kernel-ark/arch/x86/crypto/aesni-intel_glue.c
Shreyansh Chouhan a2d3cbc80d crypto: aesni - check walk.nbytes instead of err
In the code for xts_crypt(), we check for the err value returned by
skcipher_walk_virt() and return from the function if it is non zero.
However, skcipher_walk_virt() can set walk.nbytes to 0, which would cause
us to call kernel_fpu_begin(), and then skip the kernel_fpu_end() call.

This patch checks for the walk.nbytes value instead, and returns if
walk.nbytes is 0. This prevents us from calling kernel_fpu_begin() in
the first place and also covers the case of having a non zero err value
returned from skcipher_walk_virt().

Reported-by: Dan Carpenter <dan.carpenter@oracle.com>
Signed-off-by: Shreyansh Chouhan <chouhan.shreyansh630@gmail.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2021-09-17 11:06:15 +08:00

1208 lines
33 KiB
C

// SPDX-License-Identifier: GPL-2.0-or-later
/*
* Support for Intel AES-NI instructions. This file contains glue
* code, the real AES implementation is in intel-aes_asm.S.
*
* Copyright (C) 2008, Intel Corp.
* Author: Huang Ying <ying.huang@intel.com>
*
* Added RFC4106 AES-GCM support for 128-bit keys under the AEAD
* interface for 64-bit kernels.
* Authors: Adrian Hoban <adrian.hoban@intel.com>
* Gabriele Paoloni <gabriele.paoloni@intel.com>
* Tadeusz Struk (tadeusz.struk@intel.com)
* Aidan O'Mahony (aidan.o.mahony@intel.com)
* Copyright (c) 2010, Intel Corporation.
*/
#include <linux/hardirq.h>
#include <linux/types.h>
#include <linux/module.h>
#include <linux/err.h>
#include <crypto/algapi.h>
#include <crypto/aes.h>
#include <crypto/ctr.h>
#include <crypto/b128ops.h>
#include <crypto/gcm.h>
#include <crypto/xts.h>
#include <asm/cpu_device_id.h>
#include <asm/simd.h>
#include <crypto/scatterwalk.h>
#include <crypto/internal/aead.h>
#include <crypto/internal/simd.h>
#include <crypto/internal/skcipher.h>
#include <linux/jump_label.h>
#include <linux/workqueue.h>
#include <linux/spinlock.h>
#include <linux/static_call.h>
#define AESNI_ALIGN 16
#define AESNI_ALIGN_ATTR __attribute__ ((__aligned__(AESNI_ALIGN)))
#define AES_BLOCK_MASK (~(AES_BLOCK_SIZE - 1))
#define RFC4106_HASH_SUBKEY_SIZE 16
#define AESNI_ALIGN_EXTRA ((AESNI_ALIGN - 1) & ~(CRYPTO_MINALIGN - 1))
#define CRYPTO_AES_CTX_SIZE (sizeof(struct crypto_aes_ctx) + AESNI_ALIGN_EXTRA)
#define XTS_AES_CTX_SIZE (sizeof(struct aesni_xts_ctx) + AESNI_ALIGN_EXTRA)
/* This data is stored at the end of the crypto_tfm struct.
* It's a type of per "session" data storage location.
* This needs to be 16 byte aligned.
*/
struct aesni_rfc4106_gcm_ctx {
u8 hash_subkey[16] AESNI_ALIGN_ATTR;
struct crypto_aes_ctx aes_key_expanded AESNI_ALIGN_ATTR;
u8 nonce[4];
};
struct generic_gcmaes_ctx {
u8 hash_subkey[16] AESNI_ALIGN_ATTR;
struct crypto_aes_ctx aes_key_expanded AESNI_ALIGN_ATTR;
};
struct aesni_xts_ctx {
u8 raw_tweak_ctx[sizeof(struct crypto_aes_ctx)] AESNI_ALIGN_ATTR;
u8 raw_crypt_ctx[sizeof(struct crypto_aes_ctx)] AESNI_ALIGN_ATTR;
};
#define GCM_BLOCK_LEN 16
struct gcm_context_data {
/* init, update and finalize context data */
u8 aad_hash[GCM_BLOCK_LEN];
u64 aad_length;
u64 in_length;
u8 partial_block_enc_key[GCM_BLOCK_LEN];
u8 orig_IV[GCM_BLOCK_LEN];
u8 current_counter[GCM_BLOCK_LEN];
u64 partial_block_len;
u64 unused;
u8 hash_keys[GCM_BLOCK_LEN * 16];
};
asmlinkage int aesni_set_key(struct crypto_aes_ctx *ctx, const u8 *in_key,
unsigned int key_len);
asmlinkage void aesni_enc(const void *ctx, u8 *out, const u8 *in);
asmlinkage void aesni_dec(const void *ctx, u8 *out, const u8 *in);
asmlinkage void aesni_ecb_enc(struct crypto_aes_ctx *ctx, u8 *out,
const u8 *in, unsigned int len);
asmlinkage void aesni_ecb_dec(struct crypto_aes_ctx *ctx, u8 *out,
const u8 *in, unsigned int len);
asmlinkage void aesni_cbc_enc(struct crypto_aes_ctx *ctx, u8 *out,
const u8 *in, unsigned int len, u8 *iv);
asmlinkage void aesni_cbc_dec(struct crypto_aes_ctx *ctx, u8 *out,
const u8 *in, unsigned int len, u8 *iv);
asmlinkage void aesni_cts_cbc_enc(struct crypto_aes_ctx *ctx, u8 *out,
const u8 *in, unsigned int len, u8 *iv);
asmlinkage void aesni_cts_cbc_dec(struct crypto_aes_ctx *ctx, u8 *out,
const u8 *in, unsigned int len, u8 *iv);
#define AVX_GEN2_OPTSIZE 640
#define AVX_GEN4_OPTSIZE 4096
asmlinkage void aesni_xts_encrypt(const struct crypto_aes_ctx *ctx, u8 *out,
const u8 *in, unsigned int len, u8 *iv);
asmlinkage void aesni_xts_decrypt(const struct crypto_aes_ctx *ctx, u8 *out,
const u8 *in, unsigned int len, u8 *iv);
#ifdef CONFIG_X86_64
asmlinkage void aesni_ctr_enc(struct crypto_aes_ctx *ctx, u8 *out,
const u8 *in, unsigned int len, u8 *iv);
DEFINE_STATIC_CALL(aesni_ctr_enc_tfm, aesni_ctr_enc);
/* Scatter / Gather routines, with args similar to above */
asmlinkage void aesni_gcm_init(void *ctx,
struct gcm_context_data *gdata,
u8 *iv,
u8 *hash_subkey, const u8 *aad,
unsigned long aad_len);
asmlinkage void aesni_gcm_enc_update(void *ctx,
struct gcm_context_data *gdata, u8 *out,
const u8 *in, unsigned long plaintext_len);
asmlinkage void aesni_gcm_dec_update(void *ctx,
struct gcm_context_data *gdata, u8 *out,
const u8 *in,
unsigned long ciphertext_len);
asmlinkage void aesni_gcm_finalize(void *ctx,
struct gcm_context_data *gdata,
u8 *auth_tag, unsigned long auth_tag_len);
asmlinkage void aes_ctr_enc_128_avx_by8(const u8 *in, u8 *iv,
void *keys, u8 *out, unsigned int num_bytes);
asmlinkage void aes_ctr_enc_192_avx_by8(const u8 *in, u8 *iv,
void *keys, u8 *out, unsigned int num_bytes);
asmlinkage void aes_ctr_enc_256_avx_by8(const u8 *in, u8 *iv,
void *keys, u8 *out, unsigned int num_bytes);
/*
* asmlinkage void aesni_gcm_init_avx_gen2()
* gcm_data *my_ctx_data, context data
* u8 *hash_subkey, the Hash sub key input. Data starts on a 16-byte boundary.
*/
asmlinkage void aesni_gcm_init_avx_gen2(void *my_ctx_data,
struct gcm_context_data *gdata,
u8 *iv,
u8 *hash_subkey,
const u8 *aad,
unsigned long aad_len);
asmlinkage void aesni_gcm_enc_update_avx_gen2(void *ctx,
struct gcm_context_data *gdata, u8 *out,
const u8 *in, unsigned long plaintext_len);
asmlinkage void aesni_gcm_dec_update_avx_gen2(void *ctx,
struct gcm_context_data *gdata, u8 *out,
const u8 *in,
unsigned long ciphertext_len);
asmlinkage void aesni_gcm_finalize_avx_gen2(void *ctx,
struct gcm_context_data *gdata,
u8 *auth_tag, unsigned long auth_tag_len);
/*
* asmlinkage void aesni_gcm_init_avx_gen4()
* gcm_data *my_ctx_data, context data
* u8 *hash_subkey, the Hash sub key input. Data starts on a 16-byte boundary.
*/
asmlinkage void aesni_gcm_init_avx_gen4(void *my_ctx_data,
struct gcm_context_data *gdata,
u8 *iv,
u8 *hash_subkey,
const u8 *aad,
unsigned long aad_len);
asmlinkage void aesni_gcm_enc_update_avx_gen4(void *ctx,
struct gcm_context_data *gdata, u8 *out,
const u8 *in, unsigned long plaintext_len);
asmlinkage void aesni_gcm_dec_update_avx_gen4(void *ctx,
struct gcm_context_data *gdata, u8 *out,
const u8 *in,
unsigned long ciphertext_len);
asmlinkage void aesni_gcm_finalize_avx_gen4(void *ctx,
struct gcm_context_data *gdata,
u8 *auth_tag, unsigned long auth_tag_len);
static __ro_after_init DEFINE_STATIC_KEY_FALSE(gcm_use_avx);
static __ro_after_init DEFINE_STATIC_KEY_FALSE(gcm_use_avx2);
static inline struct
aesni_rfc4106_gcm_ctx *aesni_rfc4106_gcm_ctx_get(struct crypto_aead *tfm)
{
unsigned long align = AESNI_ALIGN;
if (align <= crypto_tfm_ctx_alignment())
align = 1;
return PTR_ALIGN(crypto_aead_ctx(tfm), align);
}
static inline struct
generic_gcmaes_ctx *generic_gcmaes_ctx_get(struct crypto_aead *tfm)
{
unsigned long align = AESNI_ALIGN;
if (align <= crypto_tfm_ctx_alignment())
align = 1;
return PTR_ALIGN(crypto_aead_ctx(tfm), align);
}
#endif
static inline struct crypto_aes_ctx *aes_ctx(void *raw_ctx)
{
unsigned long addr = (unsigned long)raw_ctx;
unsigned long align = AESNI_ALIGN;
if (align <= crypto_tfm_ctx_alignment())
align = 1;
return (struct crypto_aes_ctx *)ALIGN(addr, align);
}
static int aes_set_key_common(struct crypto_tfm *tfm, void *raw_ctx,
const u8 *in_key, unsigned int key_len)
{
struct crypto_aes_ctx *ctx = aes_ctx(raw_ctx);
int err;
if (key_len != AES_KEYSIZE_128 && key_len != AES_KEYSIZE_192 &&
key_len != AES_KEYSIZE_256)
return -EINVAL;
if (!crypto_simd_usable())
err = aes_expandkey(ctx, in_key, key_len);
else {
kernel_fpu_begin();
err = aesni_set_key(ctx, in_key, key_len);
kernel_fpu_end();
}
return err;
}
static int aes_set_key(struct crypto_tfm *tfm, const u8 *in_key,
unsigned int key_len)
{
return aes_set_key_common(tfm, crypto_tfm_ctx(tfm), in_key, key_len);
}
static void aesni_encrypt(struct crypto_tfm *tfm, u8 *dst, const u8 *src)
{
struct crypto_aes_ctx *ctx = aes_ctx(crypto_tfm_ctx(tfm));
if (!crypto_simd_usable()) {
aes_encrypt(ctx, dst, src);
} else {
kernel_fpu_begin();
aesni_enc(ctx, dst, src);
kernel_fpu_end();
}
}
static void aesni_decrypt(struct crypto_tfm *tfm, u8 *dst, const u8 *src)
{
struct crypto_aes_ctx *ctx = aes_ctx(crypto_tfm_ctx(tfm));
if (!crypto_simd_usable()) {
aes_decrypt(ctx, dst, src);
} else {
kernel_fpu_begin();
aesni_dec(ctx, dst, src);
kernel_fpu_end();
}
}
static int aesni_skcipher_setkey(struct crypto_skcipher *tfm, const u8 *key,
unsigned int len)
{
return aes_set_key_common(crypto_skcipher_tfm(tfm),
crypto_skcipher_ctx(tfm), key, len);
}
static int ecb_encrypt(struct skcipher_request *req)
{
struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
struct crypto_aes_ctx *ctx = aes_ctx(crypto_skcipher_ctx(tfm));
struct skcipher_walk walk;
unsigned int nbytes;
int err;
err = skcipher_walk_virt(&walk, req, false);
while ((nbytes = walk.nbytes)) {
kernel_fpu_begin();
aesni_ecb_enc(ctx, walk.dst.virt.addr, walk.src.virt.addr,
nbytes & AES_BLOCK_MASK);
kernel_fpu_end();
nbytes &= AES_BLOCK_SIZE - 1;
err = skcipher_walk_done(&walk, nbytes);
}
return err;
}
static int ecb_decrypt(struct skcipher_request *req)
{
struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
struct crypto_aes_ctx *ctx = aes_ctx(crypto_skcipher_ctx(tfm));
struct skcipher_walk walk;
unsigned int nbytes;
int err;
err = skcipher_walk_virt(&walk, req, false);
while ((nbytes = walk.nbytes)) {
kernel_fpu_begin();
aesni_ecb_dec(ctx, walk.dst.virt.addr, walk.src.virt.addr,
nbytes & AES_BLOCK_MASK);
kernel_fpu_end();
nbytes &= AES_BLOCK_SIZE - 1;
err = skcipher_walk_done(&walk, nbytes);
}
return err;
}
static int cbc_encrypt(struct skcipher_request *req)
{
struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
struct crypto_aes_ctx *ctx = aes_ctx(crypto_skcipher_ctx(tfm));
struct skcipher_walk walk;
unsigned int nbytes;
int err;
err = skcipher_walk_virt(&walk, req, false);
while ((nbytes = walk.nbytes)) {
kernel_fpu_begin();
aesni_cbc_enc(ctx, walk.dst.virt.addr, walk.src.virt.addr,
nbytes & AES_BLOCK_MASK, walk.iv);
kernel_fpu_end();
nbytes &= AES_BLOCK_SIZE - 1;
err = skcipher_walk_done(&walk, nbytes);
}
return err;
}
static int cbc_decrypt(struct skcipher_request *req)
{
struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
struct crypto_aes_ctx *ctx = aes_ctx(crypto_skcipher_ctx(tfm));
struct skcipher_walk walk;
unsigned int nbytes;
int err;
err = skcipher_walk_virt(&walk, req, false);
while ((nbytes = walk.nbytes)) {
kernel_fpu_begin();
aesni_cbc_dec(ctx, walk.dst.virt.addr, walk.src.virt.addr,
nbytes & AES_BLOCK_MASK, walk.iv);
kernel_fpu_end();
nbytes &= AES_BLOCK_SIZE - 1;
err = skcipher_walk_done(&walk, nbytes);
}
return err;
}
static int cts_cbc_encrypt(struct skcipher_request *req)
{
struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
struct crypto_aes_ctx *ctx = aes_ctx(crypto_skcipher_ctx(tfm));
int cbc_blocks = DIV_ROUND_UP(req->cryptlen, AES_BLOCK_SIZE) - 2;
struct scatterlist *src = req->src, *dst = req->dst;
struct scatterlist sg_src[2], sg_dst[2];
struct skcipher_request subreq;
struct skcipher_walk walk;
int err;
skcipher_request_set_tfm(&subreq, tfm);
skcipher_request_set_callback(&subreq, skcipher_request_flags(req),
NULL, NULL);
if (req->cryptlen <= AES_BLOCK_SIZE) {
if (req->cryptlen < AES_BLOCK_SIZE)
return -EINVAL;
cbc_blocks = 1;
}
if (cbc_blocks > 0) {
skcipher_request_set_crypt(&subreq, req->src, req->dst,
cbc_blocks * AES_BLOCK_SIZE,
req->iv);
err = cbc_encrypt(&subreq);
if (err)
return err;
if (req->cryptlen == AES_BLOCK_SIZE)
return 0;
dst = src = scatterwalk_ffwd(sg_src, req->src, subreq.cryptlen);
if (req->dst != req->src)
dst = scatterwalk_ffwd(sg_dst, req->dst,
subreq.cryptlen);
}
/* handle ciphertext stealing */
skcipher_request_set_crypt(&subreq, src, dst,
req->cryptlen - cbc_blocks * AES_BLOCK_SIZE,
req->iv);
err = skcipher_walk_virt(&walk, &subreq, false);
if (err)
return err;
kernel_fpu_begin();
aesni_cts_cbc_enc(ctx, walk.dst.virt.addr, walk.src.virt.addr,
walk.nbytes, walk.iv);
kernel_fpu_end();
return skcipher_walk_done(&walk, 0);
}
static int cts_cbc_decrypt(struct skcipher_request *req)
{
struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
struct crypto_aes_ctx *ctx = aes_ctx(crypto_skcipher_ctx(tfm));
int cbc_blocks = DIV_ROUND_UP(req->cryptlen, AES_BLOCK_SIZE) - 2;
struct scatterlist *src = req->src, *dst = req->dst;
struct scatterlist sg_src[2], sg_dst[2];
struct skcipher_request subreq;
struct skcipher_walk walk;
int err;
skcipher_request_set_tfm(&subreq, tfm);
skcipher_request_set_callback(&subreq, skcipher_request_flags(req),
NULL, NULL);
if (req->cryptlen <= AES_BLOCK_SIZE) {
if (req->cryptlen < AES_BLOCK_SIZE)
return -EINVAL;
cbc_blocks = 1;
}
if (cbc_blocks > 0) {
skcipher_request_set_crypt(&subreq, req->src, req->dst,
cbc_blocks * AES_BLOCK_SIZE,
req->iv);
err = cbc_decrypt(&subreq);
if (err)
return err;
if (req->cryptlen == AES_BLOCK_SIZE)
return 0;
dst = src = scatterwalk_ffwd(sg_src, req->src, subreq.cryptlen);
if (req->dst != req->src)
dst = scatterwalk_ffwd(sg_dst, req->dst,
subreq.cryptlen);
}
/* handle ciphertext stealing */
skcipher_request_set_crypt(&subreq, src, dst,
req->cryptlen - cbc_blocks * AES_BLOCK_SIZE,
req->iv);
err = skcipher_walk_virt(&walk, &subreq, false);
if (err)
return err;
kernel_fpu_begin();
aesni_cts_cbc_dec(ctx, walk.dst.virt.addr, walk.src.virt.addr,
walk.nbytes, walk.iv);
kernel_fpu_end();
return skcipher_walk_done(&walk, 0);
}
#ifdef CONFIG_X86_64
static void aesni_ctr_enc_avx_tfm(struct crypto_aes_ctx *ctx, u8 *out,
const u8 *in, unsigned int len, u8 *iv)
{
/*
* based on key length, override with the by8 version
* of ctr mode encryption/decryption for improved performance
* aes_set_key_common() ensures that key length is one of
* {128,192,256}
*/
if (ctx->key_length == AES_KEYSIZE_128)
aes_ctr_enc_128_avx_by8(in, iv, (void *)ctx, out, len);
else if (ctx->key_length == AES_KEYSIZE_192)
aes_ctr_enc_192_avx_by8(in, iv, (void *)ctx, out, len);
else
aes_ctr_enc_256_avx_by8(in, iv, (void *)ctx, out, len);
}
static int ctr_crypt(struct skcipher_request *req)
{
struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
struct crypto_aes_ctx *ctx = aes_ctx(crypto_skcipher_ctx(tfm));
u8 keystream[AES_BLOCK_SIZE];
struct skcipher_walk walk;
unsigned int nbytes;
int err;
err = skcipher_walk_virt(&walk, req, false);
while ((nbytes = walk.nbytes) > 0) {
kernel_fpu_begin();
if (nbytes & AES_BLOCK_MASK)
static_call(aesni_ctr_enc_tfm)(ctx, walk.dst.virt.addr,
walk.src.virt.addr,
nbytes & AES_BLOCK_MASK,
walk.iv);
nbytes &= ~AES_BLOCK_MASK;
if (walk.nbytes == walk.total && nbytes > 0) {
aesni_enc(ctx, keystream, walk.iv);
crypto_xor_cpy(walk.dst.virt.addr + walk.nbytes - nbytes,
walk.src.virt.addr + walk.nbytes - nbytes,
keystream, nbytes);
crypto_inc(walk.iv, AES_BLOCK_SIZE);
nbytes = 0;
}
kernel_fpu_end();
err = skcipher_walk_done(&walk, nbytes);
}
return err;
}
static int
rfc4106_set_hash_subkey(u8 *hash_subkey, const u8 *key, unsigned int key_len)
{
struct crypto_aes_ctx ctx;
int ret;
ret = aes_expandkey(&ctx, key, key_len);
if (ret)
return ret;
/* Clear the data in the hash sub key container to zero.*/
/* We want to cipher all zeros to create the hash sub key. */
memset(hash_subkey, 0, RFC4106_HASH_SUBKEY_SIZE);
aes_encrypt(&ctx, hash_subkey, hash_subkey);
memzero_explicit(&ctx, sizeof(ctx));
return 0;
}
static int common_rfc4106_set_key(struct crypto_aead *aead, const u8 *key,
unsigned int key_len)
{
struct aesni_rfc4106_gcm_ctx *ctx = aesni_rfc4106_gcm_ctx_get(aead);
if (key_len < 4)
return -EINVAL;
/*Account for 4 byte nonce at the end.*/
key_len -= 4;
memcpy(ctx->nonce, key + key_len, sizeof(ctx->nonce));
return aes_set_key_common(crypto_aead_tfm(aead),
&ctx->aes_key_expanded, key, key_len) ?:
rfc4106_set_hash_subkey(ctx->hash_subkey, key, key_len);
}
/* This is the Integrity Check Value (aka the authentication tag) length and can
* be 8, 12 or 16 bytes long. */
static int common_rfc4106_set_authsize(struct crypto_aead *aead,
unsigned int authsize)
{
switch (authsize) {
case 8:
case 12:
case 16:
break;
default:
return -EINVAL;
}
return 0;
}
static int generic_gcmaes_set_authsize(struct crypto_aead *tfm,
unsigned int authsize)
{
switch (authsize) {
case 4:
case 8:
case 12:
case 13:
case 14:
case 15:
case 16:
break;
default:
return -EINVAL;
}
return 0;
}
static int gcmaes_crypt_by_sg(bool enc, struct aead_request *req,
unsigned int assoclen, u8 *hash_subkey,
u8 *iv, void *aes_ctx, u8 *auth_tag,
unsigned long auth_tag_len)
{
u8 databuf[sizeof(struct gcm_context_data) + (AESNI_ALIGN - 8)] __aligned(8);
struct gcm_context_data *data = PTR_ALIGN((void *)databuf, AESNI_ALIGN);
unsigned long left = req->cryptlen;
struct scatter_walk assoc_sg_walk;
struct skcipher_walk walk;
bool do_avx, do_avx2;
u8 *assocmem = NULL;
u8 *assoc;
int err;
if (!enc)
left -= auth_tag_len;
do_avx = (left >= AVX_GEN2_OPTSIZE);
do_avx2 = (left >= AVX_GEN4_OPTSIZE);
/* Linearize assoc, if not already linear */
if (req->src->length >= assoclen && req->src->length) {
scatterwalk_start(&assoc_sg_walk, req->src);
assoc = scatterwalk_map(&assoc_sg_walk);
} else {
gfp_t flags = (req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP) ?
GFP_KERNEL : GFP_ATOMIC;
/* assoc can be any length, so must be on heap */
assocmem = kmalloc(assoclen, flags);
if (unlikely(!assocmem))
return -ENOMEM;
assoc = assocmem;
scatterwalk_map_and_copy(assoc, req->src, 0, assoclen, 0);
}
kernel_fpu_begin();
if (static_branch_likely(&gcm_use_avx2) && do_avx2)
aesni_gcm_init_avx_gen4(aes_ctx, data, iv, hash_subkey, assoc,
assoclen);
else if (static_branch_likely(&gcm_use_avx) && do_avx)
aesni_gcm_init_avx_gen2(aes_ctx, data, iv, hash_subkey, assoc,
assoclen);
else
aesni_gcm_init(aes_ctx, data, iv, hash_subkey, assoc, assoclen);
kernel_fpu_end();
if (!assocmem)
scatterwalk_unmap(assoc);
else
kfree(assocmem);
err = enc ? skcipher_walk_aead_encrypt(&walk, req, false)
: skcipher_walk_aead_decrypt(&walk, req, false);
while (walk.nbytes > 0) {
kernel_fpu_begin();
if (static_branch_likely(&gcm_use_avx2) && do_avx2) {
if (enc)
aesni_gcm_enc_update_avx_gen4(aes_ctx, data,
walk.dst.virt.addr,
walk.src.virt.addr,
walk.nbytes);
else
aesni_gcm_dec_update_avx_gen4(aes_ctx, data,
walk.dst.virt.addr,
walk.src.virt.addr,
walk.nbytes);
} else if (static_branch_likely(&gcm_use_avx) && do_avx) {
if (enc)
aesni_gcm_enc_update_avx_gen2(aes_ctx, data,
walk.dst.virt.addr,
walk.src.virt.addr,
walk.nbytes);
else
aesni_gcm_dec_update_avx_gen2(aes_ctx, data,
walk.dst.virt.addr,
walk.src.virt.addr,
walk.nbytes);
} else if (enc) {
aesni_gcm_enc_update(aes_ctx, data, walk.dst.virt.addr,
walk.src.virt.addr, walk.nbytes);
} else {
aesni_gcm_dec_update(aes_ctx, data, walk.dst.virt.addr,
walk.src.virt.addr, walk.nbytes);
}
kernel_fpu_end();
err = skcipher_walk_done(&walk, 0);
}
if (err)
return err;
kernel_fpu_begin();
if (static_branch_likely(&gcm_use_avx2) && do_avx2)
aesni_gcm_finalize_avx_gen4(aes_ctx, data, auth_tag,
auth_tag_len);
else if (static_branch_likely(&gcm_use_avx) && do_avx)
aesni_gcm_finalize_avx_gen2(aes_ctx, data, auth_tag,
auth_tag_len);
else
aesni_gcm_finalize(aes_ctx, data, auth_tag, auth_tag_len);
kernel_fpu_end();
return 0;
}
static int gcmaes_encrypt(struct aead_request *req, unsigned int assoclen,
u8 *hash_subkey, u8 *iv, void *aes_ctx)
{
struct crypto_aead *tfm = crypto_aead_reqtfm(req);
unsigned long auth_tag_len = crypto_aead_authsize(tfm);
u8 auth_tag[16];
int err;
err = gcmaes_crypt_by_sg(true, req, assoclen, hash_subkey, iv, aes_ctx,
auth_tag, auth_tag_len);
if (err)
return err;
scatterwalk_map_and_copy(auth_tag, req->dst,
req->assoclen + req->cryptlen,
auth_tag_len, 1);
return 0;
}
static int gcmaes_decrypt(struct aead_request *req, unsigned int assoclen,
u8 *hash_subkey, u8 *iv, void *aes_ctx)
{
struct crypto_aead *tfm = crypto_aead_reqtfm(req);
unsigned long auth_tag_len = crypto_aead_authsize(tfm);
u8 auth_tag_msg[16];
u8 auth_tag[16];
int err;
err = gcmaes_crypt_by_sg(false, req, assoclen, hash_subkey, iv, aes_ctx,
auth_tag, auth_tag_len);
if (err)
return err;
/* Copy out original auth_tag */
scatterwalk_map_and_copy(auth_tag_msg, req->src,
req->assoclen + req->cryptlen - auth_tag_len,
auth_tag_len, 0);
/* Compare generated tag with passed in tag. */
if (crypto_memneq(auth_tag_msg, auth_tag, auth_tag_len)) {
memzero_explicit(auth_tag, sizeof(auth_tag));
return -EBADMSG;
}
return 0;
}
static int helper_rfc4106_encrypt(struct aead_request *req)
{
struct crypto_aead *tfm = crypto_aead_reqtfm(req);
struct aesni_rfc4106_gcm_ctx *ctx = aesni_rfc4106_gcm_ctx_get(tfm);
void *aes_ctx = &(ctx->aes_key_expanded);
u8 ivbuf[16 + (AESNI_ALIGN - 8)] __aligned(8);
u8 *iv = PTR_ALIGN(&ivbuf[0], AESNI_ALIGN);
unsigned int i;
__be32 counter = cpu_to_be32(1);
/* Assuming we are supporting rfc4106 64-bit extended */
/* sequence numbers We need to have the AAD length equal */
/* to 16 or 20 bytes */
if (unlikely(req->assoclen != 16 && req->assoclen != 20))
return -EINVAL;
/* IV below built */
for (i = 0; i < 4; i++)
*(iv+i) = ctx->nonce[i];
for (i = 0; i < 8; i++)
*(iv+4+i) = req->iv[i];
*((__be32 *)(iv+12)) = counter;
return gcmaes_encrypt(req, req->assoclen - 8, ctx->hash_subkey, iv,
aes_ctx);
}
static int helper_rfc4106_decrypt(struct aead_request *req)
{
__be32 counter = cpu_to_be32(1);
struct crypto_aead *tfm = crypto_aead_reqtfm(req);
struct aesni_rfc4106_gcm_ctx *ctx = aesni_rfc4106_gcm_ctx_get(tfm);
void *aes_ctx = &(ctx->aes_key_expanded);
u8 ivbuf[16 + (AESNI_ALIGN - 8)] __aligned(8);
u8 *iv = PTR_ALIGN(&ivbuf[0], AESNI_ALIGN);
unsigned int i;
if (unlikely(req->assoclen != 16 && req->assoclen != 20))
return -EINVAL;
/* Assuming we are supporting rfc4106 64-bit extended */
/* sequence numbers We need to have the AAD length */
/* equal to 16 or 20 bytes */
/* IV below built */
for (i = 0; i < 4; i++)
*(iv+i) = ctx->nonce[i];
for (i = 0; i < 8; i++)
*(iv+4+i) = req->iv[i];
*((__be32 *)(iv+12)) = counter;
return gcmaes_decrypt(req, req->assoclen - 8, ctx->hash_subkey, iv,
aes_ctx);
}
#endif
static int xts_aesni_setkey(struct crypto_skcipher *tfm, const u8 *key,
unsigned int keylen)
{
struct aesni_xts_ctx *ctx = crypto_skcipher_ctx(tfm);
int err;
err = xts_verify_key(tfm, key, keylen);
if (err)
return err;
keylen /= 2;
/* first half of xts-key is for crypt */
err = aes_set_key_common(crypto_skcipher_tfm(tfm), ctx->raw_crypt_ctx,
key, keylen);
if (err)
return err;
/* second half of xts-key is for tweak */
return aes_set_key_common(crypto_skcipher_tfm(tfm), ctx->raw_tweak_ctx,
key + keylen, keylen);
}
static int xts_crypt(struct skcipher_request *req, bool encrypt)
{
struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
struct aesni_xts_ctx *ctx = crypto_skcipher_ctx(tfm);
int tail = req->cryptlen % AES_BLOCK_SIZE;
struct skcipher_request subreq;
struct skcipher_walk walk;
int err;
if (req->cryptlen < AES_BLOCK_SIZE)
return -EINVAL;
err = skcipher_walk_virt(&walk, req, false);
if (!walk.nbytes)
return err;
if (unlikely(tail > 0 && walk.nbytes < walk.total)) {
int blocks = DIV_ROUND_UP(req->cryptlen, AES_BLOCK_SIZE) - 2;
skcipher_walk_abort(&walk);
skcipher_request_set_tfm(&subreq, tfm);
skcipher_request_set_callback(&subreq,
skcipher_request_flags(req),
NULL, NULL);
skcipher_request_set_crypt(&subreq, req->src, req->dst,
blocks * AES_BLOCK_SIZE, req->iv);
req = &subreq;
err = skcipher_walk_virt(&walk, req, false);
if (!walk.nbytes)
return err;
} else {
tail = 0;
}
kernel_fpu_begin();
/* calculate first value of T */
aesni_enc(aes_ctx(ctx->raw_tweak_ctx), walk.iv, walk.iv);
while (walk.nbytes > 0) {
int nbytes = walk.nbytes;
if (nbytes < walk.total)
nbytes &= ~(AES_BLOCK_SIZE - 1);
if (encrypt)
aesni_xts_encrypt(aes_ctx(ctx->raw_crypt_ctx),
walk.dst.virt.addr, walk.src.virt.addr,
nbytes, walk.iv);
else
aesni_xts_decrypt(aes_ctx(ctx->raw_crypt_ctx),
walk.dst.virt.addr, walk.src.virt.addr,
nbytes, walk.iv);
kernel_fpu_end();
err = skcipher_walk_done(&walk, walk.nbytes - nbytes);
if (walk.nbytes > 0)
kernel_fpu_begin();
}
if (unlikely(tail > 0 && !err)) {
struct scatterlist sg_src[2], sg_dst[2];
struct scatterlist *src, *dst;
dst = src = scatterwalk_ffwd(sg_src, req->src, req->cryptlen);
if (req->dst != req->src)
dst = scatterwalk_ffwd(sg_dst, req->dst, req->cryptlen);
skcipher_request_set_crypt(req, src, dst, AES_BLOCK_SIZE + tail,
req->iv);
err = skcipher_walk_virt(&walk, &subreq, false);
if (err)
return err;
kernel_fpu_begin();
if (encrypt)
aesni_xts_encrypt(aes_ctx(ctx->raw_crypt_ctx),
walk.dst.virt.addr, walk.src.virt.addr,
walk.nbytes, walk.iv);
else
aesni_xts_decrypt(aes_ctx(ctx->raw_crypt_ctx),
walk.dst.virt.addr, walk.src.virt.addr,
walk.nbytes, walk.iv);
kernel_fpu_end();
err = skcipher_walk_done(&walk, 0);
}
return err;
}
static int xts_encrypt(struct skcipher_request *req)
{
return xts_crypt(req, true);
}
static int xts_decrypt(struct skcipher_request *req)
{
return xts_crypt(req, false);
}
static struct crypto_alg aesni_cipher_alg = {
.cra_name = "aes",
.cra_driver_name = "aes-aesni",
.cra_priority = 300,
.cra_flags = CRYPTO_ALG_TYPE_CIPHER,
.cra_blocksize = AES_BLOCK_SIZE,
.cra_ctxsize = CRYPTO_AES_CTX_SIZE,
.cra_module = THIS_MODULE,
.cra_u = {
.cipher = {
.cia_min_keysize = AES_MIN_KEY_SIZE,
.cia_max_keysize = AES_MAX_KEY_SIZE,
.cia_setkey = aes_set_key,
.cia_encrypt = aesni_encrypt,
.cia_decrypt = aesni_decrypt
}
}
};
static struct skcipher_alg aesni_skciphers[] = {
{
.base = {
.cra_name = "__ecb(aes)",
.cra_driver_name = "__ecb-aes-aesni",
.cra_priority = 400,
.cra_flags = CRYPTO_ALG_INTERNAL,
.cra_blocksize = AES_BLOCK_SIZE,
.cra_ctxsize = CRYPTO_AES_CTX_SIZE,
.cra_module = THIS_MODULE,
},
.min_keysize = AES_MIN_KEY_SIZE,
.max_keysize = AES_MAX_KEY_SIZE,
.setkey = aesni_skcipher_setkey,
.encrypt = ecb_encrypt,
.decrypt = ecb_decrypt,
}, {
.base = {
.cra_name = "__cbc(aes)",
.cra_driver_name = "__cbc-aes-aesni",
.cra_priority = 400,
.cra_flags = CRYPTO_ALG_INTERNAL,
.cra_blocksize = AES_BLOCK_SIZE,
.cra_ctxsize = CRYPTO_AES_CTX_SIZE,
.cra_module = THIS_MODULE,
},
.min_keysize = AES_MIN_KEY_SIZE,
.max_keysize = AES_MAX_KEY_SIZE,
.ivsize = AES_BLOCK_SIZE,
.setkey = aesni_skcipher_setkey,
.encrypt = cbc_encrypt,
.decrypt = cbc_decrypt,
}, {
.base = {
.cra_name = "__cts(cbc(aes))",
.cra_driver_name = "__cts-cbc-aes-aesni",
.cra_priority = 400,
.cra_flags = CRYPTO_ALG_INTERNAL,
.cra_blocksize = AES_BLOCK_SIZE,
.cra_ctxsize = CRYPTO_AES_CTX_SIZE,
.cra_module = THIS_MODULE,
},
.min_keysize = AES_MIN_KEY_SIZE,
.max_keysize = AES_MAX_KEY_SIZE,
.ivsize = AES_BLOCK_SIZE,
.walksize = 2 * AES_BLOCK_SIZE,
.setkey = aesni_skcipher_setkey,
.encrypt = cts_cbc_encrypt,
.decrypt = cts_cbc_decrypt,
#ifdef CONFIG_X86_64
}, {
.base = {
.cra_name = "__ctr(aes)",
.cra_driver_name = "__ctr-aes-aesni",
.cra_priority = 400,
.cra_flags = CRYPTO_ALG_INTERNAL,
.cra_blocksize = 1,
.cra_ctxsize = CRYPTO_AES_CTX_SIZE,
.cra_module = THIS_MODULE,
},
.min_keysize = AES_MIN_KEY_SIZE,
.max_keysize = AES_MAX_KEY_SIZE,
.ivsize = AES_BLOCK_SIZE,
.chunksize = AES_BLOCK_SIZE,
.setkey = aesni_skcipher_setkey,
.encrypt = ctr_crypt,
.decrypt = ctr_crypt,
#endif
}, {
.base = {
.cra_name = "__xts(aes)",
.cra_driver_name = "__xts-aes-aesni",
.cra_priority = 401,
.cra_flags = CRYPTO_ALG_INTERNAL,
.cra_blocksize = AES_BLOCK_SIZE,
.cra_ctxsize = XTS_AES_CTX_SIZE,
.cra_module = THIS_MODULE,
},
.min_keysize = 2 * AES_MIN_KEY_SIZE,
.max_keysize = 2 * AES_MAX_KEY_SIZE,
.ivsize = AES_BLOCK_SIZE,
.walksize = 2 * AES_BLOCK_SIZE,
.setkey = xts_aesni_setkey,
.encrypt = xts_encrypt,
.decrypt = xts_decrypt,
}
};
static
struct simd_skcipher_alg *aesni_simd_skciphers[ARRAY_SIZE(aesni_skciphers)];
#ifdef CONFIG_X86_64
static int generic_gcmaes_set_key(struct crypto_aead *aead, const u8 *key,
unsigned int key_len)
{
struct generic_gcmaes_ctx *ctx = generic_gcmaes_ctx_get(aead);
return aes_set_key_common(crypto_aead_tfm(aead),
&ctx->aes_key_expanded, key, key_len) ?:
rfc4106_set_hash_subkey(ctx->hash_subkey, key, key_len);
}
static int generic_gcmaes_encrypt(struct aead_request *req)
{
struct crypto_aead *tfm = crypto_aead_reqtfm(req);
struct generic_gcmaes_ctx *ctx = generic_gcmaes_ctx_get(tfm);
void *aes_ctx = &(ctx->aes_key_expanded);
u8 ivbuf[16 + (AESNI_ALIGN - 8)] __aligned(8);
u8 *iv = PTR_ALIGN(&ivbuf[0], AESNI_ALIGN);
__be32 counter = cpu_to_be32(1);
memcpy(iv, req->iv, 12);
*((__be32 *)(iv+12)) = counter;
return gcmaes_encrypt(req, req->assoclen, ctx->hash_subkey, iv,
aes_ctx);
}
static int generic_gcmaes_decrypt(struct aead_request *req)
{
__be32 counter = cpu_to_be32(1);
struct crypto_aead *tfm = crypto_aead_reqtfm(req);
struct generic_gcmaes_ctx *ctx = generic_gcmaes_ctx_get(tfm);
void *aes_ctx = &(ctx->aes_key_expanded);
u8 ivbuf[16 + (AESNI_ALIGN - 8)] __aligned(8);
u8 *iv = PTR_ALIGN(&ivbuf[0], AESNI_ALIGN);
memcpy(iv, req->iv, 12);
*((__be32 *)(iv+12)) = counter;
return gcmaes_decrypt(req, req->assoclen, ctx->hash_subkey, iv,
aes_ctx);
}
static struct aead_alg aesni_aeads[] = { {
.setkey = common_rfc4106_set_key,
.setauthsize = common_rfc4106_set_authsize,
.encrypt = helper_rfc4106_encrypt,
.decrypt = helper_rfc4106_decrypt,
.ivsize = GCM_RFC4106_IV_SIZE,
.maxauthsize = 16,
.base = {
.cra_name = "__rfc4106(gcm(aes))",
.cra_driver_name = "__rfc4106-gcm-aesni",
.cra_priority = 400,
.cra_flags = CRYPTO_ALG_INTERNAL,
.cra_blocksize = 1,
.cra_ctxsize = sizeof(struct aesni_rfc4106_gcm_ctx),
.cra_alignmask = AESNI_ALIGN - 1,
.cra_module = THIS_MODULE,
},
}, {
.setkey = generic_gcmaes_set_key,
.setauthsize = generic_gcmaes_set_authsize,
.encrypt = generic_gcmaes_encrypt,
.decrypt = generic_gcmaes_decrypt,
.ivsize = GCM_AES_IV_SIZE,
.maxauthsize = 16,
.base = {
.cra_name = "__gcm(aes)",
.cra_driver_name = "__generic-gcm-aesni",
.cra_priority = 400,
.cra_flags = CRYPTO_ALG_INTERNAL,
.cra_blocksize = 1,
.cra_ctxsize = sizeof(struct generic_gcmaes_ctx),
.cra_alignmask = AESNI_ALIGN - 1,
.cra_module = THIS_MODULE,
},
} };
#else
static struct aead_alg aesni_aeads[0];
#endif
static struct simd_aead_alg *aesni_simd_aeads[ARRAY_SIZE(aesni_aeads)];
static const struct x86_cpu_id aesni_cpu_id[] = {
X86_MATCH_FEATURE(X86_FEATURE_AES, NULL),
{}
};
MODULE_DEVICE_TABLE(x86cpu, aesni_cpu_id);
static int __init aesni_init(void)
{
int err;
if (!x86_match_cpu(aesni_cpu_id))
return -ENODEV;
#ifdef CONFIG_X86_64
if (boot_cpu_has(X86_FEATURE_AVX2)) {
pr_info("AVX2 version of gcm_enc/dec engaged.\n");
static_branch_enable(&gcm_use_avx);
static_branch_enable(&gcm_use_avx2);
} else
if (boot_cpu_has(X86_FEATURE_AVX)) {
pr_info("AVX version of gcm_enc/dec engaged.\n");
static_branch_enable(&gcm_use_avx);
} else {
pr_info("SSE version of gcm_enc/dec engaged.\n");
}
if (boot_cpu_has(X86_FEATURE_AVX)) {
/* optimize performance of ctr mode encryption transform */
static_call_update(aesni_ctr_enc_tfm, aesni_ctr_enc_avx_tfm);
pr_info("AES CTR mode by8 optimization enabled\n");
}
#endif
err = crypto_register_alg(&aesni_cipher_alg);
if (err)
return err;
err = simd_register_skciphers_compat(aesni_skciphers,
ARRAY_SIZE(aesni_skciphers),
aesni_simd_skciphers);
if (err)
goto unregister_cipher;
err = simd_register_aeads_compat(aesni_aeads, ARRAY_SIZE(aesni_aeads),
aesni_simd_aeads);
if (err)
goto unregister_skciphers;
return 0;
unregister_skciphers:
simd_unregister_skciphers(aesni_skciphers, ARRAY_SIZE(aesni_skciphers),
aesni_simd_skciphers);
unregister_cipher:
crypto_unregister_alg(&aesni_cipher_alg);
return err;
}
static void __exit aesni_exit(void)
{
simd_unregister_aeads(aesni_aeads, ARRAY_SIZE(aesni_aeads),
aesni_simd_aeads);
simd_unregister_skciphers(aesni_skciphers, ARRAY_SIZE(aesni_skciphers),
aesni_simd_skciphers);
crypto_unregister_alg(&aesni_cipher_alg);
}
late_initcall(aesni_init);
module_exit(aesni_exit);
MODULE_DESCRIPTION("Rijndael (AES) Cipher Algorithm, Intel AES-NI instructions optimized");
MODULE_LICENSE("GPL");
MODULE_ALIAS_CRYPTO("aes");