a6f92f3dc8
By moving the ethernet tag parsing to the board-specific code we avoid the issue of figuring out which device we're supposed to attach the information to. The board specific code knows this because it's where the actual devices are instantiated. Signed-off-by: Haavard Skinnemoen <hskinnemoen@atmel.com>
313 lines
7.3 KiB
C
313 lines
7.3 KiB
C
/*
|
|
* Copyright (C) 2004-2006 Atmel Corporation
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License version 2 as
|
|
* published by the Free Software Foundation.
|
|
*/
|
|
|
|
#include <linux/clk.h>
|
|
#include <linux/init.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/console.h>
|
|
#include <linux/ioport.h>
|
|
#include <linux/bootmem.h>
|
|
#include <linux/fs.h>
|
|
#include <linux/module.h>
|
|
#include <linux/root_dev.h>
|
|
#include <linux/cpu.h>
|
|
|
|
#include <asm/sections.h>
|
|
#include <asm/processor.h>
|
|
#include <asm/pgtable.h>
|
|
#include <asm/setup.h>
|
|
#include <asm/sysreg.h>
|
|
|
|
#include <asm/arch/board.h>
|
|
#include <asm/arch/init.h>
|
|
|
|
extern int root_mountflags;
|
|
|
|
/*
|
|
* Bootloader-provided information about physical memory
|
|
*/
|
|
struct tag_mem_range *mem_phys;
|
|
struct tag_mem_range *mem_reserved;
|
|
struct tag_mem_range *mem_ramdisk;
|
|
|
|
/*
|
|
* Initialize loops_per_jiffy as 5000000 (500MIPS).
|
|
* Better make it too large than too small...
|
|
*/
|
|
struct avr32_cpuinfo boot_cpu_data = {
|
|
.loops_per_jiffy = 5000000
|
|
};
|
|
EXPORT_SYMBOL(boot_cpu_data);
|
|
|
|
static char command_line[COMMAND_LINE_SIZE];
|
|
|
|
/*
|
|
* Should be more than enough, but if you have a _really_ complex
|
|
* setup, you might need to increase the size of this...
|
|
*/
|
|
static struct tag_mem_range __initdata mem_range_cache[32];
|
|
static unsigned mem_range_next_free;
|
|
|
|
/*
|
|
* Standard memory resources
|
|
*/
|
|
static struct resource mem_res[] = {
|
|
{
|
|
.name = "Kernel code",
|
|
.start = 0,
|
|
.end = 0,
|
|
.flags = IORESOURCE_MEM
|
|
},
|
|
{
|
|
.name = "Kernel data",
|
|
.start = 0,
|
|
.end = 0,
|
|
.flags = IORESOURCE_MEM,
|
|
},
|
|
};
|
|
|
|
#define kernel_code mem_res[0]
|
|
#define kernel_data mem_res[1]
|
|
|
|
/*
|
|
* Early framebuffer allocation. Works as follows:
|
|
* - If fbmem_size is zero, nothing will be allocated or reserved.
|
|
* - If fbmem_start is zero when setup_bootmem() is called,
|
|
* fbmem_size bytes will be allocated from the bootmem allocator.
|
|
* - If fbmem_start is nonzero, an area of size fbmem_size will be
|
|
* reserved at the physical address fbmem_start if necessary. If
|
|
* the area isn't in a memory region known to the kernel, it will
|
|
* be left alone.
|
|
*
|
|
* Board-specific code may use these variables to set up platform data
|
|
* for the framebuffer driver if fbmem_size is nonzero.
|
|
*/
|
|
static unsigned long __initdata fbmem_start;
|
|
static unsigned long __initdata fbmem_size;
|
|
|
|
/*
|
|
* "fbmem=xxx[kKmM]" allocates the specified amount of boot memory for
|
|
* use as framebuffer.
|
|
*
|
|
* "fbmem=xxx[kKmM]@yyy[kKmM]" defines a memory region of size xxx and
|
|
* starting at yyy to be reserved for use as framebuffer.
|
|
*
|
|
* The kernel won't verify that the memory region starting at yyy
|
|
* actually contains usable RAM.
|
|
*/
|
|
static int __init early_parse_fbmem(char *p)
|
|
{
|
|
fbmem_size = memparse(p, &p);
|
|
if (*p == '@')
|
|
fbmem_start = memparse(p, &p);
|
|
return 0;
|
|
}
|
|
early_param("fbmem", early_parse_fbmem);
|
|
|
|
static inline void __init resource_init(void)
|
|
{
|
|
struct tag_mem_range *region;
|
|
|
|
kernel_code.start = __pa(init_mm.start_code);
|
|
kernel_code.end = __pa(init_mm.end_code - 1);
|
|
kernel_data.start = __pa(init_mm.end_code);
|
|
kernel_data.end = __pa(init_mm.brk - 1);
|
|
|
|
for (region = mem_phys; region; region = region->next) {
|
|
struct resource *res;
|
|
unsigned long phys_start, phys_end;
|
|
|
|
if (region->size == 0)
|
|
continue;
|
|
|
|
phys_start = region->addr;
|
|
phys_end = phys_start + region->size - 1;
|
|
|
|
res = alloc_bootmem_low(sizeof(*res));
|
|
res->name = "System RAM";
|
|
res->start = phys_start;
|
|
res->end = phys_end;
|
|
res->flags = IORESOURCE_MEM | IORESOURCE_BUSY;
|
|
|
|
request_resource (&iomem_resource, res);
|
|
|
|
if (kernel_code.start >= res->start &&
|
|
kernel_code.end <= res->end)
|
|
request_resource (res, &kernel_code);
|
|
if (kernel_data.start >= res->start &&
|
|
kernel_data.end <= res->end)
|
|
request_resource (res, &kernel_data);
|
|
}
|
|
}
|
|
|
|
static int __init parse_tag_core(struct tag *tag)
|
|
{
|
|
if (tag->hdr.size > 2) {
|
|
if ((tag->u.core.flags & 1) == 0)
|
|
root_mountflags &= ~MS_RDONLY;
|
|
ROOT_DEV = new_decode_dev(tag->u.core.rootdev);
|
|
}
|
|
return 0;
|
|
}
|
|
__tagtable(ATAG_CORE, parse_tag_core);
|
|
|
|
static int __init parse_tag_mem_range(struct tag *tag,
|
|
struct tag_mem_range **root)
|
|
{
|
|
struct tag_mem_range *cur, **pprev;
|
|
struct tag_mem_range *new;
|
|
|
|
/*
|
|
* Ignore zero-sized entries. If we're running standalone, the
|
|
* SDRAM code may emit such entries if something goes
|
|
* wrong...
|
|
*/
|
|
if (tag->u.mem_range.size == 0)
|
|
return 0;
|
|
|
|
/*
|
|
* Copy the data so the bootmem init code doesn't need to care
|
|
* about it.
|
|
*/
|
|
if (mem_range_next_free >=
|
|
(sizeof(mem_range_cache) / sizeof(mem_range_cache[0])))
|
|
panic("Physical memory map too complex!\n");
|
|
|
|
new = &mem_range_cache[mem_range_next_free++];
|
|
*new = tag->u.mem_range;
|
|
|
|
pprev = root;
|
|
cur = *root;
|
|
while (cur) {
|
|
pprev = &cur->next;
|
|
cur = cur->next;
|
|
}
|
|
|
|
*pprev = new;
|
|
new->next = NULL;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int __init parse_tag_mem(struct tag *tag)
|
|
{
|
|
return parse_tag_mem_range(tag, &mem_phys);
|
|
}
|
|
__tagtable(ATAG_MEM, parse_tag_mem);
|
|
|
|
static int __init parse_tag_cmdline(struct tag *tag)
|
|
{
|
|
strlcpy(saved_command_line, tag->u.cmdline.cmdline, COMMAND_LINE_SIZE);
|
|
return 0;
|
|
}
|
|
__tagtable(ATAG_CMDLINE, parse_tag_cmdline);
|
|
|
|
static int __init parse_tag_rdimg(struct tag *tag)
|
|
{
|
|
return parse_tag_mem_range(tag, &mem_ramdisk);
|
|
}
|
|
__tagtable(ATAG_RDIMG, parse_tag_rdimg);
|
|
|
|
static int __init parse_tag_clock(struct tag *tag)
|
|
{
|
|
/*
|
|
* We'll figure out the clocks by peeking at the system
|
|
* manager regs directly.
|
|
*/
|
|
return 0;
|
|
}
|
|
__tagtable(ATAG_CLOCK, parse_tag_clock);
|
|
|
|
static int __init parse_tag_rsvd_mem(struct tag *tag)
|
|
{
|
|
return parse_tag_mem_range(tag, &mem_reserved);
|
|
}
|
|
__tagtable(ATAG_RSVD_MEM, parse_tag_rsvd_mem);
|
|
|
|
/*
|
|
* Scan the tag table for this tag, and call its parse function. The
|
|
* tag table is built by the linker from all the __tagtable
|
|
* declarations.
|
|
*/
|
|
static int __init parse_tag(struct tag *tag)
|
|
{
|
|
extern struct tagtable __tagtable_begin, __tagtable_end;
|
|
struct tagtable *t;
|
|
|
|
for (t = &__tagtable_begin; t < &__tagtable_end; t++)
|
|
if (tag->hdr.tag == t->tag) {
|
|
t->parse(tag);
|
|
break;
|
|
}
|
|
|
|
return t < &__tagtable_end;
|
|
}
|
|
|
|
/*
|
|
* Parse all tags in the list we got from the boot loader
|
|
*/
|
|
static void __init parse_tags(struct tag *t)
|
|
{
|
|
for (; t->hdr.tag != ATAG_NONE; t = tag_next(t))
|
|
if (!parse_tag(t))
|
|
printk(KERN_WARNING
|
|
"Ignoring unrecognised tag 0x%08x\n",
|
|
t->hdr.tag);
|
|
}
|
|
|
|
void __init setup_arch (char **cmdline_p)
|
|
{
|
|
struct clk *cpu_clk;
|
|
|
|
parse_tags(bootloader_tags);
|
|
|
|
setup_processor();
|
|
setup_platform();
|
|
setup_board();
|
|
|
|
cpu_clk = clk_get(NULL, "cpu");
|
|
if (IS_ERR(cpu_clk)) {
|
|
printk(KERN_WARNING "Warning: Unable to get CPU clock\n");
|
|
} else {
|
|
unsigned long cpu_hz = clk_get_rate(cpu_clk);
|
|
|
|
/*
|
|
* Well, duh, but it's probably a good idea to
|
|
* increment the use count.
|
|
*/
|
|
clk_enable(cpu_clk);
|
|
|
|
boot_cpu_data.clk = cpu_clk;
|
|
boot_cpu_data.loops_per_jiffy = cpu_hz * 4;
|
|
printk("CPU: Running at %lu.%03lu MHz\n",
|
|
((cpu_hz + 500) / 1000) / 1000,
|
|
((cpu_hz + 500) / 1000) % 1000);
|
|
}
|
|
|
|
init_mm.start_code = (unsigned long) &_text;
|
|
init_mm.end_code = (unsigned long) &_etext;
|
|
init_mm.end_data = (unsigned long) &_edata;
|
|
init_mm.brk = (unsigned long) &_end;
|
|
|
|
strlcpy(command_line, saved_command_line, COMMAND_LINE_SIZE);
|
|
*cmdline_p = command_line;
|
|
parse_early_param();
|
|
|
|
setup_bootmem();
|
|
|
|
board_setup_fbmem(fbmem_start, fbmem_size);
|
|
|
|
#ifdef CONFIG_VT
|
|
conswitchp = &dummy_con;
|
|
#endif
|
|
|
|
paging_init();
|
|
|
|
resource_init();
|
|
}
|