kernel-ark/mm/huge_memory.c
Linus Torvalds 65b97fb730 Merge branch 'next' of git://git.kernel.org/pub/scm/linux/kernel/git/benh/powerpc
Pull powerpc updates from Ben Herrenschmidt:
 "This is the powerpc changes for the 3.11 merge window.  In addition to
  the usual bug fixes and small updates, the main highlights are:

   - Support for transparent huge pages by Aneesh Kumar for 64-bit
     server processors.  This allows the use of 16M pages as transparent
     huge pages on kernels compiled with a 64K base page size.

   - Base VFIO support for KVM on power by Alexey Kardashevskiy

   - Wiring up of our nvram to the pstore infrastructure, including
     putting compressed oopses in there by Aruna Balakrishnaiah

   - Move, rework and improve our "EEH" (basically PCI error handling
     and recovery) infrastructure.  It is no longer specific to pseries
     but is now usable by the new "powernv" platform as well (no
     hypervisor) by Gavin Shan.

   - I fixed some bugs in our math-emu instruction decoding and made it
     usable to emulate some optional FP instructions on processors with
     hard FP that lack them (such as fsqrt on Freescale embedded
     processors).

   - Support for Power8 "Event Based Branch" facility by Michael
     Ellerman.  This facility allows what is basically "userspace
     interrupts" for performance monitor events.

   - A bunch of Transactional Memory vs.  Signals bug fixes and HW
     breakpoint/watchpoint fixes by Michael Neuling.

  And more ...  I appologize in advance if I've failed to highlight
  something that somebody deemed worth it."

* 'next' of git://git.kernel.org/pub/scm/linux/kernel/git/benh/powerpc: (156 commits)
  pstore: Add hsize argument in write_buf call of pstore_ftrace_call
  powerpc/fsl: add MPIC timer wakeup support
  powerpc/mpic: create mpic subsystem object
  powerpc/mpic: add global timer support
  powerpc/mpic: add irq_set_wake support
  powerpc/85xx: enable coreint for all the 64bit boards
  powerpc/8xx: Erroneous double irq_eoi() on CPM IRQ in MPC8xx
  powerpc/fsl: Enable CONFIG_E1000E in mpc85xx_smp_defconfig
  powerpc/mpic: Add get_version API both for internal and external use
  powerpc: Handle both new style and old style reserve maps
  powerpc/hw_brk: Fix off by one error when validating DAWR region end
  powerpc/pseries: Support compression of oops text via pstore
  powerpc/pseries: Re-organise the oops compression code
  pstore: Pass header size in the pstore write callback
  powerpc/powernv: Fix iommu initialization again
  powerpc/pseries: Inform the hypervisor we are using EBB regs
  powerpc/perf: Add power8 EBB support
  powerpc/perf: Core EBB support for 64-bit book3s
  powerpc/perf: Drop MMCRA from thread_struct
  powerpc/perf: Don't enable if we have zero events
  ...
2013-07-04 10:29:23 -07:00

2800 lines
74 KiB
C

/*
* Copyright (C) 2009 Red Hat, Inc.
*
* This work is licensed under the terms of the GNU GPL, version 2. See
* the COPYING file in the top-level directory.
*/
#include <linux/mm.h>
#include <linux/sched.h>
#include <linux/highmem.h>
#include <linux/hugetlb.h>
#include <linux/mmu_notifier.h>
#include <linux/rmap.h>
#include <linux/swap.h>
#include <linux/shrinker.h>
#include <linux/mm_inline.h>
#include <linux/kthread.h>
#include <linux/khugepaged.h>
#include <linux/freezer.h>
#include <linux/mman.h>
#include <linux/pagemap.h>
#include <linux/migrate.h>
#include <linux/hashtable.h>
#include <asm/tlb.h>
#include <asm/pgalloc.h>
#include "internal.h"
/*
* By default transparent hugepage support is enabled for all mappings
* and khugepaged scans all mappings. Defrag is only invoked by
* khugepaged hugepage allocations and by page faults inside
* MADV_HUGEPAGE regions to avoid the risk of slowing down short lived
* allocations.
*/
unsigned long transparent_hugepage_flags __read_mostly =
#ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
(1<<TRANSPARENT_HUGEPAGE_FLAG)|
#endif
#ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
(1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
#endif
(1<<TRANSPARENT_HUGEPAGE_DEFRAG_FLAG)|
(1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
(1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
/* default scan 8*512 pte (or vmas) every 30 second */
static unsigned int khugepaged_pages_to_scan __read_mostly = HPAGE_PMD_NR*8;
static unsigned int khugepaged_pages_collapsed;
static unsigned int khugepaged_full_scans;
static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
/* during fragmentation poll the hugepage allocator once every minute */
static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
static struct task_struct *khugepaged_thread __read_mostly;
static DEFINE_MUTEX(khugepaged_mutex);
static DEFINE_SPINLOCK(khugepaged_mm_lock);
static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
/*
* default collapse hugepages if there is at least one pte mapped like
* it would have happened if the vma was large enough during page
* fault.
*/
static unsigned int khugepaged_max_ptes_none __read_mostly = HPAGE_PMD_NR-1;
static int khugepaged(void *none);
static int khugepaged_slab_init(void);
#define MM_SLOTS_HASH_BITS 10
static __read_mostly DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
static struct kmem_cache *mm_slot_cache __read_mostly;
/**
* struct mm_slot - hash lookup from mm to mm_slot
* @hash: hash collision list
* @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head
* @mm: the mm that this information is valid for
*/
struct mm_slot {
struct hlist_node hash;
struct list_head mm_node;
struct mm_struct *mm;
};
/**
* struct khugepaged_scan - cursor for scanning
* @mm_head: the head of the mm list to scan
* @mm_slot: the current mm_slot we are scanning
* @address: the next address inside that to be scanned
*
* There is only the one khugepaged_scan instance of this cursor structure.
*/
struct khugepaged_scan {
struct list_head mm_head;
struct mm_slot *mm_slot;
unsigned long address;
};
static struct khugepaged_scan khugepaged_scan = {
.mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
};
static int set_recommended_min_free_kbytes(void)
{
struct zone *zone;
int nr_zones = 0;
unsigned long recommended_min;
if (!khugepaged_enabled())
return 0;
for_each_populated_zone(zone)
nr_zones++;
/* Make sure at least 2 hugepages are free for MIGRATE_RESERVE */
recommended_min = pageblock_nr_pages * nr_zones * 2;
/*
* Make sure that on average at least two pageblocks are almost free
* of another type, one for a migratetype to fall back to and a
* second to avoid subsequent fallbacks of other types There are 3
* MIGRATE_TYPES we care about.
*/
recommended_min += pageblock_nr_pages * nr_zones *
MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
/* don't ever allow to reserve more than 5% of the lowmem */
recommended_min = min(recommended_min,
(unsigned long) nr_free_buffer_pages() / 20);
recommended_min <<= (PAGE_SHIFT-10);
if (recommended_min > min_free_kbytes)
min_free_kbytes = recommended_min;
setup_per_zone_wmarks();
return 0;
}
late_initcall(set_recommended_min_free_kbytes);
static int start_khugepaged(void)
{
int err = 0;
if (khugepaged_enabled()) {
if (!khugepaged_thread)
khugepaged_thread = kthread_run(khugepaged, NULL,
"khugepaged");
if (unlikely(IS_ERR(khugepaged_thread))) {
printk(KERN_ERR
"khugepaged: kthread_run(khugepaged) failed\n");
err = PTR_ERR(khugepaged_thread);
khugepaged_thread = NULL;
}
if (!list_empty(&khugepaged_scan.mm_head))
wake_up_interruptible(&khugepaged_wait);
set_recommended_min_free_kbytes();
} else if (khugepaged_thread) {
kthread_stop(khugepaged_thread);
khugepaged_thread = NULL;
}
return err;
}
static atomic_t huge_zero_refcount;
static struct page *huge_zero_page __read_mostly;
static inline bool is_huge_zero_page(struct page *page)
{
return ACCESS_ONCE(huge_zero_page) == page;
}
static inline bool is_huge_zero_pmd(pmd_t pmd)
{
return is_huge_zero_page(pmd_page(pmd));
}
static struct page *get_huge_zero_page(void)
{
struct page *zero_page;
retry:
if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
return ACCESS_ONCE(huge_zero_page);
zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
HPAGE_PMD_ORDER);
if (!zero_page) {
count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
return NULL;
}
count_vm_event(THP_ZERO_PAGE_ALLOC);
preempt_disable();
if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
preempt_enable();
__free_page(zero_page);
goto retry;
}
/* We take additional reference here. It will be put back by shrinker */
atomic_set(&huge_zero_refcount, 2);
preempt_enable();
return ACCESS_ONCE(huge_zero_page);
}
static void put_huge_zero_page(void)
{
/*
* Counter should never go to zero here. Only shrinker can put
* last reference.
*/
BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
}
static int shrink_huge_zero_page(struct shrinker *shrink,
struct shrink_control *sc)
{
if (!sc->nr_to_scan)
/* we can free zero page only if last reference remains */
return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
struct page *zero_page = xchg(&huge_zero_page, NULL);
BUG_ON(zero_page == NULL);
__free_page(zero_page);
}
return 0;
}
static struct shrinker huge_zero_page_shrinker = {
.shrink = shrink_huge_zero_page,
.seeks = DEFAULT_SEEKS,
};
#ifdef CONFIG_SYSFS
static ssize_t double_flag_show(struct kobject *kobj,
struct kobj_attribute *attr, char *buf,
enum transparent_hugepage_flag enabled,
enum transparent_hugepage_flag req_madv)
{
if (test_bit(enabled, &transparent_hugepage_flags)) {
VM_BUG_ON(test_bit(req_madv, &transparent_hugepage_flags));
return sprintf(buf, "[always] madvise never\n");
} else if (test_bit(req_madv, &transparent_hugepage_flags))
return sprintf(buf, "always [madvise] never\n");
else
return sprintf(buf, "always madvise [never]\n");
}
static ssize_t double_flag_store(struct kobject *kobj,
struct kobj_attribute *attr,
const char *buf, size_t count,
enum transparent_hugepage_flag enabled,
enum transparent_hugepage_flag req_madv)
{
if (!memcmp("always", buf,
min(sizeof("always")-1, count))) {
set_bit(enabled, &transparent_hugepage_flags);
clear_bit(req_madv, &transparent_hugepage_flags);
} else if (!memcmp("madvise", buf,
min(sizeof("madvise")-1, count))) {
clear_bit(enabled, &transparent_hugepage_flags);
set_bit(req_madv, &transparent_hugepage_flags);
} else if (!memcmp("never", buf,
min(sizeof("never")-1, count))) {
clear_bit(enabled, &transparent_hugepage_flags);
clear_bit(req_madv, &transparent_hugepage_flags);
} else
return -EINVAL;
return count;
}
static ssize_t enabled_show(struct kobject *kobj,
struct kobj_attribute *attr, char *buf)
{
return double_flag_show(kobj, attr, buf,
TRANSPARENT_HUGEPAGE_FLAG,
TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
}
static ssize_t enabled_store(struct kobject *kobj,
struct kobj_attribute *attr,
const char *buf, size_t count)
{
ssize_t ret;
ret = double_flag_store(kobj, attr, buf, count,
TRANSPARENT_HUGEPAGE_FLAG,
TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
if (ret > 0) {
int err;
mutex_lock(&khugepaged_mutex);
err = start_khugepaged();
mutex_unlock(&khugepaged_mutex);
if (err)
ret = err;
}
return ret;
}
static struct kobj_attribute enabled_attr =
__ATTR(enabled, 0644, enabled_show, enabled_store);
static ssize_t single_flag_show(struct kobject *kobj,
struct kobj_attribute *attr, char *buf,
enum transparent_hugepage_flag flag)
{
return sprintf(buf, "%d\n",
!!test_bit(flag, &transparent_hugepage_flags));
}
static ssize_t single_flag_store(struct kobject *kobj,
struct kobj_attribute *attr,
const char *buf, size_t count,
enum transparent_hugepage_flag flag)
{
unsigned long value;
int ret;
ret = kstrtoul(buf, 10, &value);
if (ret < 0)
return ret;
if (value > 1)
return -EINVAL;
if (value)
set_bit(flag, &transparent_hugepage_flags);
else
clear_bit(flag, &transparent_hugepage_flags);
return count;
}
/*
* Currently defrag only disables __GFP_NOWAIT for allocation. A blind
* __GFP_REPEAT is too aggressive, it's never worth swapping tons of
* memory just to allocate one more hugepage.
*/
static ssize_t defrag_show(struct kobject *kobj,
struct kobj_attribute *attr, char *buf)
{
return double_flag_show(kobj, attr, buf,
TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
}
static ssize_t defrag_store(struct kobject *kobj,
struct kobj_attribute *attr,
const char *buf, size_t count)
{
return double_flag_store(kobj, attr, buf, count,
TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
}
static struct kobj_attribute defrag_attr =
__ATTR(defrag, 0644, defrag_show, defrag_store);
static ssize_t use_zero_page_show(struct kobject *kobj,
struct kobj_attribute *attr, char *buf)
{
return single_flag_show(kobj, attr, buf,
TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
}
static ssize_t use_zero_page_store(struct kobject *kobj,
struct kobj_attribute *attr, const char *buf, size_t count)
{
return single_flag_store(kobj, attr, buf, count,
TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
}
static struct kobj_attribute use_zero_page_attr =
__ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
#ifdef CONFIG_DEBUG_VM
static ssize_t debug_cow_show(struct kobject *kobj,
struct kobj_attribute *attr, char *buf)
{
return single_flag_show(kobj, attr, buf,
TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
}
static ssize_t debug_cow_store(struct kobject *kobj,
struct kobj_attribute *attr,
const char *buf, size_t count)
{
return single_flag_store(kobj, attr, buf, count,
TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
}
static struct kobj_attribute debug_cow_attr =
__ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
#endif /* CONFIG_DEBUG_VM */
static struct attribute *hugepage_attr[] = {
&enabled_attr.attr,
&defrag_attr.attr,
&use_zero_page_attr.attr,
#ifdef CONFIG_DEBUG_VM
&debug_cow_attr.attr,
#endif
NULL,
};
static struct attribute_group hugepage_attr_group = {
.attrs = hugepage_attr,
};
static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
struct kobj_attribute *attr,
char *buf)
{
return sprintf(buf, "%u\n", khugepaged_scan_sleep_millisecs);
}
static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
struct kobj_attribute *attr,
const char *buf, size_t count)
{
unsigned long msecs;
int err;
err = strict_strtoul(buf, 10, &msecs);
if (err || msecs > UINT_MAX)
return -EINVAL;
khugepaged_scan_sleep_millisecs = msecs;
wake_up_interruptible(&khugepaged_wait);
return count;
}
static struct kobj_attribute scan_sleep_millisecs_attr =
__ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show,
scan_sleep_millisecs_store);
static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
struct kobj_attribute *attr,
char *buf)
{
return sprintf(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
}
static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
struct kobj_attribute *attr,
const char *buf, size_t count)
{
unsigned long msecs;
int err;
err = strict_strtoul(buf, 10, &msecs);
if (err || msecs > UINT_MAX)
return -EINVAL;
khugepaged_alloc_sleep_millisecs = msecs;
wake_up_interruptible(&khugepaged_wait);
return count;
}
static struct kobj_attribute alloc_sleep_millisecs_attr =
__ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show,
alloc_sleep_millisecs_store);
static ssize_t pages_to_scan_show(struct kobject *kobj,
struct kobj_attribute *attr,
char *buf)
{
return sprintf(buf, "%u\n", khugepaged_pages_to_scan);
}
static ssize_t pages_to_scan_store(struct kobject *kobj,
struct kobj_attribute *attr,
const char *buf, size_t count)
{
int err;
unsigned long pages;
err = strict_strtoul(buf, 10, &pages);
if (err || !pages || pages > UINT_MAX)
return -EINVAL;
khugepaged_pages_to_scan = pages;
return count;
}
static struct kobj_attribute pages_to_scan_attr =
__ATTR(pages_to_scan, 0644, pages_to_scan_show,
pages_to_scan_store);
static ssize_t pages_collapsed_show(struct kobject *kobj,
struct kobj_attribute *attr,
char *buf)
{
return sprintf(buf, "%u\n", khugepaged_pages_collapsed);
}
static struct kobj_attribute pages_collapsed_attr =
__ATTR_RO(pages_collapsed);
static ssize_t full_scans_show(struct kobject *kobj,
struct kobj_attribute *attr,
char *buf)
{
return sprintf(buf, "%u\n", khugepaged_full_scans);
}
static struct kobj_attribute full_scans_attr =
__ATTR_RO(full_scans);
static ssize_t khugepaged_defrag_show(struct kobject *kobj,
struct kobj_attribute *attr, char *buf)
{
return single_flag_show(kobj, attr, buf,
TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
}
static ssize_t khugepaged_defrag_store(struct kobject *kobj,
struct kobj_attribute *attr,
const char *buf, size_t count)
{
return single_flag_store(kobj, attr, buf, count,
TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
}
static struct kobj_attribute khugepaged_defrag_attr =
__ATTR(defrag, 0644, khugepaged_defrag_show,
khugepaged_defrag_store);
/*
* max_ptes_none controls if khugepaged should collapse hugepages over
* any unmapped ptes in turn potentially increasing the memory
* footprint of the vmas. When max_ptes_none is 0 khugepaged will not
* reduce the available free memory in the system as it
* runs. Increasing max_ptes_none will instead potentially reduce the
* free memory in the system during the khugepaged scan.
*/
static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj,
struct kobj_attribute *attr,
char *buf)
{
return sprintf(buf, "%u\n", khugepaged_max_ptes_none);
}
static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj,
struct kobj_attribute *attr,
const char *buf, size_t count)
{
int err;
unsigned long max_ptes_none;
err = strict_strtoul(buf, 10, &max_ptes_none);
if (err || max_ptes_none > HPAGE_PMD_NR-1)
return -EINVAL;
khugepaged_max_ptes_none = max_ptes_none;
return count;
}
static struct kobj_attribute khugepaged_max_ptes_none_attr =
__ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show,
khugepaged_max_ptes_none_store);
static struct attribute *khugepaged_attr[] = {
&khugepaged_defrag_attr.attr,
&khugepaged_max_ptes_none_attr.attr,
&pages_to_scan_attr.attr,
&pages_collapsed_attr.attr,
&full_scans_attr.attr,
&scan_sleep_millisecs_attr.attr,
&alloc_sleep_millisecs_attr.attr,
NULL,
};
static struct attribute_group khugepaged_attr_group = {
.attrs = khugepaged_attr,
.name = "khugepaged",
};
static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
{
int err;
*hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
if (unlikely(!*hugepage_kobj)) {
printk(KERN_ERR "hugepage: failed to create transparent hugepage kobject\n");
return -ENOMEM;
}
err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
if (err) {
printk(KERN_ERR "hugepage: failed to register transparent hugepage group\n");
goto delete_obj;
}
err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
if (err) {
printk(KERN_ERR "hugepage: failed to register transparent hugepage group\n");
goto remove_hp_group;
}
return 0;
remove_hp_group:
sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
delete_obj:
kobject_put(*hugepage_kobj);
return err;
}
static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
{
sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
kobject_put(hugepage_kobj);
}
#else
static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
{
return 0;
}
static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
{
}
#endif /* CONFIG_SYSFS */
static int __init hugepage_init(void)
{
int err;
struct kobject *hugepage_kobj;
if (!has_transparent_hugepage()) {
transparent_hugepage_flags = 0;
return -EINVAL;
}
err = hugepage_init_sysfs(&hugepage_kobj);
if (err)
return err;
err = khugepaged_slab_init();
if (err)
goto out;
register_shrinker(&huge_zero_page_shrinker);
/*
* By default disable transparent hugepages on smaller systems,
* where the extra memory used could hurt more than TLB overhead
* is likely to save. The admin can still enable it through /sys.
*/
if (totalram_pages < (512 << (20 - PAGE_SHIFT)))
transparent_hugepage_flags = 0;
start_khugepaged();
return 0;
out:
hugepage_exit_sysfs(hugepage_kobj);
return err;
}
module_init(hugepage_init)
static int __init setup_transparent_hugepage(char *str)
{
int ret = 0;
if (!str)
goto out;
if (!strcmp(str, "always")) {
set_bit(TRANSPARENT_HUGEPAGE_FLAG,
&transparent_hugepage_flags);
clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
&transparent_hugepage_flags);
ret = 1;
} else if (!strcmp(str, "madvise")) {
clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
&transparent_hugepage_flags);
set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
&transparent_hugepage_flags);
ret = 1;
} else if (!strcmp(str, "never")) {
clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
&transparent_hugepage_flags);
clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
&transparent_hugepage_flags);
ret = 1;
}
out:
if (!ret)
printk(KERN_WARNING
"transparent_hugepage= cannot parse, ignored\n");
return ret;
}
__setup("transparent_hugepage=", setup_transparent_hugepage);
pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
{
if (likely(vma->vm_flags & VM_WRITE))
pmd = pmd_mkwrite(pmd);
return pmd;
}
static inline pmd_t mk_huge_pmd(struct page *page, struct vm_area_struct *vma)
{
pmd_t entry;
entry = mk_pmd(page, vma->vm_page_prot);
entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
entry = pmd_mkhuge(entry);
return entry;
}
static int __do_huge_pmd_anonymous_page(struct mm_struct *mm,
struct vm_area_struct *vma,
unsigned long haddr, pmd_t *pmd,
struct page *page)
{
pgtable_t pgtable;
VM_BUG_ON(!PageCompound(page));
pgtable = pte_alloc_one(mm, haddr);
if (unlikely(!pgtable))
return VM_FAULT_OOM;
clear_huge_page(page, haddr, HPAGE_PMD_NR);
/*
* The memory barrier inside __SetPageUptodate makes sure that
* clear_huge_page writes become visible before the set_pmd_at()
* write.
*/
__SetPageUptodate(page);
spin_lock(&mm->page_table_lock);
if (unlikely(!pmd_none(*pmd))) {
spin_unlock(&mm->page_table_lock);
mem_cgroup_uncharge_page(page);
put_page(page);
pte_free(mm, pgtable);
} else {
pmd_t entry;
entry = mk_huge_pmd(page, vma);
page_add_new_anon_rmap(page, vma, haddr);
pgtable_trans_huge_deposit(mm, pmd, pgtable);
set_pmd_at(mm, haddr, pmd, entry);
add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
mm->nr_ptes++;
spin_unlock(&mm->page_table_lock);
}
return 0;
}
static inline gfp_t alloc_hugepage_gfpmask(int defrag, gfp_t extra_gfp)
{
return (GFP_TRANSHUGE & ~(defrag ? 0 : __GFP_WAIT)) | extra_gfp;
}
static inline struct page *alloc_hugepage_vma(int defrag,
struct vm_area_struct *vma,
unsigned long haddr, int nd,
gfp_t extra_gfp)
{
return alloc_pages_vma(alloc_hugepage_gfpmask(defrag, extra_gfp),
HPAGE_PMD_ORDER, vma, haddr, nd);
}
#ifndef CONFIG_NUMA
static inline struct page *alloc_hugepage(int defrag)
{
return alloc_pages(alloc_hugepage_gfpmask(defrag, 0),
HPAGE_PMD_ORDER);
}
#endif
static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
struct page *zero_page)
{
pmd_t entry;
if (!pmd_none(*pmd))
return false;
entry = mk_pmd(zero_page, vma->vm_page_prot);
entry = pmd_wrprotect(entry);
entry = pmd_mkhuge(entry);
pgtable_trans_huge_deposit(mm, pmd, pgtable);
set_pmd_at(mm, haddr, pmd, entry);
mm->nr_ptes++;
return true;
}
int do_huge_pmd_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
unsigned long address, pmd_t *pmd,
unsigned int flags)
{
struct page *page;
unsigned long haddr = address & HPAGE_PMD_MASK;
pte_t *pte;
if (haddr >= vma->vm_start && haddr + HPAGE_PMD_SIZE <= vma->vm_end) {
if (unlikely(anon_vma_prepare(vma)))
return VM_FAULT_OOM;
if (unlikely(khugepaged_enter(vma)))
return VM_FAULT_OOM;
if (!(flags & FAULT_FLAG_WRITE) &&
transparent_hugepage_use_zero_page()) {
pgtable_t pgtable;
struct page *zero_page;
bool set;
pgtable = pte_alloc_one(mm, haddr);
if (unlikely(!pgtable))
return VM_FAULT_OOM;
zero_page = get_huge_zero_page();
if (unlikely(!zero_page)) {
pte_free(mm, pgtable);
count_vm_event(THP_FAULT_FALLBACK);
goto out;
}
spin_lock(&mm->page_table_lock);
set = set_huge_zero_page(pgtable, mm, vma, haddr, pmd,
zero_page);
spin_unlock(&mm->page_table_lock);
if (!set) {
pte_free(mm, pgtable);
put_huge_zero_page();
}
return 0;
}
page = alloc_hugepage_vma(transparent_hugepage_defrag(vma),
vma, haddr, numa_node_id(), 0);
if (unlikely(!page)) {
count_vm_event(THP_FAULT_FALLBACK);
goto out;
}
count_vm_event(THP_FAULT_ALLOC);
if (unlikely(mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))) {
put_page(page);
goto out;
}
if (unlikely(__do_huge_pmd_anonymous_page(mm, vma, haddr, pmd,
page))) {
mem_cgroup_uncharge_page(page);
put_page(page);
goto out;
}
return 0;
}
out:
/*
* Use __pte_alloc instead of pte_alloc_map, because we can't
* run pte_offset_map on the pmd, if an huge pmd could
* materialize from under us from a different thread.
*/
if (unlikely(pmd_none(*pmd)) &&
unlikely(__pte_alloc(mm, vma, pmd, address)))
return VM_FAULT_OOM;
/* if an huge pmd materialized from under us just retry later */
if (unlikely(pmd_trans_huge(*pmd)))
return 0;
/*
* A regular pmd is established and it can't morph into a huge pmd
* from under us anymore at this point because we hold the mmap_sem
* read mode and khugepaged takes it in write mode. So now it's
* safe to run pte_offset_map().
*/
pte = pte_offset_map(pmd, address);
return handle_pte_fault(mm, vma, address, pte, pmd, flags);
}
int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
struct vm_area_struct *vma)
{
struct page *src_page;
pmd_t pmd;
pgtable_t pgtable;
int ret;
ret = -ENOMEM;
pgtable = pte_alloc_one(dst_mm, addr);
if (unlikely(!pgtable))
goto out;
spin_lock(&dst_mm->page_table_lock);
spin_lock_nested(&src_mm->page_table_lock, SINGLE_DEPTH_NESTING);
ret = -EAGAIN;
pmd = *src_pmd;
if (unlikely(!pmd_trans_huge(pmd))) {
pte_free(dst_mm, pgtable);
goto out_unlock;
}
/*
* mm->page_table_lock is enough to be sure that huge zero pmd is not
* under splitting since we don't split the page itself, only pmd to
* a page table.
*/
if (is_huge_zero_pmd(pmd)) {
struct page *zero_page;
bool set;
/*
* get_huge_zero_page() will never allocate a new page here,
* since we already have a zero page to copy. It just takes a
* reference.
*/
zero_page = get_huge_zero_page();
set = set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
zero_page);
BUG_ON(!set); /* unexpected !pmd_none(dst_pmd) */
ret = 0;
goto out_unlock;
}
if (unlikely(pmd_trans_splitting(pmd))) {
/* split huge page running from under us */
spin_unlock(&src_mm->page_table_lock);
spin_unlock(&dst_mm->page_table_lock);
pte_free(dst_mm, pgtable);
wait_split_huge_page(vma->anon_vma, src_pmd); /* src_vma */
goto out;
}
src_page = pmd_page(pmd);
VM_BUG_ON(!PageHead(src_page));
get_page(src_page);
page_dup_rmap(src_page);
add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
pmdp_set_wrprotect(src_mm, addr, src_pmd);
pmd = pmd_mkold(pmd_wrprotect(pmd));
pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
set_pmd_at(dst_mm, addr, dst_pmd, pmd);
dst_mm->nr_ptes++;
ret = 0;
out_unlock:
spin_unlock(&src_mm->page_table_lock);
spin_unlock(&dst_mm->page_table_lock);
out:
return ret;
}
void huge_pmd_set_accessed(struct mm_struct *mm,
struct vm_area_struct *vma,
unsigned long address,
pmd_t *pmd, pmd_t orig_pmd,
int dirty)
{
pmd_t entry;
unsigned long haddr;
spin_lock(&mm->page_table_lock);
if (unlikely(!pmd_same(*pmd, orig_pmd)))
goto unlock;
entry = pmd_mkyoung(orig_pmd);
haddr = address & HPAGE_PMD_MASK;
if (pmdp_set_access_flags(vma, haddr, pmd, entry, dirty))
update_mmu_cache_pmd(vma, address, pmd);
unlock:
spin_unlock(&mm->page_table_lock);
}
static int do_huge_pmd_wp_zero_page_fallback(struct mm_struct *mm,
struct vm_area_struct *vma, unsigned long address,
pmd_t *pmd, pmd_t orig_pmd, unsigned long haddr)
{
pgtable_t pgtable;
pmd_t _pmd;
struct page *page;
int i, ret = 0;
unsigned long mmun_start; /* For mmu_notifiers */
unsigned long mmun_end; /* For mmu_notifiers */
page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
if (!page) {
ret |= VM_FAULT_OOM;
goto out;
}
if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL)) {
put_page(page);
ret |= VM_FAULT_OOM;
goto out;
}
clear_user_highpage(page, address);
__SetPageUptodate(page);
mmun_start = haddr;
mmun_end = haddr + HPAGE_PMD_SIZE;
mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
spin_lock(&mm->page_table_lock);
if (unlikely(!pmd_same(*pmd, orig_pmd)))
goto out_free_page;
pmdp_clear_flush(vma, haddr, pmd);
/* leave pmd empty until pte is filled */
pgtable = pgtable_trans_huge_withdraw(mm, pmd);
pmd_populate(mm, &_pmd, pgtable);
for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
pte_t *pte, entry;
if (haddr == (address & PAGE_MASK)) {
entry = mk_pte(page, vma->vm_page_prot);
entry = maybe_mkwrite(pte_mkdirty(entry), vma);
page_add_new_anon_rmap(page, vma, haddr);
} else {
entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
entry = pte_mkspecial(entry);
}
pte = pte_offset_map(&_pmd, haddr);
VM_BUG_ON(!pte_none(*pte));
set_pte_at(mm, haddr, pte, entry);
pte_unmap(pte);
}
smp_wmb(); /* make pte visible before pmd */
pmd_populate(mm, pmd, pgtable);
spin_unlock(&mm->page_table_lock);
put_huge_zero_page();
inc_mm_counter(mm, MM_ANONPAGES);
mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
ret |= VM_FAULT_WRITE;
out:
return ret;
out_free_page:
spin_unlock(&mm->page_table_lock);
mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
mem_cgroup_uncharge_page(page);
put_page(page);
goto out;
}
static int do_huge_pmd_wp_page_fallback(struct mm_struct *mm,
struct vm_area_struct *vma,
unsigned long address,
pmd_t *pmd, pmd_t orig_pmd,
struct page *page,
unsigned long haddr)
{
pgtable_t pgtable;
pmd_t _pmd;
int ret = 0, i;
struct page **pages;
unsigned long mmun_start; /* For mmu_notifiers */
unsigned long mmun_end; /* For mmu_notifiers */
pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR,
GFP_KERNEL);
if (unlikely(!pages)) {
ret |= VM_FAULT_OOM;
goto out;
}
for (i = 0; i < HPAGE_PMD_NR; i++) {
pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE |
__GFP_OTHER_NODE,
vma, address, page_to_nid(page));
if (unlikely(!pages[i] ||
mem_cgroup_newpage_charge(pages[i], mm,
GFP_KERNEL))) {
if (pages[i])
put_page(pages[i]);
mem_cgroup_uncharge_start();
while (--i >= 0) {
mem_cgroup_uncharge_page(pages[i]);
put_page(pages[i]);
}
mem_cgroup_uncharge_end();
kfree(pages);
ret |= VM_FAULT_OOM;
goto out;
}
}
for (i = 0; i < HPAGE_PMD_NR; i++) {
copy_user_highpage(pages[i], page + i,
haddr + PAGE_SIZE * i, vma);
__SetPageUptodate(pages[i]);
cond_resched();
}
mmun_start = haddr;
mmun_end = haddr + HPAGE_PMD_SIZE;
mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
spin_lock(&mm->page_table_lock);
if (unlikely(!pmd_same(*pmd, orig_pmd)))
goto out_free_pages;
VM_BUG_ON(!PageHead(page));
pmdp_clear_flush(vma, haddr, pmd);
/* leave pmd empty until pte is filled */
pgtable = pgtable_trans_huge_withdraw(mm, pmd);
pmd_populate(mm, &_pmd, pgtable);
for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
pte_t *pte, entry;
entry = mk_pte(pages[i], vma->vm_page_prot);
entry = maybe_mkwrite(pte_mkdirty(entry), vma);
page_add_new_anon_rmap(pages[i], vma, haddr);
pte = pte_offset_map(&_pmd, haddr);
VM_BUG_ON(!pte_none(*pte));
set_pte_at(mm, haddr, pte, entry);
pte_unmap(pte);
}
kfree(pages);
smp_wmb(); /* make pte visible before pmd */
pmd_populate(mm, pmd, pgtable);
page_remove_rmap(page);
spin_unlock(&mm->page_table_lock);
mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
ret |= VM_FAULT_WRITE;
put_page(page);
out:
return ret;
out_free_pages:
spin_unlock(&mm->page_table_lock);
mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
mem_cgroup_uncharge_start();
for (i = 0; i < HPAGE_PMD_NR; i++) {
mem_cgroup_uncharge_page(pages[i]);
put_page(pages[i]);
}
mem_cgroup_uncharge_end();
kfree(pages);
goto out;
}
int do_huge_pmd_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
unsigned long address, pmd_t *pmd, pmd_t orig_pmd)
{
int ret = 0;
struct page *page = NULL, *new_page;
unsigned long haddr;
unsigned long mmun_start; /* For mmu_notifiers */
unsigned long mmun_end; /* For mmu_notifiers */
VM_BUG_ON(!vma->anon_vma);
haddr = address & HPAGE_PMD_MASK;
if (is_huge_zero_pmd(orig_pmd))
goto alloc;
spin_lock(&mm->page_table_lock);
if (unlikely(!pmd_same(*pmd, orig_pmd)))
goto out_unlock;
page = pmd_page(orig_pmd);
VM_BUG_ON(!PageCompound(page) || !PageHead(page));
if (page_mapcount(page) == 1) {
pmd_t entry;
entry = pmd_mkyoung(orig_pmd);
entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
if (pmdp_set_access_flags(vma, haddr, pmd, entry, 1))
update_mmu_cache_pmd(vma, address, pmd);
ret |= VM_FAULT_WRITE;
goto out_unlock;
}
get_page(page);
spin_unlock(&mm->page_table_lock);
alloc:
if (transparent_hugepage_enabled(vma) &&
!transparent_hugepage_debug_cow())
new_page = alloc_hugepage_vma(transparent_hugepage_defrag(vma),
vma, haddr, numa_node_id(), 0);
else
new_page = NULL;
if (unlikely(!new_page)) {
count_vm_event(THP_FAULT_FALLBACK);
if (is_huge_zero_pmd(orig_pmd)) {
ret = do_huge_pmd_wp_zero_page_fallback(mm, vma,
address, pmd, orig_pmd, haddr);
} else {
ret = do_huge_pmd_wp_page_fallback(mm, vma, address,
pmd, orig_pmd, page, haddr);
if (ret & VM_FAULT_OOM)
split_huge_page(page);
put_page(page);
}
goto out;
}
count_vm_event(THP_FAULT_ALLOC);
if (unlikely(mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))) {
put_page(new_page);
if (page) {
split_huge_page(page);
put_page(page);
}
ret |= VM_FAULT_OOM;
goto out;
}
if (is_huge_zero_pmd(orig_pmd))
clear_huge_page(new_page, haddr, HPAGE_PMD_NR);
else
copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
__SetPageUptodate(new_page);
mmun_start = haddr;
mmun_end = haddr + HPAGE_PMD_SIZE;
mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
spin_lock(&mm->page_table_lock);
if (page)
put_page(page);
if (unlikely(!pmd_same(*pmd, orig_pmd))) {
spin_unlock(&mm->page_table_lock);
mem_cgroup_uncharge_page(new_page);
put_page(new_page);
goto out_mn;
} else {
pmd_t entry;
entry = mk_huge_pmd(new_page, vma);
pmdp_clear_flush(vma, haddr, pmd);
page_add_new_anon_rmap(new_page, vma, haddr);
set_pmd_at(mm, haddr, pmd, entry);
update_mmu_cache_pmd(vma, address, pmd);
if (is_huge_zero_pmd(orig_pmd)) {
add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
put_huge_zero_page();
} else {
VM_BUG_ON(!PageHead(page));
page_remove_rmap(page);
put_page(page);
}
ret |= VM_FAULT_WRITE;
}
spin_unlock(&mm->page_table_lock);
out_mn:
mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
out:
return ret;
out_unlock:
spin_unlock(&mm->page_table_lock);
return ret;
}
struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
unsigned long addr,
pmd_t *pmd,
unsigned int flags)
{
struct mm_struct *mm = vma->vm_mm;
struct page *page = NULL;
assert_spin_locked(&mm->page_table_lock);
if (flags & FOLL_WRITE && !pmd_write(*pmd))
goto out;
/* Avoid dumping huge zero page */
if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
return ERR_PTR(-EFAULT);
page = pmd_page(*pmd);
VM_BUG_ON(!PageHead(page));
if (flags & FOLL_TOUCH) {
pmd_t _pmd;
/*
* We should set the dirty bit only for FOLL_WRITE but
* for now the dirty bit in the pmd is meaningless.
* And if the dirty bit will become meaningful and
* we'll only set it with FOLL_WRITE, an atomic
* set_bit will be required on the pmd to set the
* young bit, instead of the current set_pmd_at.
*/
_pmd = pmd_mkyoung(pmd_mkdirty(*pmd));
if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
pmd, _pmd, 1))
update_mmu_cache_pmd(vma, addr, pmd);
}
if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
if (page->mapping && trylock_page(page)) {
lru_add_drain();
if (page->mapping)
mlock_vma_page(page);
unlock_page(page);
}
}
page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
VM_BUG_ON(!PageCompound(page));
if (flags & FOLL_GET)
get_page_foll(page);
out:
return page;
}
/* NUMA hinting page fault entry point for trans huge pmds */
int do_huge_pmd_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
unsigned long addr, pmd_t pmd, pmd_t *pmdp)
{
struct page *page;
unsigned long haddr = addr & HPAGE_PMD_MASK;
int target_nid;
int current_nid = -1;
bool migrated;
spin_lock(&mm->page_table_lock);
if (unlikely(!pmd_same(pmd, *pmdp)))
goto out_unlock;
page = pmd_page(pmd);
get_page(page);
current_nid = page_to_nid(page);
count_vm_numa_event(NUMA_HINT_FAULTS);
if (current_nid == numa_node_id())
count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
target_nid = mpol_misplaced(page, vma, haddr);
if (target_nid == -1) {
put_page(page);
goto clear_pmdnuma;
}
/* Acquire the page lock to serialise THP migrations */
spin_unlock(&mm->page_table_lock);
lock_page(page);
/* Confirm the PTE did not while locked */
spin_lock(&mm->page_table_lock);
if (unlikely(!pmd_same(pmd, *pmdp))) {
unlock_page(page);
put_page(page);
goto out_unlock;
}
spin_unlock(&mm->page_table_lock);
/* Migrate the THP to the requested node */
migrated = migrate_misplaced_transhuge_page(mm, vma,
pmdp, pmd, addr, page, target_nid);
if (!migrated)
goto check_same;
task_numa_fault(target_nid, HPAGE_PMD_NR, true);
return 0;
check_same:
spin_lock(&mm->page_table_lock);
if (unlikely(!pmd_same(pmd, *pmdp)))
goto out_unlock;
clear_pmdnuma:
pmd = pmd_mknonnuma(pmd);
set_pmd_at(mm, haddr, pmdp, pmd);
VM_BUG_ON(pmd_numa(*pmdp));
update_mmu_cache_pmd(vma, addr, pmdp);
out_unlock:
spin_unlock(&mm->page_table_lock);
if (current_nid != -1)
task_numa_fault(current_nid, HPAGE_PMD_NR, false);
return 0;
}
int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
pmd_t *pmd, unsigned long addr)
{
int ret = 0;
if (__pmd_trans_huge_lock(pmd, vma) == 1) {
struct page *page;
pgtable_t pgtable;
pmd_t orig_pmd;
/*
* For architectures like ppc64 we look at deposited pgtable
* when calling pmdp_get_and_clear. So do the
* pgtable_trans_huge_withdraw after finishing pmdp related
* operations.
*/
orig_pmd = pmdp_get_and_clear(tlb->mm, addr, pmd);
tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
pgtable = pgtable_trans_huge_withdraw(tlb->mm, pmd);
if (is_huge_zero_pmd(orig_pmd)) {
tlb->mm->nr_ptes--;
spin_unlock(&tlb->mm->page_table_lock);
put_huge_zero_page();
} else {
page = pmd_page(orig_pmd);
page_remove_rmap(page);
VM_BUG_ON(page_mapcount(page) < 0);
add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
VM_BUG_ON(!PageHead(page));
tlb->mm->nr_ptes--;
spin_unlock(&tlb->mm->page_table_lock);
tlb_remove_page(tlb, page);
}
pte_free(tlb->mm, pgtable);
ret = 1;
}
return ret;
}
int mincore_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
unsigned long addr, unsigned long end,
unsigned char *vec)
{
int ret = 0;
if (__pmd_trans_huge_lock(pmd, vma) == 1) {
/*
* All logical pages in the range are present
* if backed by a huge page.
*/
spin_unlock(&vma->vm_mm->page_table_lock);
memset(vec, 1, (end - addr) >> PAGE_SHIFT);
ret = 1;
}
return ret;
}
int move_huge_pmd(struct vm_area_struct *vma, struct vm_area_struct *new_vma,
unsigned long old_addr,
unsigned long new_addr, unsigned long old_end,
pmd_t *old_pmd, pmd_t *new_pmd)
{
int ret = 0;
pmd_t pmd;
struct mm_struct *mm = vma->vm_mm;
if ((old_addr & ~HPAGE_PMD_MASK) ||
(new_addr & ~HPAGE_PMD_MASK) ||
old_end - old_addr < HPAGE_PMD_SIZE ||
(new_vma->vm_flags & VM_NOHUGEPAGE))
goto out;
/*
* The destination pmd shouldn't be established, free_pgtables()
* should have release it.
*/
if (WARN_ON(!pmd_none(*new_pmd))) {
VM_BUG_ON(pmd_trans_huge(*new_pmd));
goto out;
}
ret = __pmd_trans_huge_lock(old_pmd, vma);
if (ret == 1) {
pmd = pmdp_get_and_clear(mm, old_addr, old_pmd);
VM_BUG_ON(!pmd_none(*new_pmd));
set_pmd_at(mm, new_addr, new_pmd, pmd_mksoft_dirty(pmd));
spin_unlock(&mm->page_table_lock);
}
out:
return ret;
}
int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
unsigned long addr, pgprot_t newprot, int prot_numa)
{
struct mm_struct *mm = vma->vm_mm;
int ret = 0;
if (__pmd_trans_huge_lock(pmd, vma) == 1) {
pmd_t entry;
entry = pmdp_get_and_clear(mm, addr, pmd);
if (!prot_numa) {
entry = pmd_modify(entry, newprot);
BUG_ON(pmd_write(entry));
} else {
struct page *page = pmd_page(*pmd);
/* only check non-shared pages */
if (page_mapcount(page) == 1 &&
!pmd_numa(*pmd)) {
entry = pmd_mknuma(entry);
}
}
set_pmd_at(mm, addr, pmd, entry);
spin_unlock(&vma->vm_mm->page_table_lock);
ret = 1;
}
return ret;
}
/*
* Returns 1 if a given pmd maps a stable (not under splitting) thp.
* Returns -1 if it maps a thp under splitting. Returns 0 otherwise.
*
* Note that if it returns 1, this routine returns without unlocking page
* table locks. So callers must unlock them.
*/
int __pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
{
spin_lock(&vma->vm_mm->page_table_lock);
if (likely(pmd_trans_huge(*pmd))) {
if (unlikely(pmd_trans_splitting(*pmd))) {
spin_unlock(&vma->vm_mm->page_table_lock);
wait_split_huge_page(vma->anon_vma, pmd);
return -1;
} else {
/* Thp mapped by 'pmd' is stable, so we can
* handle it as it is. */
return 1;
}
}
spin_unlock(&vma->vm_mm->page_table_lock);
return 0;
}
pmd_t *page_check_address_pmd(struct page *page,
struct mm_struct *mm,
unsigned long address,
enum page_check_address_pmd_flag flag)
{
pmd_t *pmd, *ret = NULL;
if (address & ~HPAGE_PMD_MASK)
goto out;
pmd = mm_find_pmd(mm, address);
if (!pmd)
goto out;
if (pmd_none(*pmd))
goto out;
if (pmd_page(*pmd) != page)
goto out;
/*
* split_vma() may create temporary aliased mappings. There is
* no risk as long as all huge pmd are found and have their
* splitting bit set before __split_huge_page_refcount
* runs. Finding the same huge pmd more than once during the
* same rmap walk is not a problem.
*/
if (flag == PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG &&
pmd_trans_splitting(*pmd))
goto out;
if (pmd_trans_huge(*pmd)) {
VM_BUG_ON(flag == PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG &&
!pmd_trans_splitting(*pmd));
ret = pmd;
}
out:
return ret;
}
static int __split_huge_page_splitting(struct page *page,
struct vm_area_struct *vma,
unsigned long address)
{
struct mm_struct *mm = vma->vm_mm;
pmd_t *pmd;
int ret = 0;
/* For mmu_notifiers */
const unsigned long mmun_start = address;
const unsigned long mmun_end = address + HPAGE_PMD_SIZE;
mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
spin_lock(&mm->page_table_lock);
pmd = page_check_address_pmd(page, mm, address,
PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG);
if (pmd) {
/*
* We can't temporarily set the pmd to null in order
* to split it, the pmd must remain marked huge at all
* times or the VM won't take the pmd_trans_huge paths
* and it won't wait on the anon_vma->root->rwsem to
* serialize against split_huge_page*.
*/
pmdp_splitting_flush(vma, address, pmd);
ret = 1;
}
spin_unlock(&mm->page_table_lock);
mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
return ret;
}
static void __split_huge_page_refcount(struct page *page,
struct list_head *list)
{
int i;
struct zone *zone = page_zone(page);
struct lruvec *lruvec;
int tail_count = 0;
/* prevent PageLRU to go away from under us, and freeze lru stats */
spin_lock_irq(&zone->lru_lock);
lruvec = mem_cgroup_page_lruvec(page, zone);
compound_lock(page);
/* complete memcg works before add pages to LRU */
mem_cgroup_split_huge_fixup(page);
for (i = HPAGE_PMD_NR - 1; i >= 1; i--) {
struct page *page_tail = page + i;
/* tail_page->_mapcount cannot change */
BUG_ON(page_mapcount(page_tail) < 0);
tail_count += page_mapcount(page_tail);
/* check for overflow */
BUG_ON(tail_count < 0);
BUG_ON(atomic_read(&page_tail->_count) != 0);
/*
* tail_page->_count is zero and not changing from
* under us. But get_page_unless_zero() may be running
* from under us on the tail_page. If we used
* atomic_set() below instead of atomic_add(), we
* would then run atomic_set() concurrently with
* get_page_unless_zero(), and atomic_set() is
* implemented in C not using locked ops. spin_unlock
* on x86 sometime uses locked ops because of PPro
* errata 66, 92, so unless somebody can guarantee
* atomic_set() here would be safe on all archs (and
* not only on x86), it's safer to use atomic_add().
*/
atomic_add(page_mapcount(page) + page_mapcount(page_tail) + 1,
&page_tail->_count);
/* after clearing PageTail the gup refcount can be released */
smp_mb();
/*
* retain hwpoison flag of the poisoned tail page:
* fix for the unsuitable process killed on Guest Machine(KVM)
* by the memory-failure.
*/
page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP | __PG_HWPOISON;
page_tail->flags |= (page->flags &
((1L << PG_referenced) |
(1L << PG_swapbacked) |
(1L << PG_mlocked) |
(1L << PG_uptodate)));
page_tail->flags |= (1L << PG_dirty);
/* clear PageTail before overwriting first_page */
smp_wmb();
/*
* __split_huge_page_splitting() already set the
* splitting bit in all pmd that could map this
* hugepage, that will ensure no CPU can alter the
* mapcount on the head page. The mapcount is only
* accounted in the head page and it has to be
* transferred to all tail pages in the below code. So
* for this code to be safe, the split the mapcount
* can't change. But that doesn't mean userland can't
* keep changing and reading the page contents while
* we transfer the mapcount, so the pmd splitting
* status is achieved setting a reserved bit in the
* pmd, not by clearing the present bit.
*/
page_tail->_mapcount = page->_mapcount;
BUG_ON(page_tail->mapping);
page_tail->mapping = page->mapping;
page_tail->index = page->index + i;
page_nid_xchg_last(page_tail, page_nid_last(page));
BUG_ON(!PageAnon(page_tail));
BUG_ON(!PageUptodate(page_tail));
BUG_ON(!PageDirty(page_tail));
BUG_ON(!PageSwapBacked(page_tail));
lru_add_page_tail(page, page_tail, lruvec, list);
}
atomic_sub(tail_count, &page->_count);
BUG_ON(atomic_read(&page->_count) <= 0);
__mod_zone_page_state(zone, NR_ANON_TRANSPARENT_HUGEPAGES, -1);
__mod_zone_page_state(zone, NR_ANON_PAGES, HPAGE_PMD_NR);
ClearPageCompound(page);
compound_unlock(page);
spin_unlock_irq(&zone->lru_lock);
for (i = 1; i < HPAGE_PMD_NR; i++) {
struct page *page_tail = page + i;
BUG_ON(page_count(page_tail) <= 0);
/*
* Tail pages may be freed if there wasn't any mapping
* like if add_to_swap() is running on a lru page that
* had its mapping zapped. And freeing these pages
* requires taking the lru_lock so we do the put_page
* of the tail pages after the split is complete.
*/
put_page(page_tail);
}
/*
* Only the head page (now become a regular page) is required
* to be pinned by the caller.
*/
BUG_ON(page_count(page) <= 0);
}
static int __split_huge_page_map(struct page *page,
struct vm_area_struct *vma,
unsigned long address)
{
struct mm_struct *mm = vma->vm_mm;
pmd_t *pmd, _pmd;
int ret = 0, i;
pgtable_t pgtable;
unsigned long haddr;
spin_lock(&mm->page_table_lock);
pmd = page_check_address_pmd(page, mm, address,
PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG);
if (pmd) {
pgtable = pgtable_trans_huge_withdraw(mm, pmd);
pmd_populate(mm, &_pmd, pgtable);
haddr = address;
for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
pte_t *pte, entry;
BUG_ON(PageCompound(page+i));
entry = mk_pte(page + i, vma->vm_page_prot);
entry = maybe_mkwrite(pte_mkdirty(entry), vma);
if (!pmd_write(*pmd))
entry = pte_wrprotect(entry);
else
BUG_ON(page_mapcount(page) != 1);
if (!pmd_young(*pmd))
entry = pte_mkold(entry);
if (pmd_numa(*pmd))
entry = pte_mknuma(entry);
pte = pte_offset_map(&_pmd, haddr);
BUG_ON(!pte_none(*pte));
set_pte_at(mm, haddr, pte, entry);
pte_unmap(pte);
}
smp_wmb(); /* make pte visible before pmd */
/*
* Up to this point the pmd is present and huge and
* userland has the whole access to the hugepage
* during the split (which happens in place). If we
* overwrite the pmd with the not-huge version
* pointing to the pte here (which of course we could
* if all CPUs were bug free), userland could trigger
* a small page size TLB miss on the small sized TLB
* while the hugepage TLB entry is still established
* in the huge TLB. Some CPU doesn't like that. See
* http://support.amd.com/us/Processor_TechDocs/41322.pdf,
* Erratum 383 on page 93. Intel should be safe but is
* also warns that it's only safe if the permission
* and cache attributes of the two entries loaded in
* the two TLB is identical (which should be the case
* here). But it is generally safer to never allow
* small and huge TLB entries for the same virtual
* address to be loaded simultaneously. So instead of
* doing "pmd_populate(); flush_tlb_range();" we first
* mark the current pmd notpresent (atomically because
* here the pmd_trans_huge and pmd_trans_splitting
* must remain set at all times on the pmd until the
* split is complete for this pmd), then we flush the
* SMP TLB and finally we write the non-huge version
* of the pmd entry with pmd_populate.
*/
pmdp_invalidate(vma, address, pmd);
pmd_populate(mm, pmd, pgtable);
ret = 1;
}
spin_unlock(&mm->page_table_lock);
return ret;
}
/* must be called with anon_vma->root->rwsem held */
static void __split_huge_page(struct page *page,
struct anon_vma *anon_vma,
struct list_head *list)
{
int mapcount, mapcount2;
pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
struct anon_vma_chain *avc;
BUG_ON(!PageHead(page));
BUG_ON(PageTail(page));
mapcount = 0;
anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
struct vm_area_struct *vma = avc->vma;
unsigned long addr = vma_address(page, vma);
BUG_ON(is_vma_temporary_stack(vma));
mapcount += __split_huge_page_splitting(page, vma, addr);
}
/*
* It is critical that new vmas are added to the tail of the
* anon_vma list. This guarantes that if copy_huge_pmd() runs
* and establishes a child pmd before
* __split_huge_page_splitting() freezes the parent pmd (so if
* we fail to prevent copy_huge_pmd() from running until the
* whole __split_huge_page() is complete), we will still see
* the newly established pmd of the child later during the
* walk, to be able to set it as pmd_trans_splitting too.
*/
if (mapcount != page_mapcount(page))
printk(KERN_ERR "mapcount %d page_mapcount %d\n",
mapcount, page_mapcount(page));
BUG_ON(mapcount != page_mapcount(page));
__split_huge_page_refcount(page, list);
mapcount2 = 0;
anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
struct vm_area_struct *vma = avc->vma;
unsigned long addr = vma_address(page, vma);
BUG_ON(is_vma_temporary_stack(vma));
mapcount2 += __split_huge_page_map(page, vma, addr);
}
if (mapcount != mapcount2)
printk(KERN_ERR "mapcount %d mapcount2 %d page_mapcount %d\n",
mapcount, mapcount2, page_mapcount(page));
BUG_ON(mapcount != mapcount2);
}
/*
* Split a hugepage into normal pages. This doesn't change the position of head
* page. If @list is null, tail pages will be added to LRU list, otherwise, to
* @list. Both head page and tail pages will inherit mapping, flags, and so on
* from the hugepage.
* Return 0 if the hugepage is split successfully otherwise return 1.
*/
int split_huge_page_to_list(struct page *page, struct list_head *list)
{
struct anon_vma *anon_vma;
int ret = 1;
BUG_ON(is_huge_zero_page(page));
BUG_ON(!PageAnon(page));
/*
* The caller does not necessarily hold an mmap_sem that would prevent
* the anon_vma disappearing so we first we take a reference to it
* and then lock the anon_vma for write. This is similar to
* page_lock_anon_vma_read except the write lock is taken to serialise
* against parallel split or collapse operations.
*/
anon_vma = page_get_anon_vma(page);
if (!anon_vma)
goto out;
anon_vma_lock_write(anon_vma);
ret = 0;
if (!PageCompound(page))
goto out_unlock;
BUG_ON(!PageSwapBacked(page));
__split_huge_page(page, anon_vma, list);
count_vm_event(THP_SPLIT);
BUG_ON(PageCompound(page));
out_unlock:
anon_vma_unlock_write(anon_vma);
put_anon_vma(anon_vma);
out:
return ret;
}
#define VM_NO_THP (VM_SPECIAL|VM_MIXEDMAP|VM_HUGETLB|VM_SHARED|VM_MAYSHARE)
int hugepage_madvise(struct vm_area_struct *vma,
unsigned long *vm_flags, int advice)
{
struct mm_struct *mm = vma->vm_mm;
switch (advice) {
case MADV_HUGEPAGE:
/*
* Be somewhat over-protective like KSM for now!
*/
if (*vm_flags & (VM_HUGEPAGE | VM_NO_THP))
return -EINVAL;
if (mm->def_flags & VM_NOHUGEPAGE)
return -EINVAL;
*vm_flags &= ~VM_NOHUGEPAGE;
*vm_flags |= VM_HUGEPAGE;
/*
* If the vma become good for khugepaged to scan,
* register it here without waiting a page fault that
* may not happen any time soon.
*/
if (unlikely(khugepaged_enter_vma_merge(vma)))
return -ENOMEM;
break;
case MADV_NOHUGEPAGE:
/*
* Be somewhat over-protective like KSM for now!
*/
if (*vm_flags & (VM_NOHUGEPAGE | VM_NO_THP))
return -EINVAL;
*vm_flags &= ~VM_HUGEPAGE;
*vm_flags |= VM_NOHUGEPAGE;
/*
* Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
* this vma even if we leave the mm registered in khugepaged if
* it got registered before VM_NOHUGEPAGE was set.
*/
break;
}
return 0;
}
static int __init khugepaged_slab_init(void)
{
mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
sizeof(struct mm_slot),
__alignof__(struct mm_slot), 0, NULL);
if (!mm_slot_cache)
return -ENOMEM;
return 0;
}
static inline struct mm_slot *alloc_mm_slot(void)
{
if (!mm_slot_cache) /* initialization failed */
return NULL;
return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
}
static inline void free_mm_slot(struct mm_slot *mm_slot)
{
kmem_cache_free(mm_slot_cache, mm_slot);
}
static struct mm_slot *get_mm_slot(struct mm_struct *mm)
{
struct mm_slot *mm_slot;
hash_for_each_possible(mm_slots_hash, mm_slot, hash, (unsigned long)mm)
if (mm == mm_slot->mm)
return mm_slot;
return NULL;
}
static void insert_to_mm_slots_hash(struct mm_struct *mm,
struct mm_slot *mm_slot)
{
mm_slot->mm = mm;
hash_add(mm_slots_hash, &mm_slot->hash, (long)mm);
}
static inline int khugepaged_test_exit(struct mm_struct *mm)
{
return atomic_read(&mm->mm_users) == 0;
}
int __khugepaged_enter(struct mm_struct *mm)
{
struct mm_slot *mm_slot;
int wakeup;
mm_slot = alloc_mm_slot();
if (!mm_slot)
return -ENOMEM;
/* __khugepaged_exit() must not run from under us */
VM_BUG_ON(khugepaged_test_exit(mm));
if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) {
free_mm_slot(mm_slot);
return 0;
}
spin_lock(&khugepaged_mm_lock);
insert_to_mm_slots_hash(mm, mm_slot);
/*
* Insert just behind the scanning cursor, to let the area settle
* down a little.
*/
wakeup = list_empty(&khugepaged_scan.mm_head);
list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head);
spin_unlock(&khugepaged_mm_lock);
atomic_inc(&mm->mm_count);
if (wakeup)
wake_up_interruptible(&khugepaged_wait);
return 0;
}
int khugepaged_enter_vma_merge(struct vm_area_struct *vma)
{
unsigned long hstart, hend;
if (!vma->anon_vma)
/*
* Not yet faulted in so we will register later in the
* page fault if needed.
*/
return 0;
if (vma->vm_ops)
/* khugepaged not yet working on file or special mappings */
return 0;
VM_BUG_ON(vma->vm_flags & VM_NO_THP);
hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
hend = vma->vm_end & HPAGE_PMD_MASK;
if (hstart < hend)
return khugepaged_enter(vma);
return 0;
}
void __khugepaged_exit(struct mm_struct *mm)
{
struct mm_slot *mm_slot;
int free = 0;
spin_lock(&khugepaged_mm_lock);
mm_slot = get_mm_slot(mm);
if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
hash_del(&mm_slot->hash);
list_del(&mm_slot->mm_node);
free = 1;
}
spin_unlock(&khugepaged_mm_lock);
if (free) {
clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
free_mm_slot(mm_slot);
mmdrop(mm);
} else if (mm_slot) {
/*
* This is required to serialize against
* khugepaged_test_exit() (which is guaranteed to run
* under mmap sem read mode). Stop here (after we
* return all pagetables will be destroyed) until
* khugepaged has finished working on the pagetables
* under the mmap_sem.
*/
down_write(&mm->mmap_sem);
up_write(&mm->mmap_sem);
}
}
static void release_pte_page(struct page *page)
{
/* 0 stands for page_is_file_cache(page) == false */
dec_zone_page_state(page, NR_ISOLATED_ANON + 0);
unlock_page(page);
putback_lru_page(page);
}
static void release_pte_pages(pte_t *pte, pte_t *_pte)
{
while (--_pte >= pte) {
pte_t pteval = *_pte;
if (!pte_none(pteval))
release_pte_page(pte_page(pteval));
}
}
static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
unsigned long address,
pte_t *pte)
{
struct page *page;
pte_t *_pte;
int referenced = 0, none = 0;
for (_pte = pte; _pte < pte+HPAGE_PMD_NR;
_pte++, address += PAGE_SIZE) {
pte_t pteval = *_pte;
if (pte_none(pteval)) {
if (++none <= khugepaged_max_ptes_none)
continue;
else
goto out;
}
if (!pte_present(pteval) || !pte_write(pteval))
goto out;
page = vm_normal_page(vma, address, pteval);
if (unlikely(!page))
goto out;
VM_BUG_ON(PageCompound(page));
BUG_ON(!PageAnon(page));
VM_BUG_ON(!PageSwapBacked(page));
/* cannot use mapcount: can't collapse if there's a gup pin */
if (page_count(page) != 1)
goto out;
/*
* We can do it before isolate_lru_page because the
* page can't be freed from under us. NOTE: PG_lock
* is needed to serialize against split_huge_page
* when invoked from the VM.
*/
if (!trylock_page(page))
goto out;
/*
* Isolate the page to avoid collapsing an hugepage
* currently in use by the VM.
*/
if (isolate_lru_page(page)) {
unlock_page(page);
goto out;
}
/* 0 stands for page_is_file_cache(page) == false */
inc_zone_page_state(page, NR_ISOLATED_ANON + 0);
VM_BUG_ON(!PageLocked(page));
VM_BUG_ON(PageLRU(page));
/* If there is no mapped pte young don't collapse the page */
if (pte_young(pteval) || PageReferenced(page) ||
mmu_notifier_test_young(vma->vm_mm, address))
referenced = 1;
}
if (likely(referenced))
return 1;
out:
release_pte_pages(pte, _pte);
return 0;
}
static void __collapse_huge_page_copy(pte_t *pte, struct page *page,
struct vm_area_struct *vma,
unsigned long address,
spinlock_t *ptl)
{
pte_t *_pte;
for (_pte = pte; _pte < pte+HPAGE_PMD_NR; _pte++) {
pte_t pteval = *_pte;
struct page *src_page;
if (pte_none(pteval)) {
clear_user_highpage(page, address);
add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
} else {
src_page = pte_page(pteval);
copy_user_highpage(page, src_page, address, vma);
VM_BUG_ON(page_mapcount(src_page) != 1);
release_pte_page(src_page);
/*
* ptl mostly unnecessary, but preempt has to
* be disabled to update the per-cpu stats
* inside page_remove_rmap().
*/
spin_lock(ptl);
/*
* paravirt calls inside pte_clear here are
* superfluous.
*/
pte_clear(vma->vm_mm, address, _pte);
page_remove_rmap(src_page);
spin_unlock(ptl);
free_page_and_swap_cache(src_page);
}
address += PAGE_SIZE;
page++;
}
}
static void khugepaged_alloc_sleep(void)
{
wait_event_freezable_timeout(khugepaged_wait, false,
msecs_to_jiffies(khugepaged_alloc_sleep_millisecs));
}
#ifdef CONFIG_NUMA
static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
{
if (IS_ERR(*hpage)) {
if (!*wait)
return false;
*wait = false;
*hpage = NULL;
khugepaged_alloc_sleep();
} else if (*hpage) {
put_page(*hpage);
*hpage = NULL;
}
return true;
}
static struct page
*khugepaged_alloc_page(struct page **hpage, struct mm_struct *mm,
struct vm_area_struct *vma, unsigned long address,
int node)
{
VM_BUG_ON(*hpage);
/*
* Allocate the page while the vma is still valid and under
* the mmap_sem read mode so there is no memory allocation
* later when we take the mmap_sem in write mode. This is more
* friendly behavior (OTOH it may actually hide bugs) to
* filesystems in userland with daemons allocating memory in
* the userland I/O paths. Allocating memory with the
* mmap_sem in read mode is good idea also to allow greater
* scalability.
*/
*hpage = alloc_hugepage_vma(khugepaged_defrag(), vma, address,
node, __GFP_OTHER_NODE);
/*
* After allocating the hugepage, release the mmap_sem read lock in
* preparation for taking it in write mode.
*/
up_read(&mm->mmap_sem);
if (unlikely(!*hpage)) {
count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
*hpage = ERR_PTR(-ENOMEM);
return NULL;
}
count_vm_event(THP_COLLAPSE_ALLOC);
return *hpage;
}
#else
static struct page *khugepaged_alloc_hugepage(bool *wait)
{
struct page *hpage;
do {
hpage = alloc_hugepage(khugepaged_defrag());
if (!hpage) {
count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
if (!*wait)
return NULL;
*wait = false;
khugepaged_alloc_sleep();
} else
count_vm_event(THP_COLLAPSE_ALLOC);
} while (unlikely(!hpage) && likely(khugepaged_enabled()));
return hpage;
}
static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
{
if (!*hpage)
*hpage = khugepaged_alloc_hugepage(wait);
if (unlikely(!*hpage))
return false;
return true;
}
static struct page
*khugepaged_alloc_page(struct page **hpage, struct mm_struct *mm,
struct vm_area_struct *vma, unsigned long address,
int node)
{
up_read(&mm->mmap_sem);
VM_BUG_ON(!*hpage);
return *hpage;
}
#endif
static bool hugepage_vma_check(struct vm_area_struct *vma)
{
if ((!(vma->vm_flags & VM_HUGEPAGE) && !khugepaged_always()) ||
(vma->vm_flags & VM_NOHUGEPAGE))
return false;
if (!vma->anon_vma || vma->vm_ops)
return false;
if (is_vma_temporary_stack(vma))
return false;
VM_BUG_ON(vma->vm_flags & VM_NO_THP);
return true;
}
static void collapse_huge_page(struct mm_struct *mm,
unsigned long address,
struct page **hpage,
struct vm_area_struct *vma,
int node)
{
pmd_t *pmd, _pmd;
pte_t *pte;
pgtable_t pgtable;
struct page *new_page;
spinlock_t *ptl;
int isolated;
unsigned long hstart, hend;
unsigned long mmun_start; /* For mmu_notifiers */
unsigned long mmun_end; /* For mmu_notifiers */
VM_BUG_ON(address & ~HPAGE_PMD_MASK);
/* release the mmap_sem read lock. */
new_page = khugepaged_alloc_page(hpage, mm, vma, address, node);
if (!new_page)
return;
if (unlikely(mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL)))
return;
/*
* Prevent all access to pagetables with the exception of
* gup_fast later hanlded by the ptep_clear_flush and the VM
* handled by the anon_vma lock + PG_lock.
*/
down_write(&mm->mmap_sem);
if (unlikely(khugepaged_test_exit(mm)))
goto out;
vma = find_vma(mm, address);
hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
hend = vma->vm_end & HPAGE_PMD_MASK;
if (address < hstart || address + HPAGE_PMD_SIZE > hend)
goto out;
if (!hugepage_vma_check(vma))
goto out;
pmd = mm_find_pmd(mm, address);
if (!pmd)
goto out;
if (pmd_trans_huge(*pmd))
goto out;
anon_vma_lock_write(vma->anon_vma);
pte = pte_offset_map(pmd, address);
ptl = pte_lockptr(mm, pmd);
mmun_start = address;
mmun_end = address + HPAGE_PMD_SIZE;
mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
spin_lock(&mm->page_table_lock); /* probably unnecessary */
/*
* After this gup_fast can't run anymore. This also removes
* any huge TLB entry from the CPU so we won't allow
* huge and small TLB entries for the same virtual address
* to avoid the risk of CPU bugs in that area.
*/
_pmd = pmdp_clear_flush(vma, address, pmd);
spin_unlock(&mm->page_table_lock);
mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
spin_lock(ptl);
isolated = __collapse_huge_page_isolate(vma, address, pte);
spin_unlock(ptl);
if (unlikely(!isolated)) {
pte_unmap(pte);
spin_lock(&mm->page_table_lock);
BUG_ON(!pmd_none(*pmd));
/*
* We can only use set_pmd_at when establishing
* hugepmds and never for establishing regular pmds that
* points to regular pagetables. Use pmd_populate for that
*/
pmd_populate(mm, pmd, pmd_pgtable(_pmd));
spin_unlock(&mm->page_table_lock);
anon_vma_unlock_write(vma->anon_vma);
goto out;
}
/*
* All pages are isolated and locked so anon_vma rmap
* can't run anymore.
*/
anon_vma_unlock_write(vma->anon_vma);
__collapse_huge_page_copy(pte, new_page, vma, address, ptl);
pte_unmap(pte);
__SetPageUptodate(new_page);
pgtable = pmd_pgtable(_pmd);
_pmd = mk_huge_pmd(new_page, vma);
/*
* spin_lock() below is not the equivalent of smp_wmb(), so
* this is needed to avoid the copy_huge_page writes to become
* visible after the set_pmd_at() write.
*/
smp_wmb();
spin_lock(&mm->page_table_lock);
BUG_ON(!pmd_none(*pmd));
page_add_new_anon_rmap(new_page, vma, address);
pgtable_trans_huge_deposit(mm, pmd, pgtable);
set_pmd_at(mm, address, pmd, _pmd);
update_mmu_cache_pmd(vma, address, pmd);
spin_unlock(&mm->page_table_lock);
*hpage = NULL;
khugepaged_pages_collapsed++;
out_up_write:
up_write(&mm->mmap_sem);
return;
out:
mem_cgroup_uncharge_page(new_page);
goto out_up_write;
}
static int khugepaged_scan_pmd(struct mm_struct *mm,
struct vm_area_struct *vma,
unsigned long address,
struct page **hpage)
{
pmd_t *pmd;
pte_t *pte, *_pte;
int ret = 0, referenced = 0, none = 0;
struct page *page;
unsigned long _address;
spinlock_t *ptl;
int node = NUMA_NO_NODE;
VM_BUG_ON(address & ~HPAGE_PMD_MASK);
pmd = mm_find_pmd(mm, address);
if (!pmd)
goto out;
if (pmd_trans_huge(*pmd))
goto out;
pte = pte_offset_map_lock(mm, pmd, address, &ptl);
for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR;
_pte++, _address += PAGE_SIZE) {
pte_t pteval = *_pte;
if (pte_none(pteval)) {
if (++none <= khugepaged_max_ptes_none)
continue;
else
goto out_unmap;
}
if (!pte_present(pteval) || !pte_write(pteval))
goto out_unmap;
page = vm_normal_page(vma, _address, pteval);
if (unlikely(!page))
goto out_unmap;
/*
* Chose the node of the first page. This could
* be more sophisticated and look at more pages,
* but isn't for now.
*/
if (node == NUMA_NO_NODE)
node = page_to_nid(page);
VM_BUG_ON(PageCompound(page));
if (!PageLRU(page) || PageLocked(page) || !PageAnon(page))
goto out_unmap;
/* cannot use mapcount: can't collapse if there's a gup pin */
if (page_count(page) != 1)
goto out_unmap;
if (pte_young(pteval) || PageReferenced(page) ||
mmu_notifier_test_young(vma->vm_mm, address))
referenced = 1;
}
if (referenced)
ret = 1;
out_unmap:
pte_unmap_unlock(pte, ptl);
if (ret)
/* collapse_huge_page will return with the mmap_sem released */
collapse_huge_page(mm, address, hpage, vma, node);
out:
return ret;
}
static void collect_mm_slot(struct mm_slot *mm_slot)
{
struct mm_struct *mm = mm_slot->mm;
VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
if (khugepaged_test_exit(mm)) {
/* free mm_slot */
hash_del(&mm_slot->hash);
list_del(&mm_slot->mm_node);
/*
* Not strictly needed because the mm exited already.
*
* clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
*/
/* khugepaged_mm_lock actually not necessary for the below */
free_mm_slot(mm_slot);
mmdrop(mm);
}
}
static unsigned int khugepaged_scan_mm_slot(unsigned int pages,
struct page **hpage)
__releases(&khugepaged_mm_lock)
__acquires(&khugepaged_mm_lock)
{
struct mm_slot *mm_slot;
struct mm_struct *mm;
struct vm_area_struct *vma;
int progress = 0;
VM_BUG_ON(!pages);
VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
if (khugepaged_scan.mm_slot)
mm_slot = khugepaged_scan.mm_slot;
else {
mm_slot = list_entry(khugepaged_scan.mm_head.next,
struct mm_slot, mm_node);
khugepaged_scan.address = 0;
khugepaged_scan.mm_slot = mm_slot;
}
spin_unlock(&khugepaged_mm_lock);
mm = mm_slot->mm;
down_read(&mm->mmap_sem);
if (unlikely(khugepaged_test_exit(mm)))
vma = NULL;
else
vma = find_vma(mm, khugepaged_scan.address);
progress++;
for (; vma; vma = vma->vm_next) {
unsigned long hstart, hend;
cond_resched();
if (unlikely(khugepaged_test_exit(mm))) {
progress++;
break;
}
if (!hugepage_vma_check(vma)) {
skip:
progress++;
continue;
}
hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
hend = vma->vm_end & HPAGE_PMD_MASK;
if (hstart >= hend)
goto skip;
if (khugepaged_scan.address > hend)
goto skip;
if (khugepaged_scan.address < hstart)
khugepaged_scan.address = hstart;
VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
while (khugepaged_scan.address < hend) {
int ret;
cond_resched();
if (unlikely(khugepaged_test_exit(mm)))
goto breakouterloop;
VM_BUG_ON(khugepaged_scan.address < hstart ||
khugepaged_scan.address + HPAGE_PMD_SIZE >
hend);
ret = khugepaged_scan_pmd(mm, vma,
khugepaged_scan.address,
hpage);
/* move to next address */
khugepaged_scan.address += HPAGE_PMD_SIZE;
progress += HPAGE_PMD_NR;
if (ret)
/* we released mmap_sem so break loop */
goto breakouterloop_mmap_sem;
if (progress >= pages)
goto breakouterloop;
}
}
breakouterloop:
up_read(&mm->mmap_sem); /* exit_mmap will destroy ptes after this */
breakouterloop_mmap_sem:
spin_lock(&khugepaged_mm_lock);
VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot);
/*
* Release the current mm_slot if this mm is about to die, or
* if we scanned all vmas of this mm.
*/
if (khugepaged_test_exit(mm) || !vma) {
/*
* Make sure that if mm_users is reaching zero while
* khugepaged runs here, khugepaged_exit will find
* mm_slot not pointing to the exiting mm.
*/
if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) {
khugepaged_scan.mm_slot = list_entry(
mm_slot->mm_node.next,
struct mm_slot, mm_node);
khugepaged_scan.address = 0;
} else {
khugepaged_scan.mm_slot = NULL;
khugepaged_full_scans++;
}
collect_mm_slot(mm_slot);
}
return progress;
}
static int khugepaged_has_work(void)
{
return !list_empty(&khugepaged_scan.mm_head) &&
khugepaged_enabled();
}
static int khugepaged_wait_event(void)
{
return !list_empty(&khugepaged_scan.mm_head) ||
kthread_should_stop();
}
static void khugepaged_do_scan(void)
{
struct page *hpage = NULL;
unsigned int progress = 0, pass_through_head = 0;
unsigned int pages = khugepaged_pages_to_scan;
bool wait = true;
barrier(); /* write khugepaged_pages_to_scan to local stack */
while (progress < pages) {
if (!khugepaged_prealloc_page(&hpage, &wait))
break;
cond_resched();
if (unlikely(kthread_should_stop() || freezing(current)))
break;
spin_lock(&khugepaged_mm_lock);
if (!khugepaged_scan.mm_slot)
pass_through_head++;
if (khugepaged_has_work() &&
pass_through_head < 2)
progress += khugepaged_scan_mm_slot(pages - progress,
&hpage);
else
progress = pages;
spin_unlock(&khugepaged_mm_lock);
}
if (!IS_ERR_OR_NULL(hpage))
put_page(hpage);
}
static void khugepaged_wait_work(void)
{
try_to_freeze();
if (khugepaged_has_work()) {
if (!khugepaged_scan_sleep_millisecs)
return;
wait_event_freezable_timeout(khugepaged_wait,
kthread_should_stop(),
msecs_to_jiffies(khugepaged_scan_sleep_millisecs));
return;
}
if (khugepaged_enabled())
wait_event_freezable(khugepaged_wait, khugepaged_wait_event());
}
static int khugepaged(void *none)
{
struct mm_slot *mm_slot;
set_freezable();
set_user_nice(current, 19);
while (!kthread_should_stop()) {
khugepaged_do_scan();
khugepaged_wait_work();
}
spin_lock(&khugepaged_mm_lock);
mm_slot = khugepaged_scan.mm_slot;
khugepaged_scan.mm_slot = NULL;
if (mm_slot)
collect_mm_slot(mm_slot);
spin_unlock(&khugepaged_mm_lock);
return 0;
}
static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
unsigned long haddr, pmd_t *pmd)
{
struct mm_struct *mm = vma->vm_mm;
pgtable_t pgtable;
pmd_t _pmd;
int i;
pmdp_clear_flush(vma, haddr, pmd);
/* leave pmd empty until pte is filled */
pgtable = pgtable_trans_huge_withdraw(mm, pmd);
pmd_populate(mm, &_pmd, pgtable);
for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
pte_t *pte, entry;
entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
entry = pte_mkspecial(entry);
pte = pte_offset_map(&_pmd, haddr);
VM_BUG_ON(!pte_none(*pte));
set_pte_at(mm, haddr, pte, entry);
pte_unmap(pte);
}
smp_wmb(); /* make pte visible before pmd */
pmd_populate(mm, pmd, pgtable);
put_huge_zero_page();
}
void __split_huge_page_pmd(struct vm_area_struct *vma, unsigned long address,
pmd_t *pmd)
{
struct page *page;
struct mm_struct *mm = vma->vm_mm;
unsigned long haddr = address & HPAGE_PMD_MASK;
unsigned long mmun_start; /* For mmu_notifiers */
unsigned long mmun_end; /* For mmu_notifiers */
BUG_ON(vma->vm_start > haddr || vma->vm_end < haddr + HPAGE_PMD_SIZE);
mmun_start = haddr;
mmun_end = haddr + HPAGE_PMD_SIZE;
mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
spin_lock(&mm->page_table_lock);
if (unlikely(!pmd_trans_huge(*pmd))) {
spin_unlock(&mm->page_table_lock);
mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
return;
}
if (is_huge_zero_pmd(*pmd)) {
__split_huge_zero_page_pmd(vma, haddr, pmd);
spin_unlock(&mm->page_table_lock);
mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
return;
}
page = pmd_page(*pmd);
VM_BUG_ON(!page_count(page));
get_page(page);
spin_unlock(&mm->page_table_lock);
mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
split_huge_page(page);
put_page(page);
BUG_ON(pmd_trans_huge(*pmd));
}
void split_huge_page_pmd_mm(struct mm_struct *mm, unsigned long address,
pmd_t *pmd)
{
struct vm_area_struct *vma;
vma = find_vma(mm, address);
BUG_ON(vma == NULL);
split_huge_page_pmd(vma, address, pmd);
}
static void split_huge_page_address(struct mm_struct *mm,
unsigned long address)
{
pmd_t *pmd;
VM_BUG_ON(!(address & ~HPAGE_PMD_MASK));
pmd = mm_find_pmd(mm, address);
if (!pmd)
return;
/*
* Caller holds the mmap_sem write mode, so a huge pmd cannot
* materialize from under us.
*/
split_huge_page_pmd_mm(mm, address, pmd);
}
void __vma_adjust_trans_huge(struct vm_area_struct *vma,
unsigned long start,
unsigned long end,
long adjust_next)
{
/*
* If the new start address isn't hpage aligned and it could
* previously contain an hugepage: check if we need to split
* an huge pmd.
*/
if (start & ~HPAGE_PMD_MASK &&
(start & HPAGE_PMD_MASK) >= vma->vm_start &&
(start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
split_huge_page_address(vma->vm_mm, start);
/*
* If the new end address isn't hpage aligned and it could
* previously contain an hugepage: check if we need to split
* an huge pmd.
*/
if (end & ~HPAGE_PMD_MASK &&
(end & HPAGE_PMD_MASK) >= vma->vm_start &&
(end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
split_huge_page_address(vma->vm_mm, end);
/*
* If we're also updating the vma->vm_next->vm_start, if the new
* vm_next->vm_start isn't page aligned and it could previously
* contain an hugepage: check if we need to split an huge pmd.
*/
if (adjust_next > 0) {
struct vm_area_struct *next = vma->vm_next;
unsigned long nstart = next->vm_start;
nstart += adjust_next << PAGE_SHIFT;
if (nstart & ~HPAGE_PMD_MASK &&
(nstart & HPAGE_PMD_MASK) >= next->vm_start &&
(nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
split_huge_page_address(next->vm_mm, nstart);
}
}