kernel-ark/drivers/serial/jsm/jsm_tty.c
Russell King b129a8ccd5 [SERIAL] Clean up and fix tty transmission start/stoping
The start_tx and stop_tx methods were passed a flag to indicate
whether the start/stop was from the tty start/stop callbacks, and
some drivers used this flag to decide whether to ask the UART to
immediately stop transmission (where the UART supports such a
feature.)

There are other cases when we wish this to occur - when CTS is
lowered, or if we change from soft to hard flow control and CTS
is inactive.  In these cases, this flag was false, and we would
allow the transmitter to drain before stopping.

There is really only one case where we want to let the transmitter
drain before disabling, and that's when we run out of characters
to send.

Hence, re-jig the start_tx and stop_tx methods to eliminate this
flag, and introduce new functions for the special "disable and
allow transmitter to drain" case.

Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
2005-08-31 10:12:14 +01:00

1017 lines
25 KiB
C

/************************************************************************
* Copyright 2003 Digi International (www.digi.com)
*
* Copyright (C) 2004 IBM Corporation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2, or (at your option)
* any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY, EXPRESS OR IMPLIED; without even the
* implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
* PURPOSE. See the GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 * Temple Place - Suite 330, Boston,
* MA 02111-1307, USA.
*
* Contact Information:
* Scott H Kilau <Scott_Kilau@digi.com>
* Wendy Xiong <wendyx@us.ltcfwd.linux.ibm.com>
*
***********************************************************************/
#include <linux/tty.h>
#include <linux/tty_flip.h>
#include <linux/serial_reg.h>
#include <linux/delay.h> /* For udelay */
#include <linux/pci.h>
#include "jsm.h"
static void jsm_carrier(struct jsm_channel *ch);
static inline int jsm_get_mstat(struct jsm_channel *ch)
{
unsigned char mstat;
unsigned result;
jsm_printk(IOCTL, INFO, &ch->ch_bd->pci_dev, "start\n");
mstat = (ch->ch_mostat | ch->ch_mistat);
result = 0;
if (mstat & UART_MCR_DTR)
result |= TIOCM_DTR;
if (mstat & UART_MCR_RTS)
result |= TIOCM_RTS;
if (mstat & UART_MSR_CTS)
result |= TIOCM_CTS;
if (mstat & UART_MSR_DSR)
result |= TIOCM_DSR;
if (mstat & UART_MSR_RI)
result |= TIOCM_RI;
if (mstat & UART_MSR_DCD)
result |= TIOCM_CD;
jsm_printk(IOCTL, INFO, &ch->ch_bd->pci_dev, "finish\n");
return result;
}
static unsigned int jsm_tty_tx_empty(struct uart_port *port)
{
return TIOCSER_TEMT;
}
/*
* Return modem signals to ld.
*/
static unsigned int jsm_tty_get_mctrl(struct uart_port *port)
{
int result;
struct jsm_channel *channel = (struct jsm_channel *)port;
jsm_printk(IOCTL, INFO, &channel->ch_bd->pci_dev, "start\n");
result = jsm_get_mstat(channel);
if (result < 0)
return -ENXIO;
jsm_printk(IOCTL, INFO, &channel->ch_bd->pci_dev, "finish\n");
return result;
}
/*
* jsm_set_modem_info()
*
* Set modem signals, called by ld.
*/
static void jsm_tty_set_mctrl(struct uart_port *port, unsigned int mctrl)
{
struct jsm_channel *channel = (struct jsm_channel *)port;
jsm_printk(IOCTL, INFO, &channel->ch_bd->pci_dev, "start\n");
if (mctrl & TIOCM_RTS)
channel->ch_mostat |= UART_MCR_RTS;
else
channel->ch_mostat &= ~UART_MCR_RTS;
if (mctrl & TIOCM_DTR)
channel->ch_mostat |= UART_MCR_DTR;
else
channel->ch_mostat &= ~UART_MCR_DTR;
channel->ch_bd->bd_ops->assert_modem_signals(channel);
jsm_printk(IOCTL, INFO, &channel->ch_bd->pci_dev, "finish\n");
udelay(10);
}
static void jsm_tty_start_tx(struct uart_port *port)
{
struct jsm_channel *channel = (struct jsm_channel *)port;
jsm_printk(IOCTL, INFO, &channel->ch_bd->pci_dev, "start\n");
channel->ch_flags &= ~(CH_STOP);
jsm_tty_write(port);
jsm_printk(IOCTL, INFO, &channel->ch_bd->pci_dev, "finish\n");
}
static void jsm_tty_stop_tx(struct uart_port *port)
{
struct jsm_channel *channel = (struct jsm_channel *)port;
jsm_printk(IOCTL, INFO, &channel->ch_bd->pci_dev, "start\n");
channel->ch_flags |= (CH_STOP);
jsm_printk(IOCTL, INFO, &channel->ch_bd->pci_dev, "finish\n");
}
static void jsm_tty_send_xchar(struct uart_port *port, char ch)
{
unsigned long lock_flags;
struct jsm_channel *channel = (struct jsm_channel *)port;
spin_lock_irqsave(&port->lock, lock_flags);
if (ch == port->info->tty->termios->c_cc[VSTART])
channel->ch_bd->bd_ops->send_start_character(channel);
if (ch == port->info->tty->termios->c_cc[VSTOP])
channel->ch_bd->bd_ops->send_stop_character(channel);
spin_unlock_irqrestore(&port->lock, lock_flags);
}
static void jsm_tty_stop_rx(struct uart_port *port)
{
struct jsm_channel *channel = (struct jsm_channel *)port;
channel->ch_bd->bd_ops->disable_receiver(channel);
}
static void jsm_tty_break(struct uart_port *port, int break_state)
{
unsigned long lock_flags;
struct jsm_channel *channel = (struct jsm_channel *)port;
spin_lock_irqsave(&port->lock, lock_flags);
if (break_state == -1)
channel->ch_bd->bd_ops->send_break(channel);
else
channel->ch_bd->bd_ops->clear_break(channel, 0);
spin_unlock_irqrestore(&port->lock, lock_flags);
}
static int jsm_tty_open(struct uart_port *port)
{
struct jsm_board *brd;
int rc = 0;
struct jsm_channel *channel = (struct jsm_channel *)port;
/* Get board pointer from our array of majors we have allocated */
brd = channel->ch_bd;
/*
* Allocate channel buffers for read/write/error.
* Set flag, so we don't get trounced on.
*/
channel->ch_flags |= (CH_OPENING);
/* Drop locks, as malloc with GFP_KERNEL can sleep */
if (!channel->ch_rqueue) {
channel->ch_rqueue = (u8 *) kmalloc(RQUEUESIZE, GFP_KERNEL);
if (!channel->ch_rqueue) {
jsm_printk(INIT, ERR, &channel->ch_bd->pci_dev,
"unable to allocate read queue buf");
return -ENOMEM;
}
memset(channel->ch_rqueue, 0, RQUEUESIZE);
}
if (!channel->ch_equeue) {
channel->ch_equeue = (u8 *) kmalloc(EQUEUESIZE, GFP_KERNEL);
if (!channel->ch_equeue) {
jsm_printk(INIT, ERR, &channel->ch_bd->pci_dev,
"unable to allocate error queue buf");
return -ENOMEM;
}
memset(channel->ch_equeue, 0, EQUEUESIZE);
}
if (!channel->ch_wqueue) {
channel->ch_wqueue = (u8 *) kmalloc(WQUEUESIZE, GFP_KERNEL);
if (!channel->ch_wqueue) {
jsm_printk(INIT, ERR, &channel->ch_bd->pci_dev,
"unable to allocate write queue buf");
return -ENOMEM;
}
memset(channel->ch_wqueue, 0, WQUEUESIZE);
}
channel->ch_flags &= ~(CH_OPENING);
/*
* Initialize if neither terminal is open.
*/
jsm_printk(OPEN, INFO, &channel->ch_bd->pci_dev,
"jsm_open: initializing channel in open...\n");
/*
* Flush input queues.
*/
channel->ch_r_head = channel->ch_r_tail = 0;
channel->ch_e_head = channel->ch_e_tail = 0;
channel->ch_w_head = channel->ch_w_tail = 0;
brd->bd_ops->flush_uart_write(channel);
brd->bd_ops->flush_uart_read(channel);
channel->ch_flags = 0;
channel->ch_cached_lsr = 0;
channel->ch_stops_sent = 0;
channel->ch_c_cflag = port->info->tty->termios->c_cflag;
channel->ch_c_iflag = port->info->tty->termios->c_iflag;
channel->ch_c_oflag = port->info->tty->termios->c_oflag;
channel->ch_c_lflag = port->info->tty->termios->c_lflag;
channel->ch_startc = port->info->tty->termios->c_cc[VSTART];
channel->ch_stopc = port->info->tty->termios->c_cc[VSTOP];
/* Tell UART to init itself */
brd->bd_ops->uart_init(channel);
/*
* Run param in case we changed anything
*/
brd->bd_ops->param(channel);
jsm_carrier(channel);
channel->ch_open_count++;
jsm_printk(OPEN, INFO, &channel->ch_bd->pci_dev, "finish\n");
return rc;
}
static void jsm_tty_close(struct uart_port *port)
{
struct jsm_board *bd;
struct termios *ts;
struct jsm_channel *channel = (struct jsm_channel *)port;
jsm_printk(CLOSE, INFO, &channel->ch_bd->pci_dev, "start\n");
bd = channel->ch_bd;
ts = channel->uart_port.info->tty->termios;
channel->ch_flags &= ~(CH_STOPI);
channel->ch_open_count--;
/*
* If we have HUPCL set, lower DTR and RTS
*/
if (channel->ch_c_cflag & HUPCL) {
jsm_printk(CLOSE, INFO, &channel->ch_bd->pci_dev,
"Close. HUPCL set, dropping DTR/RTS\n");
/* Drop RTS/DTR */
channel->ch_mostat &= ~(UART_MCR_DTR | UART_MCR_RTS);
bd->bd_ops->assert_modem_signals(channel);
}
channel->ch_old_baud = 0;
/* Turn off UART interrupts for this port */
channel->ch_bd->bd_ops->uart_off(channel);
jsm_printk(CLOSE, INFO, &channel->ch_bd->pci_dev, "finish\n");
}
static void jsm_tty_set_termios(struct uart_port *port,
struct termios *termios,
struct termios *old_termios)
{
unsigned long lock_flags;
struct jsm_channel *channel = (struct jsm_channel *)port;
spin_lock_irqsave(&port->lock, lock_flags);
channel->ch_c_cflag = termios->c_cflag;
channel->ch_c_iflag = termios->c_iflag;
channel->ch_c_oflag = termios->c_oflag;
channel->ch_c_lflag = termios->c_lflag;
channel->ch_startc = termios->c_cc[VSTART];
channel->ch_stopc = termios->c_cc[VSTOP];
channel->ch_bd->bd_ops->param(channel);
jsm_carrier(channel);
spin_unlock_irqrestore(&port->lock, lock_flags);
}
static const char *jsm_tty_type(struct uart_port *port)
{
return "jsm";
}
static void jsm_tty_release_port(struct uart_port *port)
{
}
static int jsm_tty_request_port(struct uart_port *port)
{
return 0;
}
static void jsm_config_port(struct uart_port *port, int flags)
{
port->type = PORT_JSM;
}
static struct uart_ops jsm_ops = {
.tx_empty = jsm_tty_tx_empty,
.set_mctrl = jsm_tty_set_mctrl,
.get_mctrl = jsm_tty_get_mctrl,
.stop_tx = jsm_tty_stop_tx,
.start_tx = jsm_tty_start_tx,
.send_xchar = jsm_tty_send_xchar,
.stop_rx = jsm_tty_stop_rx,
.break_ctl = jsm_tty_break,
.startup = jsm_tty_open,
.shutdown = jsm_tty_close,
.set_termios = jsm_tty_set_termios,
.type = jsm_tty_type,
.release_port = jsm_tty_release_port,
.request_port = jsm_tty_request_port,
.config_port = jsm_config_port,
};
/*
* jsm_tty_init()
*
* Init the tty subsystem. Called once per board after board has been
* downloaded and init'ed.
*/
int jsm_tty_init(struct jsm_board *brd)
{
int i;
void __iomem *vaddr;
struct jsm_channel *ch;
if (!brd)
return -ENXIO;
jsm_printk(INIT, INFO, &brd->pci_dev, "start\n");
/*
* Initialize board structure elements.
*/
brd->nasync = brd->maxports;
/*
* Allocate channel memory that might not have been allocated
* when the driver was first loaded.
*/
for (i = 0; i < brd->nasync; i++) {
if (!brd->channels[i]) {
/*
* Okay to malloc with GFP_KERNEL, we are not at
* interrupt context, and there are no locks held.
*/
brd->channels[i] = kmalloc(sizeof(struct jsm_channel), GFP_KERNEL);
if (!brd->channels[i]) {
jsm_printk(CORE, ERR, &brd->pci_dev,
"%s:%d Unable to allocate memory for channel struct\n",
__FILE__, __LINE__);
}
memset(brd->channels[i], 0, sizeof(struct jsm_channel));
}
}
ch = brd->channels[0];
vaddr = brd->re_map_membase;
/* Set up channel variables */
for (i = 0; i < brd->nasync; i++, ch = brd->channels[i]) {
if (!brd->channels[i])
continue;
spin_lock_init(&ch->ch_lock);
if (brd->bd_uart_offset == 0x200)
ch->ch_neo_uart = vaddr + (brd->bd_uart_offset * i);
ch->ch_bd = brd;
ch->ch_portnum = i;
/* .25 second delay */
ch->ch_close_delay = 250;
init_waitqueue_head(&ch->ch_flags_wait);
}
jsm_printk(INIT, INFO, &brd->pci_dev, "finish\n");
return 0;
}
int jsm_uart_port_init(struct jsm_board *brd)
{
int i;
struct jsm_channel *ch;
if (!brd)
return -ENXIO;
jsm_printk(INIT, INFO, &brd->pci_dev, "start\n");
/*
* Initialize board structure elements.
*/
brd->nasync = brd->maxports;
/* Set up channel variables */
for (i = 0; i < brd->nasync; i++, ch = brd->channels[i]) {
if (!brd->channels[i])
continue;
brd->channels[i]->uart_port.irq = brd->irq;
brd->channels[i]->uart_port.type = PORT_JSM;
brd->channels[i]->uart_port.iotype = UPIO_MEM;
brd->channels[i]->uart_port.membase = brd->re_map_membase;
brd->channels[i]->uart_port.fifosize = 16;
brd->channels[i]->uart_port.ops = &jsm_ops;
brd->channels[i]->uart_port.line = brd->channels[i]->ch_portnum + brd->boardnum * 2;
if (uart_add_one_port (&jsm_uart_driver, &brd->channels[i]->uart_port))
printk(KERN_INFO "Added device failed\n");
else
printk(KERN_INFO "Added device \n");
}
jsm_printk(INIT, INFO, &brd->pci_dev, "finish\n");
return 0;
}
int jsm_remove_uart_port(struct jsm_board *brd)
{
int i;
struct jsm_channel *ch;
if (!brd)
return -ENXIO;
jsm_printk(INIT, INFO, &brd->pci_dev, "start\n");
/*
* Initialize board structure elements.
*/
brd->nasync = brd->maxports;
/* Set up channel variables */
for (i = 0; i < brd->nasync; i++) {
if (!brd->channels[i])
continue;
ch = brd->channels[i];
uart_remove_one_port(&jsm_uart_driver, &brd->channels[i]->uart_port);
}
jsm_printk(INIT, INFO, &brd->pci_dev, "finish\n");
return 0;
}
void jsm_input(struct jsm_channel *ch)
{
struct jsm_board *bd;
struct tty_struct *tp;
u32 rmask;
u16 head;
u16 tail;
int data_len;
unsigned long lock_flags;
int flip_len;
int len = 0;
int n = 0;
char *buf = NULL;
char *buf2 = NULL;
int s = 0;
int i = 0;
jsm_printk(READ, INFO, &ch->ch_bd->pci_dev, "start\n");
if (!ch)
return;
tp = ch->uart_port.info->tty;
bd = ch->ch_bd;
if(!bd)
return;
spin_lock_irqsave(&ch->ch_lock, lock_flags);
/*
*Figure the number of characters in the buffer.
*Exit immediately if none.
*/
rmask = RQUEUEMASK;
head = ch->ch_r_head & rmask;
tail = ch->ch_r_tail & rmask;
data_len = (head - tail) & rmask;
if (data_len == 0) {
spin_unlock_irqrestore(&ch->ch_lock, lock_flags);
return;
}
jsm_printk(READ, INFO, &ch->ch_bd->pci_dev, "start\n");
/*
*If the device is not open, or CREAD is off, flush
*input data and return immediately.
*/
if (!tp ||
!(tp->termios->c_cflag & CREAD) ) {
jsm_printk(READ, INFO, &ch->ch_bd->pci_dev,
"input. dropping %d bytes on port %d...\n", data_len, ch->ch_portnum);
ch->ch_r_head = tail;
/* Force queue flow control to be released, if needed */
jsm_check_queue_flow_control(ch);
spin_unlock_irqrestore(&ch->ch_lock, lock_flags);
return;
}
/*
* If we are throttled, simply don't read any data.
*/
if (ch->ch_flags & CH_STOPI) {
spin_unlock_irqrestore(&ch->ch_lock, lock_flags);
jsm_printk(READ, INFO, &ch->ch_bd->pci_dev,
"Port %d throttled, not reading any data. head: %x tail: %x\n",
ch->ch_portnum, head, tail);
return;
}
jsm_printk(READ, INFO, &ch->ch_bd->pci_dev, "start 2\n");
/*
* If the rxbuf is empty and we are not throttled, put as much
* as we can directly into the linux TTY flip buffer.
* The jsm_rawreadok case takes advantage of carnal knowledge that
* the char_buf and the flag_buf are next to each other and
* are each of (2 * TTY_FLIPBUF_SIZE) size.
*
* NOTE: if(!tty->real_raw), the call to ldisc.receive_buf
*actually still uses the flag buffer, so you can't
*use it for input data
*/
if (jsm_rawreadok) {
if (tp->real_raw)
flip_len = MYFLIPLEN;
else
flip_len = 2 * TTY_FLIPBUF_SIZE;
} else
flip_len = TTY_FLIPBUF_SIZE - tp->flip.count;
len = min(data_len, flip_len);
len = min(len, (N_TTY_BUF_SIZE - 1) - tp->read_cnt);
if (len <= 0) {
spin_unlock_irqrestore(&ch->ch_lock, lock_flags);
jsm_printk(READ, INFO, &ch->ch_bd->pci_dev, "jsm_input 1\n");
return;
}
/*
* If we're bypassing flip buffers on rx, we can blast it
* right into the beginning of the buffer.
*/
if (jsm_rawreadok) {
if (tp->real_raw) {
if (ch->ch_flags & CH_FLIPBUF_IN_USE) {
jsm_printk(READ, INFO, &ch->ch_bd->pci_dev,
"JSM - FLIPBUF in use. delaying input\n");
spin_unlock_irqrestore(&ch->ch_lock, lock_flags);
return;
}
ch->ch_flags |= CH_FLIPBUF_IN_USE;
buf = ch->ch_bd->flipbuf;
buf2 = NULL;
} else {
buf = tp->flip.char_buf;
buf2 = tp->flip.flag_buf;
}
} else {
buf = tp->flip.char_buf_ptr;
buf2 = tp->flip.flag_buf_ptr;
}
n = len;
/*
* n now contains the most amount of data we can copy,
* bounded either by the flip buffer size or the amount
* of data the card actually has pending...
*/
while (n) {
s = ((head >= tail) ? head : RQUEUESIZE) - tail;
s = min(s, n);
if (s <= 0)
break;
memcpy(buf, ch->ch_rqueue + tail, s);
/* buf2 is only set when port isn't raw */
if (buf2)
memcpy(buf2, ch->ch_equeue + tail, s);
tail += s;
buf += s;
if (buf2)
buf2 += s;
n -= s;
/* Flip queue if needed */
tail &= rmask;
}
/*
* In high performance mode, we don't have to update
* flag_buf or any of the counts or pointers into flip buf.
*/
if (!jsm_rawreadok) {
if (I_PARMRK(tp) || I_BRKINT(tp) || I_INPCK(tp)) {
for (i = 0; i < len; i++) {
/*
* Give the Linux ld the flags in the
* format it likes.
*/
if (tp->flip.flag_buf_ptr[i] & UART_LSR_BI)
tp->flip.flag_buf_ptr[i] = TTY_BREAK;
else if (tp->flip.flag_buf_ptr[i] & UART_LSR_PE)
tp->flip.flag_buf_ptr[i] = TTY_PARITY;
else if (tp->flip.flag_buf_ptr[i] & UART_LSR_FE)
tp->flip.flag_buf_ptr[i] = TTY_FRAME;
else
tp->flip.flag_buf_ptr[i] = TTY_NORMAL;
}
} else {
memset(tp->flip.flag_buf_ptr, 0, len);
}
tp->flip.char_buf_ptr += len;
tp->flip.flag_buf_ptr += len;
tp->flip.count += len;
}
else if (!tp->real_raw) {
if (I_PARMRK(tp) || I_BRKINT(tp) || I_INPCK(tp)) {
for (i = 0; i < len; i++) {
/*
* Give the Linux ld the flags in the
* format it likes.
*/
if (tp->flip.flag_buf_ptr[i] & UART_LSR_BI)
tp->flip.flag_buf_ptr[i] = TTY_BREAK;
else if (tp->flip.flag_buf_ptr[i] & UART_LSR_PE)
tp->flip.flag_buf_ptr[i] = TTY_PARITY;
else if (tp->flip.flag_buf_ptr[i] & UART_LSR_FE)
tp->flip.flag_buf_ptr[i] = TTY_FRAME;
else
tp->flip.flag_buf_ptr[i] = TTY_NORMAL;
}
} else
memset(tp->flip.flag_buf, 0, len);
}
/*
* If we're doing raw reads, jam it right into the
* line disc bypassing the flip buffers.
*/
if (jsm_rawreadok) {
if (tp->real_raw) {
ch->ch_r_tail = tail & rmask;
ch->ch_e_tail = tail & rmask;
jsm_check_queue_flow_control(ch);
/* !!! WE *MUST* LET GO OF ALL LOCKS BEFORE CALLING RECEIVE BUF !!! */
spin_unlock_irqrestore(&ch->ch_lock, lock_flags);
jsm_printk(READ, INFO, &ch->ch_bd->pci_dev,
"jsm_input. %d real_raw len:%d calling receive_buf for board %d\n",
__LINE__, len, ch->ch_bd->boardnum);
tp->ldisc.receive_buf(tp, ch->ch_bd->flipbuf, NULL, len);
/* Allow use of channel flip buffer again */
spin_lock_irqsave(&ch->ch_lock, lock_flags);
ch->ch_flags &= ~CH_FLIPBUF_IN_USE;
spin_unlock_irqrestore(&ch->ch_lock, lock_flags);
} else {
ch->ch_r_tail = tail & rmask;
ch->ch_e_tail = tail & rmask;
jsm_check_queue_flow_control(ch);
/* !!! WE *MUST* LET GO OF ALL LOCKS BEFORE CALLING RECEIVE BUF !!! */
spin_unlock_irqrestore(&ch->ch_lock, lock_flags);
jsm_printk(READ, INFO, &ch->ch_bd->pci_dev,
"jsm_input. %d not real_raw len:%d calling receive_buf for board %d\n",
__LINE__, len, ch->ch_bd->boardnum);
tp->ldisc.receive_buf(tp, tp->flip.char_buf, tp->flip.flag_buf, len);
}
} else {
ch->ch_r_tail = tail & rmask;
ch->ch_e_tail = tail & rmask;
jsm_check_queue_flow_control(ch);
spin_unlock_irqrestore(&ch->ch_lock, lock_flags);
jsm_printk(READ, INFO, &ch->ch_bd->pci_dev,
"jsm_input. %d not jsm_read raw okay scheduling flip\n", __LINE__);
tty_schedule_flip(tp);
}
jsm_printk(IOCTL, INFO, &ch->ch_bd->pci_dev, "finish\n");
}
static void jsm_carrier(struct jsm_channel *ch)
{
struct jsm_board *bd;
int virt_carrier = 0;
int phys_carrier = 0;
jsm_printk(CARR, INFO, &ch->ch_bd->pci_dev, "start\n");
if (!ch)
return;
bd = ch->ch_bd;
if (!bd)
return;
if (ch->ch_mistat & UART_MSR_DCD) {
jsm_printk(CARR, INFO, &ch->ch_bd->pci_dev,
"mistat: %x D_CD: %x\n", ch->ch_mistat, ch->ch_mistat & UART_MSR_DCD);
phys_carrier = 1;
}
if (ch->ch_c_cflag & CLOCAL)
virt_carrier = 1;
jsm_printk(CARR, INFO, &ch->ch_bd->pci_dev,
"DCD: physical: %d virt: %d\n", phys_carrier, virt_carrier);
/*
* Test for a VIRTUAL carrier transition to HIGH.
*/
if (((ch->ch_flags & CH_FCAR) == 0) && (virt_carrier == 1)) {
/*
* When carrier rises, wake any threads waiting
* for carrier in the open routine.
*/
jsm_printk(CARR, INFO, &ch->ch_bd->pci_dev,
"carrier: virt DCD rose\n");
if (waitqueue_active(&(ch->ch_flags_wait)))
wake_up_interruptible(&ch->ch_flags_wait);
}
/*
* Test for a PHYSICAL carrier transition to HIGH.
*/
if (((ch->ch_flags & CH_CD) == 0) && (phys_carrier == 1)) {
/*
* When carrier rises, wake any threads waiting
* for carrier in the open routine.
*/
jsm_printk(CARR, INFO, &ch->ch_bd->pci_dev,
"carrier: physical DCD rose\n");
if (waitqueue_active(&(ch->ch_flags_wait)))
wake_up_interruptible(&ch->ch_flags_wait);
}
/*
* Test for a PHYSICAL transition to low, so long as we aren't
* currently ignoring physical transitions (which is what "virtual
* carrier" indicates).
*
* The transition of the virtual carrier to low really doesn't
* matter... it really only means "ignore carrier state", not
* "make pretend that carrier is there".
*/
if ((virt_carrier == 0) && ((ch->ch_flags & CH_CD) != 0)
&& (phys_carrier == 0)) {
/*
* When carrier drops:
*
* Drop carrier on all open units.
*
* Flush queues, waking up any task waiting in the
* line discipline.
*
* Send a hangup to the control terminal.
*
* Enable all select calls.
*/
if (waitqueue_active(&(ch->ch_flags_wait)))
wake_up_interruptible(&ch->ch_flags_wait);
}
/*
* Make sure that our cached values reflect the current reality.
*/
if (virt_carrier == 1)
ch->ch_flags |= CH_FCAR;
else
ch->ch_flags &= ~CH_FCAR;
if (phys_carrier == 1)
ch->ch_flags |= CH_CD;
else
ch->ch_flags &= ~CH_CD;
}
void jsm_check_queue_flow_control(struct jsm_channel *ch)
{
int qleft = 0;
/* Store how much space we have left in the queue */
if ((qleft = ch->ch_r_tail - ch->ch_r_head - 1) < 0)
qleft += RQUEUEMASK + 1;
/*
* Check to see if we should enforce flow control on our queue because
* the ld (or user) isn't reading data out of our queue fast enuf.
*
* NOTE: This is done based on what the current flow control of the
* port is set for.
*
* 1) HWFLOW (RTS) - Turn off the UART's Receive interrupt.
* This will cause the UART's FIFO to back up, and force
* the RTS signal to be dropped.
* 2) SWFLOW (IXOFF) - Keep trying to send a stop character to
* the other side, in hopes it will stop sending data to us.
* 3) NONE - Nothing we can do. We will simply drop any extra data
* that gets sent into us when the queue fills up.
*/
if (qleft < 256) {
/* HWFLOW */
if (ch->ch_c_cflag & CRTSCTS) {
if(!(ch->ch_flags & CH_RECEIVER_OFF)) {
ch->ch_bd->bd_ops->disable_receiver(ch);
ch->ch_flags |= (CH_RECEIVER_OFF);
jsm_printk(READ, INFO, &ch->ch_bd->pci_dev,
"Internal queue hit hilevel mark (%d)! Turning off interrupts.\n",
qleft);
}
}
/* SWFLOW */
else if (ch->ch_c_iflag & IXOFF) {
if (ch->ch_stops_sent <= MAX_STOPS_SENT) {
ch->ch_bd->bd_ops->send_stop_character(ch);
ch->ch_stops_sent++;
jsm_printk(READ, INFO, &ch->ch_bd->pci_dev,
"Sending stop char! Times sent: %x\n", ch->ch_stops_sent);
}
}
}
/*
* Check to see if we should unenforce flow control because
* ld (or user) finally read enuf data out of our queue.
*
* NOTE: This is done based on what the current flow control of the
* port is set for.
*
* 1) HWFLOW (RTS) - Turn back on the UART's Receive interrupt.
* This will cause the UART's FIFO to raise RTS back up,
* which will allow the other side to start sending data again.
* 2) SWFLOW (IXOFF) - Send a start character to
* the other side, so it will start sending data to us again.
* 3) NONE - Do nothing. Since we didn't do anything to turn off the
* other side, we don't need to do anything now.
*/
if (qleft > (RQUEUESIZE / 2)) {
/* HWFLOW */
if (ch->ch_c_cflag & CRTSCTS) {
if (ch->ch_flags & CH_RECEIVER_OFF) {
ch->ch_bd->bd_ops->enable_receiver(ch);
ch->ch_flags &= ~(CH_RECEIVER_OFF);
jsm_printk(READ, INFO, &ch->ch_bd->pci_dev,
"Internal queue hit lowlevel mark (%d)! Turning on interrupts.\n",
qleft);
}
}
/* SWFLOW */
else if (ch->ch_c_iflag & IXOFF && ch->ch_stops_sent) {
ch->ch_stops_sent = 0;
ch->ch_bd->bd_ops->send_start_character(ch);
jsm_printk(READ, INFO, &ch->ch_bd->pci_dev, "Sending start char!\n");
}
}
}
/*
* jsm_tty_write()
*
* Take data from the user or kernel and send it out to the FEP.
* In here exists all the Transparent Print magic as well.
*/
int jsm_tty_write(struct uart_port *port)
{
int bufcount = 0, n = 0;
int data_count = 0,data_count1 =0;
u16 head;
u16 tail;
u16 tmask;
u32 remain;
int temp_tail = port->info->xmit.tail;
struct jsm_channel *channel = (struct jsm_channel *)port;
tmask = WQUEUEMASK;
head = (channel->ch_w_head) & tmask;
tail = (channel->ch_w_tail) & tmask;
if ((bufcount = tail - head - 1) < 0)
bufcount += WQUEUESIZE;
n = bufcount;
n = min(n, 56);
remain = WQUEUESIZE - head;
data_count = 0;
if (n >= remain) {
n -= remain;
while ((port->info->xmit.head != temp_tail) &&
(data_count < remain)) {
channel->ch_wqueue[head++] =
port->info->xmit.buf[temp_tail];
temp_tail++;
temp_tail &= (UART_XMIT_SIZE - 1);
data_count++;
}
if (data_count == remain) head = 0;
}
data_count1 = 0;
if (n > 0) {
remain = n;
while ((port->info->xmit.head != temp_tail) &&
(data_count1 < remain)) {
channel->ch_wqueue[head++] =
port->info->xmit.buf[temp_tail];
temp_tail++;
temp_tail &= (UART_XMIT_SIZE - 1);
data_count1++;
}
}
port->info->xmit.tail = temp_tail;
data_count += data_count1;
if (data_count) {
head &= tmask;
channel->ch_w_head = head;
}
if (data_count) {
channel->ch_bd->bd_ops->copy_data_from_queue_to_uart(channel);
}
return data_count;
}