);
}
if (gpio_reg == NULL) {
printk(KERN_ERR "via-pmu: Can't find GPIO reg !\n");
goto fail_gpio;
}
} else
pmu_kind = PMU_UNKNOWN;
via = ioremap(taddr, 0x2000);
if (via == NULL) {
printk(KERN_ERR "via-pmu: Can't map address !\n");
goto fail;
}
out_8(&via[IER], IER_CLR | 0x7f); /* disable all intrs */
out_8(&via[IFR], 0x7f); /* clear IFR */
pmu_state = idle;
if (!init_pmu()) {
via = NULL;
return 0;
}
printk(KERN_INFO "PMU driver v%d initialized for %s, firmware: %02x\n",
PMU_DRIVER_VERSION, pbook_type[pmu_kind], pmu_version);
sys_ctrler = SYS_CTRLER_PMU;
return 1;
fail:
of_node_put(vias);
iounmap(gpio_reg);
gpio_reg = NULL;
fail_gpio:
vias = NULL;
return 0;
}
#ifdef CONFIG_ADB
static int pmu_probe(void)
{
return vias == NULL? -ENODEV: 0;
}
static int __init pmu_init(void)
{
if (vias == NULL)
return -ENODEV;
return 0;
}
#endif /* CONFIG_ADB */
/*
* We can't wait until pmu_init gets called, that happens too late.
* It happens after IDE and SCSI initialization, which can take a few
* seconds, and by that time the PMU could have given up on us and
* turned us off.
* Thus this is called with arch_initcall rather than device_initcall.
*/
static int __init via_pmu_start(void)
{
unsigned int irq;
if (vias == NULL)
return -ENODEV;
batt_req.complete = 1;
irq = irq_of_parse_and_map(vias, 0);
if (irq == NO_IRQ) {
printk(KERN_ERR "via-pmu: can't map interrupt\n");
return -ENODEV;
}
/* We set IRQF_NO_SUSPEND because we don't want the interrupt
* to be disabled between the 2 passes of driver suspend, we
* control our own disabling for that one
*/
if (request_irq(irq, via_pmu_interrupt, IRQF_NO_SUSPEND,
"VIA-PMU", (void *)0)) {
printk(KERN_ERR "via-pmu: can't request irq %d\n", irq);
return -ENODEV;
}
if (pmu_kind == PMU_KEYLARGO_BASED) {
gpio_node = of_find_node_by_name(NULL, "extint-gpio1");
if (gpio_node == NULL)
gpio_node = of_find_node_by_name(NULL,
"pmu-interrupt");
if (gpio_node)
gpio_irq = irq_of_parse_and_map(gpio_node, 0);
if (gpio_irq != NO_IRQ) {
if (request_irq(gpio_irq, gpio1_interrupt, IRQF_TIMER,
"GPIO1 ADB", (void *)0))
printk(KERN_ERR "pmu: can't get irq %d"
" (GPIO1)\n", gpio_irq);
else
gpio_irq_enabled = 1;
}
}
/* Enable interrupts */
out_8(&via[IER], IER_SET | SR_INT | CB1_INT);
pmu_fully_inited = 1;
/* Make sure PMU settle down before continuing. This is _very_ important
* since the IDE probe may shut interrupts down for quite a bit of time. If
* a PMU communication is pending while this happens, the PMU may timeout
* Not that on Core99 machines, the PMU keeps sending us environement
* messages, we should find a way to either fix IDE or make it call
* pmu_suspend() before masking interrupts. This can also happens while
* scolling with some fbdevs.
*/
do {
pmu_poll();
} while (pmu_state != idle);
return 0;
}
arch_initcall(via_pmu_start);
/*
* This has to be done after pci_init, which is a subsys_initcall.
*/
static int __init via_pmu_dev_init(void)
{
if (vias == NULL)
return -ENODEV;
#ifdef CONFIG_PMAC_BACKLIGHT
/* Initialize backlight */
pmu_backlight_init();
#endif
#ifdef CONFIG_PPC32
if (of_machine_is_compatible("AAPL,3400/2400") ||
of_machine_is_compatible("AAPL,3500")) {
int mb = pmac_call_feature(PMAC_FTR_GET_MB_INFO,
NULL, PMAC_MB_INFO_MODEL, 0);
pmu_battery_count = 1;
if (mb == PMAC_TYPE_COMET)
pmu_batteries[0].flags |= PMU_BATT_TYPE_COMET;
else
pmu_batteries[0].flags |= PMU_BATT_TYPE_HOOPER;
} else if (of_machine_is_compatible("AAPL,PowerBook1998") ||
of_machine_is_compatible("PowerBook1,1")) {
pmu_battery_count = 2;
pmu_batteries[0].flags |= PMU_BATT_TYPE_SMART;
pmu_batteries[1].flags |= PMU_BATT_TYPE_SMART;
} else {
struct device_node* prim =
of_find_node_by_name(NULL, "power-mgt");
const u32 *prim_info = NULL;
if (prim)
prim_info = of_get_property(prim, "prim-info", NULL);
if (prim_info) {
/* Other stuffs here yet unknown */
pmu_battery_count = (prim_info[6] >> 16) & 0xff;
pmu_batteries[0].flags |= PMU_BATT_TYPE_SMART;
if (pmu_battery_count > 1)
pmu_batteries[1].flags |= PMU_BATT_TYPE_SMART;
}
of_node_put(prim);
}
#endif /* CONFIG_PPC32 */
/* Create /proc/pmu */
proc_pmu_root = proc_mkdir("pmu", NULL);
if (proc_pmu_root) {
long i;
for (i=0; i<pmu_battery_count; i++) {
char title[16];
sprintf(title, "battery_%ld", i);
proc_pmu_batt[i] = proc_create_data(title, 0, proc_pmu_root,
&pmu_battery_proc_fops, (void *)i);
}
proc_pmu_info = proc_create("info", 0, proc_pmu_root, &pmu_info_proc_fops);
proc_pmu_irqstats = proc_create("interrupts", 0, proc_pmu_root,
&pmu_irqstats_proc_fops);
proc_pmu_options = proc_create("options", 0600, proc_pmu_root,
&pmu_options_proc_fops);
}
return 0;
}
device_initcall(via_pmu_dev_init);
static int
init_pmu(void)
{
int timeout;
struct adb_request req;
out_8(&via[B], via[B] | TREQ); /* negate TREQ */
out_8(&via[DIRB], (via[DIRB] | TREQ) & ~TACK); /* TACK in, TREQ out */
pmu_request(&req, NULL, 2, PMU_SET_INTR_MASK, pmu_intr_mask);
timeout = 100000;
while (!req.complete) {
if (--timeout < 0) {
printk(KERN_ERR "init_pmu: no response from PMU\n");
return 0;
}
udelay(10);
pmu_poll();
}
/* ack all pending interrupts */
timeout = 100000;
interrupt_data[0][0] = 1;
while (interrupt_data[0][0] || pmu_state != idle) {
if (--timeout < 0) {
printk(KERN_ERR "init_pmu: timed out acking intrs\n");
return 0;
}
if (pmu_state == idle)
adb_int_pending = 1;
via_pmu_interrupt(0, NULL);
udelay(10);
}
/* Tell PMU we are ready. */
if (pmu_kind == PMU_KEYLARGO_BASED) {
pmu_request(&req, NULL, 2, PMU_SYSTEM_READY, 2);
while (!req.complete)
pmu_poll();
}
/* Read PMU version */
pmu_request(&req, NULL, 1, PMU_GET_VERSION);
pmu_wait_complete(&req);
if (req.reply_len > 0)
pmu_version = req.reply[0];
/* Read server mode setting */
if (pmu_kind == PMU_KEYLARGO_BASED) {
pmu_request(&req, NULL, 2, PMU_POWER_EVENTS,
PMU_PWR_GET_POWERUP_EVENTS);
pmu_wait_complete(&req);
if (req.reply_len == 2) {
if (req.reply[1] & PMU_PWR_WAKEUP_AC_INSERT)
option_server_mode = 1;
printk(KERN_INFO "via-pmu: Server Mode is %s\n",
option_server_mode ? "enabled" : "disabled");
}
}
return 1;
}
int
pmu_get_model(void)
{
return pmu_kind;
}
static void pmu_set_server_mode(int server_mode)
{
struct adb_request req;
if (pmu_kind != PMU_KEYLARGO_BASED)
return;
option_server_mode = server_mode;
pmu_request(&req, NULL, 2, PMU_POWER_EVENTS, PMU_PWR_GET_POWERUP_EVENTS);
pmu_wait_complete(&req);
if (req.reply_len < 2)
return;
if (server_mode)
pmu_request(&req, NULL, 4, PMU_POWER_EVENTS,
PMU_PWR_SET_POWERUP_EVENTS,
req.reply[0], PMU_PWR_WAKEUP_AC_INSERT);
else
pmu_request(&req, NULL, 4, PMU_POWER_EVENTS,
PMU_PWR_CLR_POWERUP_EVENTS,
req.reply[0], PMU_PWR_WAKEUP_AC_INSERT);
pmu_wait_complete(&req);
}
/* This new version of the code for 2400/3400/3500 powerbooks
* is inspired from the implementation in gkrellm-pmu
*/
static void
done_battery_state_ohare(struct adb_request* req)
{
/* format:
* [0] : flags
* 0x01 : AC indicator
* 0x02 : charging
* 0x04 : battery exist
* 0x08 :
* 0x10 :
* 0x20 : full charged
* 0x40 : pcharge reset
* 0x80 : battery exist
*
* [1][2] : battery voltage
* [3] : CPU temperature
* [4] : battery temperature
* [5] : current
* [6][7] : pcharge
* --tkoba
*/
unsigned int bat_flags = PMU_BATT_TYPE_HOOPER;
long pcharge, charge, vb, vmax, lmax;
long vmax_charging, vmax_charged;
long amperage, voltage, time, max;
int mb = pmac_call_feature(PMAC_FTR_GET_MB_INFO,
NULL, PMAC_MB_INFO_MODEL, 0);
if (req->reply[0] & 0x01)
pmu_power_flags |= PMU_PWR_AC_PRESENT;
else
pmu_power_flags &= ~PMU_PWR_AC_PRESENT;
if (mb == PMAC_TYPE_COMET) {
vmax_charged = 189;
vmax_charging = 213;
lmax = 6500;
} else {
vmax_charged = 330;
vmax_charging = 330;
lmax = 6500;
}
vmax = vmax_charged;
/* If battery installed */
if (req->reply[0] & 0x04) {
bat_flags |= PMU_BATT_PRESENT;
if (req->reply[0] & 0x02)
bat_flags |= PMU_BATT_CHARGING;
vb = (req->reply[1] << 8) | req->reply[2];
voltage = (vb * 265 + 72665) / 10;
amperage = req->reply[5];
if ((req->reply[0] & 0x01) == 0) {
if (amperage > 200)
vb += ((amperage - 200) * 15)/100;
} else if (req->reply[0] & 0x02) {
vb = (vb * 97) / 100;
vmax = vmax_charging;
}
charge = (100 * vb) / vmax;
if (req->reply[0] & 0x40) {
pcharge = (req->reply[6] << 8) + req->reply[7];
if (pcharge > lmax)
pcharge = lmax;
pcharge *= 100;
pcharge = 100 - pcharge / lmax;
if (pcharge < charge)
charge = pcharge;
}
if (amperage > 0)
time = (charge * 16440) / amperage;
else
time = 0;
max = 100;
amperage = -amperage;
} else
charge = max = amperage = voltage = time = 0;
pmu_batteries[pmu_cur_battery].flags = bat_flags;
pmu_batteries[pmu_cur_battery].charge = charge;
pmu_batteries[pmu_cur_battery].max_charge = max;
pmu_batteries[pmu_cur_battery].amperage = amperage;
pmu_batteries[pmu_cur_battery].voltage = voltage;
pmu_batteries[pmu_cur_battery].time_remaining = time;
clear_bit(0, &async_req_locks);
}
static void
done_battery_state_smart(struct adb_request* req)
{
/* format:
* [0] : format of this structure (known: 3,4,5)
* [1] : flags
*
* format 3 & 4:
*
* [2] : charge
* [3] : max charge
* [4] : current
* [5] : voltage
*
* format 5:
*
* [2][3] : charge
* [4][5] : max charge
* [6][7] : current
* [8][9] : voltage
*/
unsigned int bat_flags = PMU_BATT_TYPE_SMART;
int amperage;
unsigned int capa, max, voltage;
if (req->reply[1] & 0x01)
pmu_power_flags |= PMU_PWR_AC_PRESENT;
else
pmu_power_flags &= ~PMU_PWR_AC_PRESENT;
capa = max = amperage = voltage = 0;
if (req->reply[1] & 0x04) {
bat_flags |= PMU_BATT_PRESENT;
switch(req->reply[0]) {
case 3:
case 4: capa = req->reply[2];
max = req->reply[3];
amperage = *((signed char *)&req->reply[4]);
voltage = req->reply[5];
break;
case 5: capa = (req->reply[2] << 8) | req->reply[3];
max = (req->reply[4] << 8) | req->reply[5];
amperage = *((signed short *)&req->reply[6]);
voltage = (req->reply[8] << 8) | req->reply[9];
break;
default:
pr_warn("pmu.c: unrecognized battery info, "
"len: %d, %4ph\n", req->reply_len,
req->reply);
break;
}
}
if ((req->reply[1] & 0x01) && (amperage > 0))
bat_flags |= PMU_BATT_CHARGING;
pmu_batteries[pmu_cur_battery].flags = bat_flags;
pmu_batteries[pmu_cur_battery].charge = capa;
pmu_batteries[pmu_cur_battery].max_charge = max;
pmu_batteries[pmu_cur_battery].amperage = amperage;
pmu_batteries[pmu_cur_battery].voltage = voltage;
if (amperage) {
if ((req->reply[1] & 0x01) && (amperage > 0))
pmu_batteries[pmu_cur_battery].time_remaining
= ((max-capa) * 3600) / amperage;
else
pmu_batteries[pmu_cur_battery].time_remaining
= (capa * 3600) / (-amperage);
} else
pmu_batteries[pmu_cur_battery].time_remaining = 0;
pmu_cur_battery = (pmu_cur_battery + 1) % pmu_battery_count;
clear_bit(0, &async_req_locks);
}
static void
query_battery_state(void)
{
if (test_and_set_bit(0, &async_req_locks))
return;
if (pmu_kind == PMU_OHARE_BASED)
pmu_request(&batt_req, done_battery_state_ohare,
1, PMU_BATTERY_STATE);
else
pmu_request(&batt_req, done_battery_state_smart,
2, PMU_SMART_BATTERY_STATE, pmu_cur_battery+1);
}
static int pmu_info_proc_show(struct seq_file *m, void *v)
{
seq_printf(m, "PMU driver version : %d\n", PMU_DRIVER_VERSION);
seq_printf(m, "PMU firmware version : %02x\n", pmu_version);
seq_printf(m, "AC Power : %d\n",
((pmu_power_flags & PMU_PWR_AC_PRESENT) != 0) || pmu_battery_count == 0);
seq_printf(m, "Battery count : %d\n", pmu_battery_count);
return 0;
}
static int pmu_info_proc_open(struct inode *inode, struct file *file)
{
return single_open(file, pmu_info_proc_show, NULL);
}
static const struct file_operations pmu_info_proc_fops = {
.owner = THIS_MODULE,
.open = pmu_info_proc_open,
.read = seq_read,
.llseek = seq_lseek,
.release = single_release,
};
static int pmu_irqstats_proc_show(struct seq_file *m, void *v)
{
int i;
static const char *irq_names[] = {
"Total CB1 triggered events",
"Total GPIO1 triggered events",
"PC-Card eject button",
"Sound/Brightness button",
"ADB message",
"Battery state change",
"Environment interrupt",
"Tick timer",
"Ghost interrupt (zero len)",
"Empty interrupt (empty mask)",
"Max irqs in a row"
};
for (i=0; i<11; i++) {
seq_printf(m, " %2u: %10u (%s)\n",
i, pmu_irq_stats[i], irq_names[i]);
}
return 0;
}
static int pmu_irqstats_proc_open(struct inode *inode, struct file *file)
{
return single_open(file, pmu_irqstats_proc_show, NULL);
}
static const struct file_operations pmu_irqstats_proc_fops = {
.owner = THIS_MODULE,
.open = pmu_irqstats_proc_open,
.read = seq_read,
.llseek = seq_lseek,
.release = single_release,
};
static int pmu_battery_proc_show(struct seq_file *m, void *v)
{
long batnum = (long)m->private;
seq_putc(m, '\n');
seq_printf(m, "flags : %08x\n", pmu_batteries[batnum].flags);
seq_printf(m, "charge : %d\n", pmu_batteries[batnum].charge);
seq_printf(m, "max_charge : %d\n", pmu_batteries[batnum].max_charge);
seq_printf(m, "current : %d\n", pmu_batteries[batnum].amperage);
seq_printf(m, "voltage : %d\n", pmu_batteries[batnum].voltage);
seq_printf(m, "time rem. : %d\n", pmu_batteries[batnum].time_remaining);
return 0;
}
static int pmu_battery_proc_open(struct inode *inode, struct file *file)
{
return single_open(file, pmu_battery_proc_show, PDE_DATA(inode));
}
static const struct file_operations pmu_battery_proc_fops = {
.owner = THIS_MODULE,
.open = pmu_battery_proc_open,
.read = seq_read,
.llseek = seq_lseek,
.release = single_release,
};
static int pmu_options_proc_show(struct seq_file *m, void *v)
{
#if defined(CONFIG_SUSPEND) && defined(CONFIG_PPC32)
if (pmu_kind == PMU_KEYLARGO_BASED &&
pmac_call_feature(PMAC_FTR_SLEEP_STATE,NULL,0,-1) >= 0)
seq_printf(m, "lid_wakeup=%d\n", option_lid_wakeup);
#endif
if (pmu_kind == PMU_KEYLARGO_BASED)
seq_printf(m, "server_mode=%d\n", option_server_mode);
return 0;
}
static int pmu_options_proc_open(struct inode *inode, struct file *file)
{
return single_open(file, pmu_options_proc_show, NULL);
}
static ssize_t pmu_options_proc_write(struct file *file,
const char __user *buffer, size_t count, loff_t *pos)
{
char tmp[33];
char *label, *val;
size_t fcount = count;
if (!count)
return -EINVAL;
if (count > 32)
count = 32;
if (copy_from_user(tmp, buffer, count))
return -EFAULT;
tmp[count] = 0;
label = tmp;
while(*label == ' ')
label++;
val = label;
while(*val && (*val != '=')) {
if (*val == ' ')
*val = 0;
val++;
}
if ((*val) == 0)
return -EINVAL;
*(val++) = 0;
while(*val == ' ')
val++;
#if defined(CONFIG_SUSPEND) && defined(CONFIG_PPC32)
if (pmu_kind == PMU_KEYLARGO_BASED &&
pmac_call_feature(PMAC_FTR_SLEEP_STATE,NULL,0,-1) >= 0)
if (!strcmp(label, "lid_wakeup"))
option_lid_wakeup = ((*val) == '1');
#endif
if (pmu_kind == PMU_KEYLARGO_BASED && !strcmp(label, "server_mode")) {
int new_value;
new_value = ((*val) == '1');
if (new_value != option_server_mode)
pmu_set_server_mode(new_value);
}
return fcount;
}
static const struct file_operations pmu_options_proc_fops = {
.owner = THIS_MODULE,
.open = pmu_options_proc_open,
.read = seq_read,
.llseek = seq_lseek,
.release = single_release,
.write = pmu_options_proc_write,
};
#ifdef CONFIG_ADB
/* Send an ADB command */
static int pmu_send_request(struct adb_request *req, int sync)
{
int i, ret;
if ((vias == NULL) || (!pmu_fully_inited)) {
req->complete = 1;
return -ENXIO;
}
ret = -EINVAL;
switch (req->data[0]) {
case PMU_PACKET:
for (i = 0; i < req->nbytes - 1; ++i)
req->data[i] = req->data[i+1];
--req->nbytes;
if (pmu_data_len[req->data[0]][1] != 0) {
req->reply[0] = ADB_RET_OK;
req->reply_len = 1;
} else
req->reply_len = 0;
ret = pmu_queue_request(req);
break;
case CUDA_PACKET:
switch (req->data[1]) {
case CUDA_GET_TIME:
if (req->nbytes != 2)
break;
req->data[0] = PMU_READ_RTC;
req->nbytes = 1;
req->reply_len = 3;
req->reply[0] = CUDA_PACKET;
req->reply[1] = 0;
req->reply[2] = CUDA_GET_TIME;
ret = pmu_queue_request(req);
break;
case CUDA_SET_TIME:
if (req->nbytes != 6)
break;
req->data[0] = PMU_SET_RTC;
req->nbytes = 5;
for (i = 1; i <= 4; ++i)
req->data[i] = req->data[i+1];
req->reply_len = 3;
req->reply[0] = CUDA_PACKET;
req->reply[1] = 0;
req->reply[2] = CUDA_SET_TIME;
ret = pmu_queue_request(req);
break;
}
break;
case ADB_PACKET:
if (!pmu_has_adb)
return -ENXIO;
for (i = req->nbytes - 1; i > 1; --i)
req->data[i+2] = req->data[i];
req->data[3] = req->nbytes - 2;
req->data[2] = pmu_adb_flags;
/*req->data[1] = req->data[1];*/
req->data[0] = PMU_ADB_CMD;
req->nbytes += 2;
req->reply_expected = 1;
req->reply_len = 0;
ret = pmu_queue_request(req);
break;
}
if (ret) {
req->complete = 1;
return ret;
}
if (sync)
while (!req->complete)
pmu_poll();
return 0;
}
/* Enable/disable autopolling */
static int __pmu_adb_autopoll(int devs)
{
struct adb_request req;
if (devs) {
pmu_request(&req, NULL, 5, PMU_ADB_CMD, 0, 0x86,
adb_dev_map >> 8, adb_dev_map);
pmu_adb_flags = 2;
} else {
pmu_request(&req, NULL, 1, PMU_ADB_POLL_OFF);
pmu_adb_flags = 0;
}
while (!req.complete)
pmu_poll();
return 0;
}
static int pmu_adb_autopoll(int devs)
{
if ((vias == NULL) || (!pmu_fully_inited) || !pmu_has_adb)
return -ENXIO;
adb_dev_map = devs;
return __pmu_adb_autopoll(devs);
}
/* Reset the ADB bus */
static int pmu_adb_reset_bus(void)
{
struct adb_request req;
int save_autopoll = adb_dev_map;
if ((vias == NULL) || (!pmu_fully_inited) || !pmu_has_adb)
return -ENXIO;
/* anyone got a better idea?? */
__pmu_adb_autopoll(0);
req.nbytes = 4;
req.done = NULL;
req.data[0] = PMU_ADB_CMD;
req.data[1] = ADB_BUSRESET;
req.data[2] = 0;
req.data[3] = 0;
req.data[4] = 0;
req.reply_len = 0;
req.reply_expected = 1;
if (pmu_queue_request(&req) != 0) {
printk(KERN_ERR "pmu_adb_reset_bus: pmu_queue_request failed\n");
return -EIO;
}
pmu_wait_complete(&req);
if (save_autopoll != 0)
__pmu_adb_autopoll(save_autopoll);
return 0;
}
#endif /* CONFIG_ADB */
/* Construct and send a pmu request */
int
pmu_request(struct adb_request *req, void (*done)(struct adb_request *),
int nbytes, ...)
{
va_list list;
int i;
if (vias == NULL)
return -ENXIO;
if (nbytes < 0 || nbytes > 32) {
printk(KERN_ERR "pmu_request: bad nbytes (%d)\n", nbytes);
req->complete = 1;
return -EINVAL;
}
req->nbytes = nbytes;
req->done = done;
va_start(list, nbytes);
for (i = 0; i < nbytes; ++i)
req->data[i] = va_arg(list, int);
va_end(list);
req->reply_len = 0;
req->reply_expected = 0;
return pmu_queue_request(req);
}
int
pmu_queue_request(struct adb_request *req)
{
unsigned long flags;
int nsend;
if (via == NULL) {
req->complete = 1;
return -ENXIO;
}
if (req->nbytes <= 0) {
req->complete = 1;
return 0;
}
nsend = pmu_data_len[req->data[0]][0];
if (nsend >= 0 && req->nbytes != nsend + 1) {
req->complete = 1;
return -EINVAL;
}
req->next = NULL;
req->sent = 0;
req->complete = 0;
spin_lock_irqsave(&pmu_lock, flags);
if (current_req != 0) {
last_req->next = req;
last_req = req;
} else {
current_req = req;
last_req = req;
if (pmu_state == idle)
pmu_start();
}
spin_unlock_irqrestore(&pmu_lock, flags);
return 0;
}
static inline void
wait_for_ack(void)
{
/* Sightly increased the delay, I had one occurrence of the message
* reported
*/
int timeout = 4000;
while ((in_8(&via[B]) & TACK) == 0) {
if (--timeout < 0) {
printk(KERN_ERR "PMU not responding (!ack)\n");
return;
}
udelay(10);
}
}
/* New PMU seems to be very sensitive to those timings, so we make sure
* PCI is flushed immediately */
static inline void
send_byte(int x)
{
volatile unsigned char __iomem *v = via;
out_8(&v[ACR], in_8(&v[ACR]) | SR_OUT | SR_EXT);
out_8(&v[SR], x);
out_8(&v[B], in_8(&v[B]) & ~TREQ); /* assert TREQ */
(void)in_8(&v[B]);
}
static inline void
recv_byte(void)
{
volatile unsigned char __iomem *v = via;
out_8(&v[ACR], (in_8(&v[ACR]) & ~SR_OUT) | SR_EXT);
in_8(&v[SR]); /* resets SR */
out_8(&v[B], in_8(&v[B]) & ~TREQ);
(void)in_8(&v[B]);
}
static inline void
pmu_done(struct adb_request *req)
{
void (*done)(struct adb_request *) = req->done;
mb();
req->complete = 1;
/* Here, we assume that if the request has a done member, the
* struct request will survive to setting req->complete to 1
*/
if (done)
(*done)(req);
}
static void
pmu_start(void)
{
struct adb_request *req;
/* assert pmu_state == idle */
/* get the packet to send */
req = current_req;
if (req == 0 || pmu_state != idle
|| (/*req->reply_expected && */req_awaiting_reply))
return;
pmu_state = sending;
data_index = 1;
data_len = pmu_data_len[req->data[0]][0];
/* Sounds safer to make sure ACK is high before writing. This helped
* kill a problem with ADB and some iBooks
*/
wait_for_ack();
/* set the shift register to shift out and send a byte */
send_byte(req->data[0]);
}
void
pmu_poll(void)
{
if (!via)
return;
if (disable_poll)
return;
via_pmu_interrupt(0, NULL);
}
void
pmu_poll_adb(void)
{
if (!via)
return;
if (disable_poll)
return;
/* Kicks ADB read when PMU is suspended */
adb_int_pending = 1;
do {
via_pmu_interrupt(0, NULL);
} while (pmu_suspended && (adb_int_pending || pmu_state != idle
|| req_awaiting_reply));
}
void
pmu_wait_complete(struct adb_request *req)
{
if (!via)
return;
while((pmu_state != idle && pmu_state != locked) || !req->complete)
via_pmu_interrupt(0, NULL);
}
/* This function loops until the PMU is idle and prevents it from
* anwsering to ADB interrupts. pmu_request can still be called.
* This is done to avoid spurrious shutdowns when we know we'll have
* interrupts switched off for a long time
*/
void
pmu_suspend(void)
{
unsigned long flags;
if (!via)
return;
spin_lock_irqsave(&pmu_lock, flags);
pmu_suspended++;
if (pmu_suspended > 1) {
spin_unlock_irqrestore(&pmu_lock, flags);
return;
}
do {
spin_unlock_irqrestore(&pmu_lock, flags);
if (req_awaiting_reply)
adb_int_pending = 1;
via_pmu_interrupt(0, NULL);
spin_lock_irqsave(&pmu_lock, flags);
if (!adb_int_pending && pmu_state == idle && !req_awaiting_reply) {
if (gpio_irq >= 0)
disable_irq_nosync(gpio_irq);
out_8(&via[IER], CB1_INT | IER_CLR);
spin_unlock_irqrestore(&pmu_lock, flags);
break;
}
} while (1);
}
void
pmu_resume(void)
{
unsigned long flags;
if (!via || (pmu_suspended < 1))
return;
spin_lock_irqsave(&pmu_lock, flags);
pmu_suspended--;
if (pmu_suspended > 0) {
spin_unlock_irqrestore(&pmu_lock, flags);
return;
}
adb_int_pending = 1;
if (gpio_irq >= 0)
enable_irq(gpio_irq);
out_8(&via[IER], CB1_INT | IER_SET);
spin_unlock_irqrestore(&pmu_lock, flags);
pmu_poll();
}
/* Interrupt data could be the result data from an ADB cmd */
static void
pmu_handle_data(unsigned char *data, int len)
{
unsigned char ints, pirq;
int i = 0;
asleep = 0;
if (drop_interrupts || len < 1) {
adb_int_pending = 0;
pmu_irq_stats[8]++;
return;
}
/* Get PMU interrupt mask */
ints = data[0];
/* Record zero interrupts for stats */
if (ints == 0)
pmu_irq_stats[9]++;
/* Hack to deal with ADB autopoll flag */
if (ints & PMU_INT_ADB)
ints &= ~(PMU_INT_ADB_AUTO | PMU_INT_AUTO_SRQ_POLL);
next:
if (ints == 0) {
if (i > pmu_irq_stats[10])
pmu_irq_stats[10] = i;
return;
}
for (pirq = 0; pirq < 8; pirq++)
if (ints & (1 << pirq))
break;
pmu_irq_stats[pirq]++;
i++;
ints &= ~(1 << pirq);
/* Note: for some reason, we get an interrupt with len=1,
* data[0]==0 after each normal ADB interrupt, at least
* on the Pismo. Still investigating... --BenH
*/
if ((1 << pirq) & PMU_INT_ADB) {
if ((data[0] & PMU_INT_ADB_AUTO) == 0) {
struct adb_request *req = req_awaiting_reply;
if (req == 0) {
printk(KERN_ERR "PMU: extra ADB reply\n");
return;
}
req_awaiting_reply = NULL;
if (len <= 2)
req->reply_len = 0;
else {
memcpy(req->reply, data + 1, len - 1);
req->reply_len = len - 1;
}
pmu_done(req);
} else {
if (len == 4 && data[1] == 0x2c) {
extern int xmon_wants_key, xmon_adb_keycode;
if (xmon_wants_key) {
xmon_adb_keycode = data[2];
return;
}
}
#ifdef CONFIG_ADB
/*
* XXX On the [23]400 the PMU gives us an up
* event for keycodes 0x74 or 0x75 when the PC
* card eject buttons are released, so we
* ignore those events.
*/
if (!(pmu_kind == PMU_OHARE_BASED && len == 4
&& data[1] == 0x2c && data[3] == 0xff
&& (data[2] & ~1) == 0xf4))
adb_input(data+1, len-1, 1);
#endif /* CONFIG_ADB */
}
}
/* Sound/brightness button pressed */
else if ((1 << pirq) & PMU_INT_SNDBRT) {
#ifdef CONFIG_PMAC_BACKLIGHT
if (len == 3)
pmac_backlight_set_legacy_brightness_pmu(data[1] >> 4);
#endif
}
/* Tick interrupt */
else if ((1 << pirq) & PMU_INT_TICK) {
/* Environement or tick interrupt, query batteries */
if (pmu_battery_count) {
if ((--query_batt_timer) == 0) {
query_battery_state();
query_batt_timer = BATTERY_POLLING_COUNT;
}
}
}
else if ((1 << pirq) & PMU_INT_ENVIRONMENT) {
if (pmu_battery_count)
query_battery_state();
pmu_pass_intr(data, len);
/* len == 6 is probably a bad check. But how do I
* know what PMU versions send what events here? */
if (len == 6) {
via_pmu_event(PMU_EVT_POWER, !!(data[1]&8));
via_pmu_event(PMU_EVT_LID, data[1]&1);
}
} else {
pmu_pass_intr(data, len);
}
goto next;
}
static struct adb_request*
pmu_sr_intr(void)
{
struct adb_request *req;
int bite = 0;
if (via[B] & TREQ) {
printk(KERN_ERR "PMU: spurious SR intr (%x)\n", via[B]);
out_8(&via[IFR], SR_INT);
return NULL;
}
/* The ack may not yet be low when we get the interrupt */
while ((in_8(&via[B]) & TACK) != 0)
;
/* if reading grab the byte, and reset the interrupt */
if (pmu_state == reading || pmu_state == reading_intr)
bite = in_8(&via[SR]);
/* reset TREQ and wait for TACK to go high */
out_8(&via[B], in_8(&via[B]) | TREQ);
wait_for_ack();
switch (pmu_state) {
case sending:
req = current_req;
if (data_len < 0) {
data_len = req->nbytes - 1;
send_byte(data_len);
break;
}
if (data_index <= data_len) {
send_byte(req->data[data_index++]);
break;
}
req->sent = 1;
data_len = pmu_data_len[req->data[0]][1];
if (data_len == 0) {
pmu_state = idle;
current_req = req->next;
if (req->reply_expected)
req_awaiting_reply = req;
else
return req;
} else {
pmu_state = reading;
data_index = 0;
reply_ptr = req->reply + req->reply_len;
recv_byte();
}
break;
case intack:
data_index = 0;
data_len = -1;
pmu_state = reading_intr;
reply_ptr = interrupt_data[int_data_last];
recv_byte();
if (gpio_irq >= 0 && !gpio_irq_enabled) {
enable_irq(gpio_irq);
gpio_irq_enabled = 1;
}
break;
case reading:
case reading_intr:
if (data_len == -1) {
data_len = bite;
if (bite > 32)
printk(KERN_ERR "PMU: bad reply len %d\n", bite);
} else if (data_index < 32) {
reply_ptr[data_index++] = bite;
}
if (data_index < data_len) {
recv_byte();
break;
}
if (pmu_state == reading_intr) {
pmu_state = idle;
int_data_state[int_data_last] = int_data_ready;
interrupt_data_len[int_data_last] = data_len;
} else {
req = current_req;
/*
* For PMU sleep and freq change requests, we lock the
* PMU until it's explicitly unlocked. This avoids any
* spurrious event polling getting in
*/
current_req = req->next;
req->reply_len += data_index;
if (req->data[0] == PMU_SLEEP || req->data[0] == PMU_CPU_SPEED)
pmu_state = locked;
else
pmu_state = idle;
return req;
}
break;
default:
printk(KERN_ERR "via_pmu_interrupt: unknown state %d?\n",
pmu_state);
}
return NULL;
}
static irqreturn_t
via_pmu_interrupt(int irq, void *arg)
{
unsigned long flags;
int intr;
int nloop = 0;
int int_data = -1;
struct adb_request *req = NULL;
int handled = 0;
/* This is a bit brutal, we can probably do better */
spin_lock_irqsave(&pmu_lock, flags);
++disable_poll;
for (;;) {
intr = in_8(&via[IFR]) & (SR_INT | CB1_INT);
if (intr == 0)
break;
handled = 1;
if (++nloop > 1000) {
printk(KERN_DEBUG "PMU: stuck in intr loop, "
"intr=%x, ier=%x pmu_state=%d\n",
intr, in_8(&via[IER]), pmu_state);
break;
}
out_8(&via[IFR], intr);
if (intr & CB1_INT) {
adb_int_pending = 1;
pmu_irq_stats[0]++;
}
if (intr & SR_INT) {
req = pmu_sr_intr();
if (req)
break;
}
}
recheck:
if (pmu_state == idle) {
if (adb_int_pending) {
if (int_data_state[0] == int_data_empty)
int_data_last = 0;
else if (int_data_state[1] == int_data_empty)
int_data_last = 1;
else
goto no_free_slot;
pmu_state = intack;
int_data_state[int_data_last] = int_data_fill;
/* Sounds safer to make sure ACK is high before writing.
* This helped kill a problem with ADB and some iBooks
*/
wait_for_ack();
send_byte(PMU_INT_ACK);
adb_int_pending = 0;
} else if (current_req)
pmu_start();
}
no_free_slot:
/* Mark the oldest buffer for flushing */
if (int_data_state[!int_data_last] == int_data_ready) {
int_data_state[!int_data_last] = int_data_flush;
int_data = !int_data_last;
} else if (int_data_state[int_data_last] == int_data_ready) {
int_data_state[int_data_last] = int_data_flush;
int_data = int_data_last;
}
--disable_poll;
spin_unlock_irqrestore(&pmu_lock, flags);
/* Deal with completed PMU requests outside of the lock */
if (req) {
pmu_done(req);
req = NULL;
}
/* Deal with interrupt datas outside of the lock */
if (int_data >= 0) {
pmu_handle_data(interrupt_data[int_data], interrupt_data_len[int_data]);
spin_lock_irqsave(&pmu_lock, flags);
++disable_poll;
int_data_state[int_data] = int_data_empty;
int_data = -1;
goto recheck;
}
return IRQ_RETVAL(handled);
}
void
pmu_unlock(void)
{
unsigned long flags;
spin_lock_irqsave(&pmu_lock, flags);
if (pmu_state == locked)
pmu_state = idle;
adb_int_pending = 1;
spin_unlock_irqrestore(&pmu_lock, flags);
}
static irqreturn_t
gpio1_interrupt(int irq, void *arg)
{
unsigned long flags;
if ((in_8(gpio_reg + 0x9) & 0x02) == 0) {
spin_lock_irqsave(&pmu_lock, flags);
if (gpio_irq_enabled > 0) {
disable_irq_nosync(gpio_irq);
gpio_irq_enabled = 0;
}
pmu_irq_stats[1]++;
adb_int_pending = 1;
spin_unlock_irqrestore(&pmu_lock, flags);
via_pmu_interrupt(0, NULL);
return IRQ_HANDLED;
}
return IRQ_NONE;
}
void
pmu_enable_irled(int on)
{
struct adb_request req;
if (vias == NULL)
return ;
if (pmu_kind == PMU_KEYLARGO_BASED)
return ;
pmu_request(&req, NULL, 2, PMU_POWER_CTRL, PMU_POW_IRLED |
(on ? PMU_POW_ON : PMU_POW_OFF));
pmu_wait_complete(&req);
}
void
pmu_restart(void)
{
struct adb_request req;
if (via == NULL)
return;
local_irq_disable();
drop_interrupts = 1;
if (pmu_kind != PMU_KEYLARGO_BASED) {
pmu_request(&req, NULL, 2, PMU_SET_INTR_MASK, PMU_INT_ADB |
PMU_INT_TICK );
while(!req.complete)
pmu_poll();
}
pmu_request(&req, NULL, 1, PMU_RESET);
pmu_wait_complete(&req);
for (;;)
;
}
void
pmu_shutdown(void)
{
struct adb_request req;
if (via == NULL)
return;
local_irq_disable();
drop_interrupts = 1;
if (pmu_kind != PMU_KEYLARGO_BASED) {
pmu_request(&req, NULL, 2, PMU_SET_INTR_MASK, PMU_INT_ADB |
PMU_INT_TICK );
pmu_wait_complete(&req);
} else {
/* Disable server mode on shutdown or we'll just
* wake up again
*/
pmu_set_server_mode(0);
}
pmu_request(&req, NULL, 5, PMU_SHUTDOWN,
'M', 'A', 'T', 'T');
pmu_wait_complete(&req);
for (;;)
;
}
int
pmu_present(void)
{
return via != 0;
}
#if defined(CONFIG_SUSPEND) && defined(CONFIG_PPC32)
/*
* Put the powerbook to sleep.
*/
static u32 save_via[8];
static void
save_via_state(void)
{
save_via[0] = in_8(&via[ANH]);
save_via[1] = in_8(&via[DIRA]);
save_via[2] = in_8(&via[B]);
save_via[3] = in_8(&via[DIRB]);
save_via[4] = in_8(&via[PCR]);
save_via[5] = in_8(&via[ACR]);
save_via[6] = in_8(&via[T1CL]);
save_via[7] = in_8(&via[T1CH]);
}
static void
restore_via_state(void)
{
out_8(&via[ANH], save_via[0]);
out_8(&via[DIRA], save_via[1]);
out_8(&via[B], save_via[2]);
out_8(&via[DIRB], save_via[3]);
out_8(&via[PCR], save_via[4]);
out_8(&via[ACR], save_via[5]);
out_8(&via[T1CL], save_via[6]);
out_8(&via[T1CH], save_via[7]);
out_8(&via[IER], IER_CLR | 0x7f); /* disable all intrs */
out_8(&via[IFR], 0x7f); /* clear IFR */
out_8(&via[IER], IER_SET | SR_INT | CB1_INT);
}
#define GRACKLE_PM (1<<7)
#define GRACKLE_DOZE (1<<5)
#define GRACKLE_NAP (1<<4)
#define GRACKLE_SLEEP (1<<3)
static int powerbook_sleep_grackle(void)
{
unsigned long save_l2cr;
unsigned short pmcr1;
struct adb_request req;
struct pci_dev *grackle;
grackle = pci_get_bus_and_slot(0, 0);
if (!grackle)
return -ENODEV;
/* Turn off various things. Darwin does some retry tests here... */
pmu_request(&req, NULL, 2, PMU_POWER_CTRL0, PMU_POW0_OFF|PMU_POW0_HARD_DRIVE);
pmu_wait_complete(&req);
pmu_request(&req, NULL, 2, PMU_POWER_CTRL,
PMU_POW_OFF|PMU_POW_BACKLIGHT|PMU_POW_IRLED|PMU_POW_MEDIABAY);
pmu_wait_complete(&req);
/* For 750, save backside cache setting and disable it */
save_l2cr = _get_L2CR(); /* (returns -1 if not available) */
if (!__fake_sleep) {
/* Ask the PMU to put us to sleep */
pmu_request(&req, NULL, 5, PMU_SLEEP, 'M', 'A', 'T', 'T');
pmu_wait_complete(&req);
}
/* The VIA is supposed not to be restored correctly*/
save_via_state();
/* We shut down some HW */
pmac_call_feature(PMAC_FTR_SLEEP_STATE,NULL,0,1);
pci_read_config_word(grackle, 0x70, &pmcr1);
/* Apparently, MacOS uses NAP mode for Grackle ??? */
pmcr1 &= ~(GRACKLE_DOZE|GRACKLE_SLEEP);
pmcr1 |= GRACKLE_PM|GRACKLE_NAP;
pci_write_config_word(grackle, 0x70, pmcr1);
/* Call low-level ASM sleep handler */
if (__fake_sleep)
mdelay(5000);
else
low_sleep_handler();
/* We're awake again, stop grackle PM */
pci_read_config_word(grackle, 0x70, &pmcr1);
pmcr1 &= ~(GRACKLE_PM|GRACKLE_DOZE|GRACKLE_SLEEP|GRACKLE_NAP);
pci_write_config_word(grackle, 0x70, pmcr1);
pci_dev_put(grackle);
/* Make sure the PMU is idle */
pmac_call_feature(PMAC_FTR_SLEEP_STATE,NULL,0,0);
restore_via_state();
/* Restore L2 cache */
if (save_l2cr != 0xffffffff && (save_l2cr & L2CR_L2E) != 0)
_set_L2CR(save_l2cr);
/* Restore userland MMU context */
switch_mmu_context(NULL, current->active_mm);
/* Power things up */
pmu_unlock();
pmu_request(&req, NULL, 2, PMU_SET_INTR_MASK, pmu_intr_mask);
pmu_wait_complete(&req);
pmu_request(&req, NULL, 2, PMU_POWER_CTRL0,
PMU_POW0_ON|PMU_POW0_HARD_DRIVE);
pmu_wait_complete(&req);
pmu_request(&req, NULL, 2, PMU_POWER_CTRL,
PMU_POW_ON|PMU_POW_BACKLIGHT|PMU_POW_CHARGER|PMU_POW_IRLED|PMU_POW_MEDIABAY);
pmu_wait_complete(&req);
return 0;
}
static int
powerbook_sleep_Core99(void)
{
unsigned long save_l2cr;
unsigned long save_l3cr;
struct adb_request req;
if (pmac_call_feature(PMAC_FTR_SLEEP_STATE,NULL,0,-1) < 0) {
printk(KERN_ERR "Sleep mode not supported on this machine\n");
return -ENOSYS;
}
if (num_online_cpus() > 1 || cpu_is_offline(0))
return -EAGAIN;
/* Stop environment and ADB interrupts */
pmu_request(&req, NULL, 2, PMU_SET_INTR_MASK, 0);
pmu_wait_complete(&req);
/* Tell PMU what events will wake us up */
pmu_request(&req, NULL, 4, PMU_POWER_EVENTS, PMU_PWR_CLR_WAKEUP_EVENTS,
0xff, 0xff);
pmu_wait_complete(&req);
pmu_request(&req, NULL, 4, PMU_POWER_EVENTS, PMU_PWR_SET_WAKEUP_EVENTS,
0, PMU_PWR_WAKEUP_KEY |
(option_lid_wakeup ? PMU_PWR_WAKEUP_LID_OPEN : 0));
pmu_wait_complete(&req);
/* Save the state of the L2 and L3 caches */
save_l3cr = _get_L3CR(); /* (returns -1 if not available) */
save_l2cr = _get_L2CR(); /* (returns -1 if not available) */
if (!__fake_sleep) {
/* Ask the PMU to put us to sleep */
pmu_request(&req, NULL, 5, PMU_SLEEP, 'M', 'A', 'T', 'T');
pmu_wait_complete(&req);
}
/* The VIA is supposed not to be restored correctly*/
save_via_state();
/* Shut down various ASICs. There's a chance that we can no longer
* talk to the PMU after this, so I moved it to _after_ sending the
* sleep command to it. Still need to be checked.
*/
pmac_call_feature(PMAC_FTR_SLEEP_STATE, NULL, 0, 1);
/* Call low-level ASM sleep handler */
if (__fake_sleep)
mdelay(5000);
else
low_sleep_handler();
/* Restore Apple core ASICs state */
pmac_call_feature(PMAC_FTR_SLEEP_STATE, NULL, 0, 0);
/* Restore VIA */
restore_via_state();
/* tweak LPJ before cpufreq is there */
loops_per_jiffy *= 2;
/* Restore video */
pmac_call_early_video_resume();
/* Restore L2 cache */
if (save_l2cr != 0xffffffff && (save_l2cr & L2CR_L2E) != 0)
_set_L2CR(save_l2cr);
/* Restore L3 cache */
if (save_l3cr != 0xffffffff && (save_l3cr & L3CR_L3E) != 0)
_set_L3CR(save_l3cr);
/* Restore userland MMU context */
switch_mmu_context(NULL, current->active_mm);
/* Tell PMU we are ready */
pmu_unlock();
pmu_request(&req, NULL, 2, PMU_SYSTEM_READY, 2);
pmu_wait_complete(&req);
pmu_request(&req, NULL, 2, PMU_SET_INTR_MASK, pmu_intr_mask);
pmu_wait_complete(&req);
/* Restore LPJ, cpufreq will adjust the cpu frequency */
loops_per_jiffy /= 2;
return 0;
}
#define PB3400_MEM_CTRL 0xf8000000
#define PB3400_MEM_CTRL_SLEEP 0x70
static void __iomem *pb3400_mem_ctrl;
static void powerbook_sleep_init_3400(void)
{
/* map in the memory controller registers */
pb3400_mem_ctrl = ioremap(PB3400_MEM_CTRL, 0x100);
if (pb3400_mem_ctrl == NULL)
printk(KERN_WARNING "ioremap failed: sleep won't be possible");
}
static int powerbook_sleep_3400(void)
{
int i, x;
unsigned int hid0;
unsigned long msr;
struct adb_request sleep_req;
unsigned int __iomem *mem_ctrl_sleep;
if (pb3400_mem_ctrl == NULL)
return -ENOMEM;
mem_ctrl_sleep = pb3400_mem_ctrl + PB3400_MEM_CTRL_SLEEP;
/* Set the memory controller to keep the memory refreshed
while we're asleep */
for (i = 0x403f; i >= 0x4000; --i) {
out_be32(mem_ctrl_sleep, i);
do {
x = (in_be32(mem_ctrl_sleep) >> 16) & 0x3ff;
} while (x == 0);
if (x >= 0x100)
break;
}
/* Ask the PMU to put us to sleep */
pmu_request(&sleep_req, NULL, 5, PMU_SLEEP, 'M', 'A', 'T', 'T');
pmu_wait_complete(&sleep_req);
pmu_unlock();
pmac_call_feature(PMAC_FTR_SLEEP_STATE, NULL, 0, 1);
asleep = 1;
/* Put the CPU into sleep mode */
hid0 = mfspr(SPRN_HID0);
hid0 = (hid0 & ~(HID0_NAP | HID0_DOZE)) | HID0_SLEEP;
mtspr(SPRN_HID0, hid0);
local_irq_enable();
msr = mfmsr() | MSR_POW;
while (asleep) {
mb();
mtmsr(msr);
isync();
}
local_irq_disable();
/* OK, we're awake again, start restoring things */
out_be32(mem_ctrl_sleep, 0x3f);
pmac_call_feature(PMAC_FTR_SLEEP_STATE, NULL, 0, 0);
return 0;
}
#endif /* CONFIG_SUSPEND && CONFIG_PPC32 */
/*
* Support for /dev/pmu device
*/
#define RB_SIZE 0x10
struct pmu_private {
struct list_head list;
int rb_get;
int rb_put;
struct rb_entry {
unsigned short len;
unsigned char data[16];
} rb_buf[RB_SIZE];
wait_queue_head_t wait;
spinlock_t lock;
#if defined(CONFIG_INPUT_ADBHID) && defined(CONFIG_PMAC_BACKLIGHT)
int backlight_locker;
#endif
};
static LIST_HEAD(all_pmu_pvt);
static DEFINE_SPINLOCK(all_pvt_lock);
static void
pmu_pass_intr(unsigned char *data, int len)
{
struct pmu_private *pp;
struct list_head *list;
int i;
unsigned long flags;
if (len > sizeof(pp->rb_buf[0].data))
len = sizeof(pp->rb_buf[0].data);
spin_lock_irqsave(&all_pvt_lock, flags);
for (list = &all_pmu_pvt; (list = list->next) != &all_pmu_pvt; ) {
pp = list_entry(list, struct pmu_private, list);
spin_lock(&pp->lock);
i = pp->rb_put + 1;
if (i >= RB_SIZE)
i = 0;
if (i != pp->rb_get) {
struct rb_entry *rp = &pp->rb_buf[pp->rb_put];
rp->len = len;
memcpy(rp->data, data, len);
pp->rb_put = i;
wake_up_interruptible(&pp->wait);
}
spin_unlock(&pp->lock);
}
spin_unlock_irqrestore(&all_pvt_lock, flags);
}
static int
pmu_open(struct inode *inode, struct file *file)
{
struct pmu_private *pp;
unsigned long flags;
pp = kmalloc(sizeof(struct pmu_private), GFP_KERNEL);
if (pp == 0)
return -ENOMEM;
pp->rb_get = pp->rb_put = 0;
spin_lock_init(&pp->lock);
init_waitqueue_head(&pp->wait);
mutex_lock(&pmu_info_proc_mutex);
spin_lock_irqsave(&all_pvt_lock, flags);
#if defined(CONFIG_INPUT_ADBHID) && defined(CONFIG_PMAC_BACKLIGHT)
pp->backlight_locker = 0;
#endif
list_add(&pp->list, &all_pmu_pvt);
spin_unlock_irqrestore(&all_pvt_lock, flags);
file->private_data = pp;
mutex_unlock(&pmu_info_proc_mutex);
return 0;
}
static ssize_t
pmu_read(struct file *file, char __user *buf,
size_t count, loff_t *ppos)
{
struct pmu_private *pp = file->private_data;
DECLARE_WAITQUEUE(wait, current);
unsigned long flags;
int ret = 0;
if (count < 1 || pp == 0)
return -EINVAL;
if (!access_ok(VERIFY_WRITE, buf, count))
return -EFAULT;
spin_lock_irqsave(&pp->lock, flags);
add_wait_queue(&pp->wait, &wait);
current->state = TASK_INTERRUPTIBLE;
for (;;) {
ret = -EAGAIN;
if (pp->rb_get != pp->rb_put) {
int i = pp->rb_get;
struct rb_entry *rp = &pp->rb_buf[i];
ret = rp->len;
spin_unlock_irqrestore(&pp->lock, flags);
if (ret > count)
ret = count;
if (ret > 0 && copy_to_user(buf, rp->data, ret))
ret = -EFAULT;
if (++i >= RB_SIZE)
i = 0;
spin_lock_irqsave(&pp->lock, flags);
pp->rb_get = i;
}
if (ret >= 0)
break;
if (file->f_flags & O_NONBLOCK)
break;
ret = -ERESTARTSYS;
if (signal_pending(current))
break;
spin_unlock_irqrestore(&pp->lock, flags);
schedule();
spin_lock_irqsave(&pp->lock, flags);
}
current->state = TASK_RUNNING;
remove_wait_queue(&pp->wait, &wait);
spin_unlock_irqrestore(&pp->lock, flags);
return ret;
}
static ssize_t
pmu_write(struct file *file, const char __user *buf,
size_t count, loff_t *ppos)
{
return 0;
}
static unsigned int
pmu_fpoll(struct file *filp, poll_table *wait)
{
struct pmu_private *pp = filp->private_data;
unsigned int mask = 0;
unsigned long flags;
if (pp == 0)
return 0;
poll_wait(filp, &pp->wait, wait);
spin_lock_irqsave(&pp->lock, flags);
if (pp->rb_get != pp->rb_put)
mask |= POLLIN;
spin_unlock_irqrestore(&pp->lock, flags);
return mask;
}
static int
pmu_release(struct inode *inode, struct file *file)
{
struct pmu_private *pp = file->private_data;
unsigned long flags;
if (pp != 0) {
file->private_data = NULL;
spin_lock_irqsave(&all_pvt_lock, flags);
list_del(&pp->list);
spin_unlock_irqrestore(&all_pvt_lock, flags);
#if defined(CONFIG_INPUT_ADBHID) && defined(CONFIG_PMAC_BACKLIGHT)
if (pp->backlight_locker)
pmac_backlight_enable();
#endif
kfree(pp);
}
return 0;
}
#if defined(CONFIG_SUSPEND) && defined(CONFIG_PPC32)
static void pmac_suspend_disable_irqs(void)
{
/* Call platform functions marked "on sleep" */
pmac_pfunc_i2c_suspend();
pmac_pfunc_base_suspend();
}
static int powerbook_sleep(suspend_state_t state)
{
int error = 0;
/* Wait for completion of async requests */
while (!batt_req.complete)
pmu_poll();
/* Giveup the lazy FPU & vec so we don't have to back them
* up from the low level code
*/
enable_kernel_fp();
#ifdef CONFIG_ALTIVEC
if (cpu_has_feature(CPU_FTR_ALTIVEC))
enable_kernel_altivec();
#endif /* CONFIG_ALTIVEC */
switch (pmu_kind) {
case PMU_OHARE_BASED:
error = powerbook_sleep_3400();
break;
case PMU_HEATHROW_BASED:
case PMU_PADDINGTON_BASED:
error = powerbook_sleep_grackle();
break;
case PMU_KEYLARGO_BASED:
error = powerbook_sleep_Core99();
break;
default:
return -ENOSYS;
}
if (error)
return error;
mdelay(100);
return 0;
}
static void pmac_suspend_enable_irqs(void)
{
/* Force a poll of ADB interrupts */
adb_int_pending = 1;
via_pmu_interrupt(0, NULL);
mdelay(10);
/* Call platform functions marked "on wake" */
pmac_pfunc_base_resume();
pmac_pfunc_i2c_resume();
}
static int pmu_sleep_valid(suspend_state_t state)
{
return state == PM_SUSPEND_MEM
&& (pmac_call_feature(PMAC_FTR_SLEEP_STATE, NULL, 0, -1) >= 0);
}
static const struct platform_suspend_ops pmu_pm_ops = {
.enter = powerbook_sleep,
.valid = pmu_sleep_valid,
};
static int register_pmu_pm_ops(void)
{
if (pmu_kind == PMU_OHARE_BASED)
powerbook_sleep_init_3400();
ppc_md.suspend_disable_irqs = pmac_suspend_disable_irqs;
ppc_md.suspend_enable_irqs = pmac_suspend_enable_irqs;
suspend_set_ops(&pmu_pm_ops);
return 0;
}
device_initcall(register_pmu_pm_ops);
#endif
static int pmu_ioctl(struct file *filp,
u_int cmd, u_long arg)
{
__u32 __user *argp = (__u32 __user *)arg;
int error = -EINVAL;
switch (cmd) {
case PMU_IOC_SLEEP:
if (!capable(CAP_SYS_ADMIN))
return -EACCES;
return pm_suspend(PM_SUSPEND_MEM);
case PMU_IOC_CAN_SLEEP:
if (pmac_call_feature(PMAC_FTR_SLEEP_STATE, NULL, 0, -1) < 0)
return put_user(0, argp);
else
return put_user(1, argp);
#ifdef CONFIG_PMAC_BACKLIGHT_LEGACY
/* Compatibility ioctl's for backlight */
case PMU_IOC_GET_BACKLIGHT:
{
int brightness;
brightness = pmac_backlight_get_legacy_brightness();
if (brightness < 0)
return brightness;
else
return put_user(brightness, argp);
}
case PMU_IOC_SET_BACKLIGHT:
{
int brightness;
error = get_user(brightness, argp);
if (error)
return error;
return pmac_backlight_set_legacy_brightness(brightness);
}
#ifdef CONFIG_INPUT_ADBHID
case PMU_IOC_GRAB_BACKLIGHT: {
struct pmu_private *pp = filp->private_data;
if (pp->backlight_locker)
return 0;
pp->backlight_locker = 1;
pmac_backlight_disable();
return 0;
}
#endif /* CONFIG_INPUT_ADBHID */
#endif /* CONFIG_PMAC_BACKLIGHT_LEGACY */
case PMU_IOC_GET_MODEL:
return put_user(pmu_kind, argp);
case PMU_IOC_HAS_ADB:
return put_user(pmu_has_adb, argp);
}
return error;
}
static long pmu_unlocked_ioctl(struct file *filp,
u_int cmd, u_long arg)
{
int ret;
mutex_lock(&pmu_info_proc_mutex);
ret = pmu_ioctl(filp, cmd, arg);
mutex_unlock(&pmu_info_proc_mutex);
return ret;
}
#ifdef CONFIG_COMPAT
#define PMU_IOC_GET_BACKLIGHT32 _IOR('B', 1, compat_size_t)
#define PMU_IOC_SET_BACKLIGHT32 _IOW('B', 2, compat_size_t)
#define PMU_IOC_GET_MODEL32 _IOR('B', 3, compat_size_t)
#define PMU_IOC_HAS_ADB32 _IOR('B', 4, compat_size_t)
#define PMU_IOC_CAN_SLEEP32 _IOR('B', 5, compat_size_t)
#define PMU_IOC_GRAB_BACKLIGHT32 _IOR('B', 6, compat_size_t)
static long compat_pmu_ioctl (struct file *filp, u_int cmd, u_long arg)
{
switch (cmd) {
case PMU_IOC_SLEEP:
break;
case PMU_IOC_GET_BACKLIGHT32:
cmd = PMU_IOC_GET_BACKLIGHT;
break;
case PMU_IOC_SET_BACKLIGHT32:
cmd = PMU_IOC_SET_BACKLIGHT;
break;
case PMU_IOC_GET_MODEL32:
cmd = PMU_IOC_GET_MODEL;
break;
case PMU_IOC_HAS_ADB32:
cmd = PMU_IOC_HAS_ADB;
break;
case PMU_IOC_CAN_SLEEP32:
cmd = PMU_IOC_CAN_SLEEP;
break;
case PMU_IOC_GRAB_BACKLIGHT32:
cmd = PMU_IOC_GRAB_BACKLIGHT;
break;
default:
return -ENOIOCTLCMD;
}
return pmu_unlocked_ioctl(filp, cmd, (unsigned long)compat_ptr(arg));
}
#endif
static const struct file_operations pmu_device_fops = {
.read = pmu_read,
.write = pmu_write,
.poll = pmu_fpoll,
.unlocked_ioctl = pmu_unlocked_ioctl,
#ifdef CONFIG_COMPAT
.compat_ioctl = compat_pmu_ioctl,
#endif
.open = pmu_open,
.release = pmu_release,
.llseek = noop_llseek,
};
static struct miscdevice pmu_device = {
PMU_MINOR, "pmu", &pmu_device_fops
};
static int pmu_device_init(void)
{
if (!via)
return 0;
if (misc_register(&pmu_device) < 0)
printk(KERN_ERR "via-pmu: cannot register misc device.\n");
return 0;
}
device_initcall(pmu_device_init);
#ifdef DEBUG_SLEEP
static inline void
polled_handshake(volatile unsigned char __iomem *via)
{
via[B] &= ~TREQ; eieio();
while ((via[B] & TACK) != 0)
;
via[B] |= TREQ; eieio();
while ((via[B] & TACK) == 0)
;
}
static inline void
polled_send_byte(volatile unsigned char __iomem *via, int x)
{
via[ACR] |= SR_OUT | SR_EXT; eieio();
via[SR] = x; eieio();
polled_handshake(via);
}
static inline int
polled_recv_byte(volatile unsigned char __iomem *via)
{
int x;
via[ACR] = (via[ACR] & ~SR_OUT) | SR_EXT; eieio();
x = via[SR]; eieio();
polled_handshake(via);
x = via[SR]; eieio();
return x;
}
int
pmu_polled_request(struct adb_request *req)
{
unsigned long flags;
int i, l, c;
volatile unsigned char __iomem *v = via;
req->complete = 1;
c = req->data[0];
l = pmu_data_len[c][0];
if (l >= 0 && req->nbytes != l + 1)
return -EINVAL;
local_irq_save(flags);
while (pmu_state != idle)
pmu_poll();
while ((via[B] & TACK) == 0)
;
polled_send_byte(v, c);
if (l < 0) {
l = req->nbytes - 1;
polled_send_byte(v, l);
}
for (i = 1; i <= l; ++i)
polled_send_byte(v, req->data[i]);
l = pmu_data_len[c][1];
if (l < 0)
l = polled_recv_byte(v);
for (i = 0; i < l; ++i)
req->reply[i + req->reply_len] = polled_recv_byte(v);
if (req->done)
(*req->done)(req);
local_irq_restore(flags);
return 0;
}
/* N.B. This doesn't work on the 3400 */
void pmu_blink(int n)
{
struct adb_request req;
memset(&req, 0, sizeof(req));
for (; n > 0; --n) {
req.nbytes = 4;
req.done = NULL;
req.data[0] = 0xee;
req.data[1] = 4;
req.data[2] = 0;
req.data[3] = 1;
req.reply[0] = ADB_RET_OK;
req.reply_len = 1;
req.reply_expected = 0;
pmu_polled_request(&req);
mdelay(50);
req.nbytes = 4;
req.done = NULL;
req.data[0] = 0xee;
req.data[1] = 4;
req.data[2] = 0;
req.data[3] = 0;
req.reply[0] = ADB_RET_OK;
req.reply_len = 1;
req.reply_expected = 0;
pmu_polled_request(&req);
mdelay(50);
}
mdelay(50);
}
#endif /* DEBUG_SLEEP */
#if defined(CONFIG_SUSPEND) && defined(CONFIG_PPC32)
int pmu_sys_suspended;
static int pmu_syscore_suspend(void)
{
/* Suspend PMU event interrupts */
pmu_suspend();
pmu_sys_suspended = 1;
#ifdef CONFIG_PMAC_BACKLIGHT
/* Tell backlight code not to muck around with the chip anymore */
pmu_backlight_set_sleep(1);
#endif
return 0;
}
static void pmu_syscore_resume(void)
{
struct adb_request req;
if (!pmu_sys_suspended)
return;
/* Tell PMU we are ready */
pmu_request(&req, NULL, 2, PMU_SYSTEM_READY, 2);
pmu_wait_complete(&req);
#ifdef CONFIG_PMAC_BACKLIGHT
/* Tell backlight code it can use the chip again */
pmu_backlight_set_sleep(0);
#endif
/* Resume PMU event interrupts */
pmu_resume();
pmu_sys_suspended = 0;
}
static struct syscore_ops pmu_syscore_ops = {
.suspend = pmu_syscore_suspend,
.resume = pmu_syscore_resume,
};
static int pmu_syscore_register(void)
{
register_syscore_ops(&pmu_syscore_ops);
return 0;
}
subsys_initcall(pmu_syscore_register);
#endif /* CONFIG_SUSPEND && CONFIG_PPC32 */
EXPORT_SYMBOL(pmu_request);
EXPORT_SYMBOL(pmu_queue_request);
EXPORT_SYMBOL(pmu_poll);
EXPORT_SYMBOL(pmu_poll_adb);
EXPORT_SYMBOL(pmu_wait_complete);
EXPORT_SYMBOL(pmu_suspend);
EXPORT_SYMBOL(pmu_resume);
EXPORT_SYMBOL(pmu_unlock);
#if defined(CONFIG_PPC32)
EXPORT_SYMBOL(pmu_enable_irled);
EXPORT_SYMBOL(pmu_battery_count);
EXPORT_SYMBOL(pmu_batteries);
EXPORT_SYMBOL(pmu_power_flags);
#endif /* CONFIG_SUSPEND && CONFIG_PPC32 */