/* * Copyright (c) by Francisco Moraes <fmoraes@nc.rr.com> * Driver EMU10K1X chips * * Parts of this code were adapted from audigyls.c driver which is * Copyright (c) by James Courtier-Dutton <James@superbug.demon.co.uk> * * BUGS: * -- * * TODO: * * Chips (SB0200 model): * - EMU10K1X-DBQ * - STAC 9708T * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * */ #include <sound/driver.h> #include <linux/init.h> #include <linux/interrupt.h> #include <linux/pci.h> #include <linux/slab.h> #include <linux/moduleparam.h> #include <sound/core.h> #include <sound/initval.h> #include <sound/pcm.h> #include <sound/ac97_codec.h> #include <sound/info.h> #include <sound/rawmidi.h> MODULE_AUTHOR("Francisco Moraes <fmoraes@nc.rr.com>"); MODULE_DESCRIPTION("EMU10K1X"); MODULE_LICENSE("GPL"); MODULE_SUPPORTED_DEVICE("{{Dell Creative Labs,SB Live!}"); // module parameters (see "Module Parameters") static int index[SNDRV_CARDS] = SNDRV_DEFAULT_IDX; static char *id[SNDRV_CARDS] = SNDRV_DEFAULT_STR; static int enable[SNDRV_CARDS] = SNDRV_DEFAULT_ENABLE_PNP; module_param_array(index, int, NULL, 0444); MODULE_PARM_DESC(index, "Index value for the EMU10K1X soundcard."); module_param_array(id, charp, NULL, 0444); MODULE_PARM_DESC(id, "ID string for the EMU10K1X soundcard."); module_param_array(enable, bool, NULL, 0444); MODULE_PARM_DESC(enable, "Enable the EMU10K1X soundcard."); // some definitions were borrowed from emu10k1 driver as they seem to be the same /************************************************************************************************/ /* PCI function 0 registers, address = <val> + PCIBASE0 */ /************************************************************************************************/ #define PTR 0x00 /* Indexed register set pointer register */ /* NOTE: The CHANNELNUM and ADDRESS words can */ /* be modified independently of each other. */ #define DATA 0x04 /* Indexed register set data register */ #define IPR 0x08 /* Global interrupt pending register */ /* Clear pending interrupts by writing a 1 to */ /* the relevant bits and zero to the other bits */ #define IPR_MIDITRANSBUFEMPTY 0x00000001 /* MIDI UART transmit buffer empty */ #define IPR_MIDIRECVBUFEMPTY 0x00000002 /* MIDI UART receive buffer empty */ #define IPR_CH_0_LOOP 0x00000800 /* Channel 0 loop */ #define IPR_CH_0_HALF_LOOP 0x00000100 /* Channel 0 half loop */ #define IPR_CAP_0_LOOP 0x00080000 /* Channel capture loop */ #define IPR_CAP_0_HALF_LOOP 0x00010000 /* Channel capture half loop */ #define INTE 0x0c /* Interrupt enable register */ #define INTE_MIDITXENABLE 0x00000001 /* Enable MIDI transmit-buffer-empty interrupts */ #define INTE_MIDIRXENABLE 0x00000002 /* Enable MIDI receive-buffer-empty interrupts */ #define INTE_CH_0_LOOP 0x00000800 /* Channel 0 loop */ #define INTE_CH_0_HALF_LOOP 0x00000100 /* Channel 0 half loop */ #define INTE_CAP_0_LOOP 0x00080000 /* Channel capture loop */ #define INTE_CAP_0_HALF_LOOP 0x00010000 /* Channel capture half loop */ #define HCFG 0x14 /* Hardware config register */ #define HCFG_LOCKSOUNDCACHE 0x00000008 /* 1 = Cancel bustmaster accesses to soundcache */ /* NOTE: This should generally never be used. */ #define HCFG_AUDIOENABLE 0x00000001 /* 0 = CODECs transmit zero-valued samples */ /* Should be set to 1 when the EMU10K1 is */ /* completely initialized. */ #define GPIO 0x18 /* Defaults: 00001080-Analog, 00001000-SPDIF. */ #define AC97DATA 0x1c /* AC97 register set data register (16 bit) */ #define AC97ADDRESS 0x1e /* AC97 register set address register (8 bit) */ /********************************************************************************************************/ /* Emu10k1x pointer-offset register set, accessed through the PTR and DATA registers */ /********************************************************************************************************/ #define PLAYBACK_LIST_ADDR 0x00 /* Base DMA address of a list of pointers to each period/size */ /* One list entry: 4 bytes for DMA address, * 4 bytes for period_size << 16. * One list entry is 8 bytes long. * One list entry for each period in the buffer. */ #define PLAYBACK_LIST_SIZE 0x01 /* Size of list in bytes << 16. E.g. 8 periods -> 0x00380000 */ #define PLAYBACK_LIST_PTR 0x02 /* Pointer to the current period being played */ #define PLAYBACK_DMA_ADDR 0x04 /* Playback DMA addresss */ #define PLAYBACK_PERIOD_SIZE 0x05 /* Playback period size */ #define PLAYBACK_POINTER 0x06 /* Playback period pointer. Sample currently in DAC */ #define PLAYBACK_UNKNOWN1 0x07 #define PLAYBACK_UNKNOWN2 0x08 /* Only one capture channel supported */ #define CAPTURE_DMA_ADDR 0x10 /* Capture DMA address */ #define CAPTURE_BUFFER_SIZE 0x11 /* Capture buffer size */ #define CAPTURE_POINTER 0x12 /* Capture buffer pointer. Sample currently in ADC */ #define CAPTURE_UNKNOWN 0x13 /* From 0x20 - 0x3f, last samples played on each channel */ #define TRIGGER_CHANNEL 0x40 /* Trigger channel playback */ #define TRIGGER_CHANNEL_0 0x00000001 /* Trigger channel 0 */ #define TRIGGER_CHANNEL_1 0x00000002 /* Trigger channel 1 */ #define TRIGGER_CHANNEL_2 0x00000004 /* Trigger channel 2 */ #define TRIGGER_CAPTURE 0x00000100 /* Trigger capture channel */ #define ROUTING 0x41 /* Setup sound routing ? */ #define ROUTING_FRONT_LEFT 0x00000001 #define ROUTING_FRONT_RIGHT 0x00000002 #define ROUTING_REAR_LEFT 0x00000004 #define ROUTING_REAR_RIGHT 0x00000008 #define ROUTING_CENTER_LFE 0x00010000 #define SPCS0 0x42 /* SPDIF output Channel Status 0 register */ #define SPCS1 0x43 /* SPDIF output Channel Status 1 register */ #define SPCS2 0x44 /* SPDIF output Channel Status 2 register */ #define SPCS_CLKACCYMASK 0x30000000 /* Clock accuracy */ #define SPCS_CLKACCY_1000PPM 0x00000000 /* 1000 parts per million */ #define SPCS_CLKACCY_50PPM 0x10000000 /* 50 parts per million */ #define SPCS_CLKACCY_VARIABLE 0x20000000 /* Variable accuracy */ #define SPCS_SAMPLERATEMASK 0x0f000000 /* Sample rate */ #define SPCS_SAMPLERATE_44 0x00000000 /* 44.1kHz sample rate */ #define SPCS_SAMPLERATE_48 0x02000000 /* 48kHz sample rate */ #define SPCS_SAMPLERATE_32 0x03000000 /* 32kHz sample rate */ #define SPCS_CHANNELNUMMASK 0x00f00000 /* Channel number */ #define SPCS_CHANNELNUM_UNSPEC 0x00000000 /* Unspecified channel number */ #define SPCS_CHANNELNUM_LEFT 0x00100000 /* Left channel */ #define SPCS_CHANNELNUM_RIGHT 0x00200000 /* Right channel */ #define SPCS_SOURCENUMMASK 0x000f0000 /* Source number */ #define SPCS_SOURCENUM_UNSPEC 0x00000000 /* Unspecified source number */ #define SPCS_GENERATIONSTATUS 0x00008000 /* Originality flag (see IEC-958 spec) */ #define SPCS_CATEGORYCODEMASK 0x00007f00 /* Category code (see IEC-958 spec) */ #define SPCS_MODEMASK 0x000000c0 /* Mode (see IEC-958 spec) */ #define SPCS_EMPHASISMASK 0x00000038 /* Emphasis */ #define SPCS_EMPHASIS_NONE 0x00000000 /* No emphasis */ #define SPCS_EMPHASIS_50_15 0x00000008 /* 50/15 usec 2 channel */ #define SPCS_COPYRIGHT 0x00000004 /* Copyright asserted flag -- do not modify */ #define SPCS_NOTAUDIODATA 0x00000002 /* 0 = Digital audio, 1 = not audio */ #define SPCS_PROFESSIONAL 0x00000001 /* 0 = Consumer (IEC-958), 1 = pro (AES3-1992) */ #define SPDIF_SELECT 0x45 /* Enables SPDIF or Analogue outputs 0-Analogue, 0x700-SPDIF */ /* This is the MPU port on the card */ #define MUDATA 0x47 #define MUCMD 0x48 #define MUSTAT MUCMD /* From 0x50 - 0x5f, last samples captured */ /** * The hardware has 3 channels for playback and 1 for capture. * - channel 0 is the front channel * - channel 1 is the rear channel * - channel 2 is the center/lfe chanel * Volume is controlled by the AC97 for the front and rear channels by * the PCM Playback Volume, Sigmatel Surround Playback Volume and * Surround Playback Volume. The Sigmatel 4-Speaker Stereo switch affects * the front/rear channel mixing in the REAR OUT jack. When using the * 4-Speaker Stereo, both front and rear channels will be mixed in the * REAR OUT. * The center/lfe channel has no volume control and cannot be muted during * playback. */ struct emu10k1x_voice { struct emu10k1x *emu; int number; int use; struct emu10k1x_pcm *epcm; }; struct emu10k1x_pcm { struct emu10k1x *emu; struct snd_pcm_substream *substream; struct emu10k1x_voice *voice; unsigned short running; }; struct emu10k1x_midi { struct emu10k1x *emu; struct snd_rawmidi *rmidi; struct snd_rawmidi_substream *substream_input; struct snd_rawmidi_substream *substream_output; unsigned int midi_mode; spinlock_t input_lock; spinlock_t output_lock; spinlock_t open_lock; int tx_enable, rx_enable; int port; int ipr_tx, ipr_rx; void (*interrupt)(struct emu10k1x *emu, unsigned int status); }; // definition of the chip-specific record struct emu10k1x { struct snd_card *card; struct pci_dev *pci; unsigned long port; struct resource *res_port; int irq; unsigned int revision; /* chip revision */ unsigned int serial; /* serial number */ unsigned short model; /* subsystem id */ spinlock_t emu_lock; spinlock_t voice_lock; struct snd_ac97 *ac97; struct snd_pcm *pcm; struct emu10k1x_voice voices[3]; struct emu10k1x_voice capture_voice; u32 spdif_bits[3]; // SPDIF out setup struct snd_dma_buffer dma_buffer; struct emu10k1x_midi midi; }; /* hardware definition */ static struct snd_pcm_hardware snd_emu10k1x_playback_hw = { .info = (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED | SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_MMAP_VALID), .formats = SNDRV_PCM_FMTBIT_S16_LE, .rates = SNDRV_PCM_RATE_48000, .rate_min = 48000, .rate_max = 48000, .channels_min = 2, .channels_max = 2, .buffer_bytes_max = (32*1024), .period_bytes_min = 64, .period_bytes_max = (16*1024), .periods_min = 2, .periods_max = 8, .fifo_size = 0, }; static struct snd_pcm_hardware snd_emu10k1x_capture_hw = { .info = (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED | SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_MMAP_VALID), .formats = SNDRV_PCM_FMTBIT_S16_LE, .rates = SNDRV_PCM_RATE_48000, .rate_min = 48000, .rate_max = 48000, .channels_min = 2, .channels_max = 2, .buffer_bytes_max = (32*1024), .period_bytes_min = 64, .period_bytes_max = (16*1024), .periods_min = 2, .periods_max = 2, .fifo_size = 0, }; static unsigned int snd_emu10k1x_ptr_read(struct emu10k1x * emu, unsigned int reg, unsigned int chn) { unsigned long flags; unsigned int regptr, val; regptr = (reg << 16) | chn; spin_lock_irqsave(&emu->emu_lock, flags); outl(regptr, emu->port + PTR); val = inl(emu->port + DATA); spin_unlock_irqrestore(&emu->emu_lock, flags); return val; } static void snd_emu10k1x_ptr_write(struct emu10k1x *emu, unsigned int reg, unsigned int chn, unsigned int data) { unsigned int regptr; unsigned long flags; regptr = (reg << 16) | chn; spin_lock_irqsave(&emu->emu_lock, flags); outl(regptr, emu->port + PTR); outl(data, emu->port + DATA); spin_unlock_irqrestore(&emu->emu_lock, flags); } static void snd_emu10k1x_intr_enable(struct emu10k1x *emu, unsigned int intrenb) { unsigned long flags; unsigned int enable; spin_lock_irqsave(&emu->emu_lock, flags); enable = inl(emu->port + INTE) | intrenb; outl(enable, emu->port + INTE); spin_unlock_irqrestore(&emu->emu_lock, flags); } static void snd_emu10k1x_intr_disable(struct emu10k1x *emu, unsigned int intrenb) { unsigned long flags; unsigned int enable; spin_lock_irqsave(&emu->emu_lock, flags); enable = inl(emu->port + INTE) & ~intrenb; outl(enable, emu->port + INTE); spin_unlock_irqrestore(&emu->emu_lock, flags); } static void snd_emu10k1x_gpio_write(struct emu10k1x *emu, unsigned int value) { unsigned long flags; spin_lock_irqsave(&emu->emu_lock, flags); outl(value, emu->port + GPIO); spin_unlock_irqrestore(&emu->emu_lock, flags); } static void snd_emu10k1x_pcm_free_substream(struct snd_pcm_runtime *runtime) { kfree(runtime->private_data); } static void snd_emu10k1x_pcm_interrupt(struct emu10k1x *emu, struct emu10k1x_voice *voice) { struct emu10k1x_pcm *epcm; if ((epcm = voice->epcm) == NULL) return; if (epcm->substream == NULL) return; #if 0 snd_printk(KERN_INFO "IRQ: position = 0x%x, period = 0x%x, size = 0x%x\n", epcm->substream->ops->pointer(epcm->substream), snd_pcm_lib_period_bytes(epcm->substream), snd_pcm_lib_buffer_bytes(epcm->substream)); #endif snd_pcm_period_elapsed(epcm->substream); } /* open callback */ static int snd_emu10k1x_playback_open(struct snd_pcm_substream *substream) { struct emu10k1x *chip = snd_pcm_substream_chip(substream); struct emu10k1x_pcm *epcm; struct snd_pcm_runtime *runtime = substream->runtime; int err; if ((err = snd_pcm_hw_constraint_integer(runtime, SNDRV_PCM_HW_PARAM_PERIODS)) < 0) { return err; } if ((err = snd_pcm_hw_constraint_step(runtime, 0, SNDRV_PCM_HW_PARAM_PERIOD_BYTES, 64)) < 0) return err; epcm = kzalloc(sizeof(*epcm), GFP_KERNEL); if (epcm == NULL) return -ENOMEM; epcm->emu = chip; epcm->substream = substream; runtime->private_data = epcm; runtime->private_free = snd_emu10k1x_pcm_free_substream; runtime->hw = snd_emu10k1x_playback_hw; return 0; } /* close callback */ static int snd_emu10k1x_playback_close(struct snd_pcm_substream *substream) { return 0; } /* hw_params callback */ static int snd_emu10k1x_pcm_hw_params(struct snd_pcm_substream *substream, struct snd_pcm_hw_params *hw_params) { struct snd_pcm_runtime *runtime = substream->runtime; struct emu10k1x_pcm *epcm = runtime->private_data; if (! epcm->voice) { epcm->voice = &epcm->emu->voices[substream->pcm->device]; epcm->voice->use = 1; epcm->voice->epcm = epcm; } return snd_pcm_lib_malloc_pages(substream, params_buffer_bytes(hw_params)); } /* hw_free callback */ static int snd_emu10k1x_pcm_hw_free(struct snd_pcm_substream *substream) { struct snd_pcm_runtime *runtime = substream->runtime; struct emu10k1x_pcm *epcm; if (runtime->private_data == NULL) return 0; epcm = runtime->private_data; if (epcm->voice) { epcm->voice->use = 0; epcm->voice->epcm = NULL; epcm->voice = NULL; } return snd_pcm_lib_free_pages(substream); } /* prepare callback */ static int snd_emu10k1x_pcm_prepare(struct snd_pcm_substream *substream) { struct emu10k1x *emu = snd_pcm_substream_chip(substream); struct snd_pcm_runtime *runtime = substream->runtime; struct emu10k1x_pcm *epcm = runtime->private_data; int voice = epcm->voice->number; u32 *table_base = (u32 *)(emu->dma_buffer.area+1024*voice); u32 period_size_bytes = frames_to_bytes(runtime, runtime->period_size); int i; for(i=0; i < runtime->periods; i++) { *table_base++=runtime->dma_addr+(i*period_size_bytes); *table_base++=period_size_bytes<<16; } snd_emu10k1x_ptr_write(emu, PLAYBACK_LIST_ADDR, voice, emu->dma_buffer.addr+1024*voice); snd_emu10k1x_ptr_write(emu, PLAYBACK_LIST_SIZE, voice, (runtime->periods - 1) << 19); snd_emu10k1x_ptr_write(emu, PLAYBACK_LIST_PTR, voice, 0); snd_emu10k1x_ptr_write(emu, PLAYBACK_POINTER, voice, 0); snd_emu10k1x_ptr_write(emu, PLAYBACK_UNKNOWN1, voice, 0); snd_emu10k1x_ptr_write(emu, PLAYBACK_UNKNOWN2, voice, 0); snd_emu10k1x_ptr_write(emu, PLAYBACK_DMA_ADDR, voice, runtime->dma_addr); snd_emu10k1x_ptr_write(emu, PLAYBACK_PERIOD_SIZE, voice, frames_to_bytes(runtime, runtime->period_size)<<16); return 0; } /* trigger callback */ static int snd_emu10k1x_pcm_trigger(struct snd_pcm_substream *substream, int cmd) { struct emu10k1x *emu = snd_pcm_substream_chip(substream); struct snd_pcm_runtime *runtime = substream->runtime; struct emu10k1x_pcm *epcm = runtime->private_data; int channel = epcm->voice->number; int result = 0; // snd_printk(KERN_INFO "trigger - emu10k1x = 0x%x, cmd = %i, pointer = %d\n", (int)emu, cmd, (int)substream->ops->pointer(substream)); switch (cmd) { case SNDRV_PCM_TRIGGER_START: if(runtime->periods == 2) snd_emu10k1x_intr_enable(emu, (INTE_CH_0_LOOP | INTE_CH_0_HALF_LOOP) << channel); else snd_emu10k1x_intr_enable(emu, INTE_CH_0_LOOP << channel); epcm->running = 1; snd_emu10k1x_ptr_write(emu, TRIGGER_CHANNEL, 0, snd_emu10k1x_ptr_read(emu, TRIGGER_CHANNEL, 0)|(TRIGGER_CHANNEL_0<<channel)); break; case SNDRV_PCM_TRIGGER_STOP: epcm->running = 0; snd_emu10k1x_intr_disable(emu, (INTE_CH_0_LOOP | INTE_CH_0_HALF_LOOP) << channel); snd_emu10k1x_ptr_write(emu, TRIGGER_CHANNEL, 0, snd_emu10k1x_ptr_read(emu, TRIGGER_CHANNEL, 0) & ~(TRIGGER_CHANNEL_0<<channel)); break; default: result = -EINVAL; break; } return result; } /* pointer callback */ static snd_pcm_uframes_t snd_emu10k1x_pcm_pointer(struct snd_pcm_substream *substream) { struct emu10k1x *emu = snd_pcm_substream_chip(substream); struct snd_pcm_runtime *runtime = substream->runtime; struct emu10k1x_pcm *epcm = runtime->private_data; int channel = epcm->voice->number; snd_pcm_uframes_t ptr = 0, ptr1 = 0, ptr2= 0,ptr3 = 0,ptr4 = 0; if (!epcm->running) return 0; ptr3 = snd_emu10k1x_ptr_read(emu, PLAYBACK_LIST_PTR, channel); ptr1 = snd_emu10k1x_ptr_read(emu, PLAYBACK_POINTER, channel); ptr4 = snd_emu10k1x_ptr_read(emu, PLAYBACK_LIST_PTR, channel); if(ptr4 == 0 && ptr1 == frames_to_bytes(runtime, runtime->buffer_size)) return 0; if (ptr3 != ptr4) ptr1 = snd_emu10k1x_ptr_read(emu, PLAYBACK_POINTER, channel); ptr2 = bytes_to_frames(runtime, ptr1); ptr2 += (ptr4 >> 3) * runtime->period_size; ptr = ptr2; if (ptr >= runtime->buffer_size) ptr -= runtime->buffer_size; return ptr; } /* operators */ static struct snd_pcm_ops snd_emu10k1x_playback_ops = { .open = snd_emu10k1x_playback_open, .close = snd_emu10k1x_playback_close, .ioctl = snd_pcm_lib_ioctl, .hw_params = snd_emu10k1x_pcm_hw_params, .hw_free = snd_emu10k1x_pcm_hw_free, .prepare = snd_emu10k1x_pcm_prepare, .trigger = snd_emu10k1x_pcm_trigger, .pointer = snd_emu10k1x_pcm_pointer, }; /* open_capture callback */ static int snd_emu10k1x_pcm_open_capture(struct snd_pcm_substream *substream) { struct emu10k1x *chip = snd_pcm_substream_chip(substream); struct emu10k1x_pcm *epcm; struct snd_pcm_runtime *runtime = substream->runtime; int err; if ((err = snd_pcm_hw_constraint_integer(runtime, SNDRV_PCM_HW_PARAM_PERIODS)) < 0) return err; if ((err = snd_pcm_hw_constraint_step(runtime, 0, SNDRV_PCM_HW_PARAM_PERIOD_BYTES, 64)) < 0) return err; epcm = kzalloc(sizeof(*epcm), GFP_KERNEL); if (epcm == NULL) return -ENOMEM; epcm->emu = chip; epcm->substream = substream; runtime->private_data = epcm; runtime->private_free = snd_emu10k1x_pcm_free_substream; runtime->hw = snd_emu10k1x_capture_hw; return 0; } /* close callback */ static int snd_emu10k1x_pcm_close_capture(struct snd_pcm_substream *substream) { return 0; } /* hw_params callback */ static int snd_emu10k1x_pcm_hw_params_capture(struct snd_pcm_substream *substream, struct snd_pcm_hw_params *hw_params) { struct snd_pcm_runtime *runtime = substream->runtime; struct emu10k1x_pcm *epcm = runtime->private_data; if (! epcm->voice) { if (epcm->emu->capture_voice.use) return -EBUSY; epcm->voice = &epcm->emu->capture_voice; epcm->voice->epcm = epcm; epcm->voice->use = 1; } return snd_pcm_lib_malloc_pages(substream, params_buffer_bytes(hw_params)); } /* hw_free callback */ static int snd_emu10k1x_pcm_hw_free_capture(struct snd_pcm_substream *substream) { struct snd_pcm_runtime *runtime = substream->runtime; struct emu10k1x_pcm *epcm; if (runtime->private_data == NULL) return 0; epcm = runtime->private_data; if (epcm->voice) { epcm->voice->use = 0; epcm->voice->epcm = NULL; epcm->voice = NULL; } return snd_pcm_lib_free_pages(substream); } /* prepare capture callback */ static int snd_emu10k1x_pcm_prepare_capture(struct snd_pcm_substream *substream) { struct emu10k1x *emu = snd_pcm_substream_chip(substream); struct snd_pcm_runtime *runtime = substream->runtime; snd_emu10k1x_ptr_write(emu, CAPTURE_DMA_ADDR, 0, runtime->dma_addr); snd_emu10k1x_ptr_write(emu, CAPTURE_BUFFER_SIZE, 0, frames_to_bytes(runtime, runtime->buffer_size)<<16); // buffer size in bytes snd_emu10k1x_ptr_write(emu, CAPTURE_POINTER, 0, 0); snd_emu10k1x_ptr_write(emu, CAPTURE_UNKNOWN, 0, 0); return 0; } /* trigger_capture callback */ static int snd_emu10k1x_pcm_trigger_capture(struct snd_pcm_substream *substream, int cmd) { struct emu10k1x *emu = snd_pcm_substream_chip(substream); struct snd_pcm_runtime *runtime = substream->runtime; struct emu10k1x_pcm *epcm = runtime->private_data; int result = 0; switch (cmd) { case SNDRV_PCM_TRIGGER_START: snd_emu10k1x_intr_enable(emu, INTE_CAP_0_LOOP | INTE_CAP_0_HALF_LOOP); snd_emu10k1x_ptr_write(emu, TRIGGER_CHANNEL, 0, snd_emu10k1x_ptr_read(emu, TRIGGER_CHANNEL, 0)|TRIGGER_CAPTURE); epcm->running = 1; break; case SNDRV_PCM_TRIGGER_STOP: epcm->running = 0; snd_emu10k1x_intr_disable(emu, INTE_CAP_0_LOOP | INTE_CAP_0_HALF_LOOP); snd_emu10k1x_ptr_write(emu, TRIGGER_CHANNEL, 0, snd_emu10k1x_ptr_read(emu, TRIGGER_CHANNEL, 0) & ~(TRIGGER_CAPTURE)); break; default: result = -EINVAL; break; } return result; } /* pointer_capture callback */ static snd_pcm_uframes_t snd_emu10k1x_pcm_pointer_capture(struct snd_pcm_substream *substream) { struct emu10k1x *emu = snd_pcm_substream_chip(substream); struct snd_pcm_runtime *runtime = substream->runtime; struct emu10k1x_pcm *epcm = runtime->private_data; snd_pcm_uframes_t ptr; if (!epcm->running) return 0; ptr = bytes_to_frames(runtime, snd_emu10k1x_ptr_read(emu, CAPTURE_POINTER, 0)); if (ptr >= runtime->buffer_size) ptr -= runtime->buffer_size; return ptr; } static struct snd_pcm_ops snd_emu10k1x_capture_ops = { .open = snd_emu10k1x_pcm_open_capture, .close = snd_emu10k1x_pcm_close_capture, .ioctl = snd_pcm_lib_ioctl, .hw_params = snd_emu10k1x_pcm_hw_params_capture, .hw_free = snd_emu10k1x_pcm_hw_free_capture, .prepare = snd_emu10k1x_pcm_prepare_capture, .trigger = snd_emu10k1x_pcm_trigger_capture, .pointer = snd_emu10k1x_pcm_pointer_capture, }; static unsigned short snd_emu10k1x_ac97_read(struct snd_ac97 *ac97, unsigned short reg) { struct emu10k1x *emu = ac97->private_data; unsigned long flags; unsigned short val; spin_lock_irqsave(&emu->emu_lock, flags); outb(reg, emu->port + AC97ADDRESS); val = inw(emu->port + AC97DATA); spin_unlock_irqrestore(&emu->emu_lock, flags); return val; } static void snd_emu10k1x_ac97_write(struct snd_ac97 *ac97, unsigned short reg, unsigned short val) { struct emu10k1x *emu = ac97->private_data; unsigned long flags; spin_lock_irqsave(&emu->emu_lock, flags); outb(reg, emu->port + AC97ADDRESS); outw(val, emu->port + AC97DATA); spin_unlock_irqrestore(&emu->emu_lock, flags); } static int snd_emu10k1x_ac97(struct emu10k1x *chip) { struct snd_ac97_bus *pbus; struct snd_ac97_template ac97; int err; static struct snd_ac97_bus_ops ops = { .write = snd_emu10k1x_ac97_write, .read = snd_emu10k1x_ac97_read, }; if ((err = snd_ac97_bus(chip->card, 0, &ops, NULL, &pbus)) < 0) return err; pbus->no_vra = 1; /* we don't need VRA */ memset(&ac97, 0, sizeof(ac97)); ac97.private_data = chip; ac97.scaps = AC97_SCAP_NO_SPDIF; return snd_ac97_mixer(pbus, &ac97, &chip->ac97); } static int snd_emu10k1x_free(struct emu10k1x *chip) { snd_emu10k1x_ptr_write(chip, TRIGGER_CHANNEL, 0, 0); // disable interrupts outl(0, chip->port + INTE); // disable audio outl(HCFG_LOCKSOUNDCACHE, chip->port + HCFG); // release the i/o port release_and_free_resource(chip->res_port); // release the irq if (chip->irq >= 0) free_irq(chip->irq, (void *)chip); // release the DMA if (chip->dma_buffer.area) { snd_dma_free_pages(&chip->dma_buffer); } pci_disable_device(chip->pci); // release the data kfree(chip); return 0; } static int snd_emu10k1x_dev_free(struct snd_device *device) { struct emu10k1x *chip = device->device_data; return snd_emu10k1x_free(chip); } static irqreturn_t snd_emu10k1x_interrupt(int irq, void *dev_id, struct pt_regs *regs) { unsigned int status; struct emu10k1x *chip = dev_id; struct emu10k1x_voice *pvoice = chip->voices; int i; int mask; status = inl(chip->port + IPR); if (! status) return IRQ_NONE; // capture interrupt if (status & (IPR_CAP_0_LOOP | IPR_CAP_0_HALF_LOOP)) { struct emu10k1x_voice *pvoice = &chip->capture_voice; if (pvoice->use) snd_emu10k1x_pcm_interrupt(chip, pvoice); else snd_emu10k1x_intr_disable(chip, INTE_CAP_0_LOOP | INTE_CAP_0_HALF_LOOP); } mask = IPR_CH_0_LOOP|IPR_CH_0_HALF_LOOP; for (i = 0; i < 3; i++) { if (status & mask) { if (pvoice->use) snd_emu10k1x_pcm_interrupt(chip, pvoice); else snd_emu10k1x_intr_disable(chip, mask); } pvoice++; mask <<= 1; } if (status & (IPR_MIDITRANSBUFEMPTY|IPR_MIDIRECVBUFEMPTY)) { if (chip->midi.interrupt) chip->midi.interrupt(chip, status); else snd_emu10k1x_intr_disable(chip, INTE_MIDITXENABLE|INTE_MIDIRXENABLE); } // acknowledge the interrupt if necessary outl(status, chip->port + IPR); // snd_printk(KERN_INFO "interrupt %08x\n", status); return IRQ_HANDLED; } static int __devinit snd_emu10k1x_pcm(struct emu10k1x *emu, int device, struct snd_pcm **rpcm) { struct snd_pcm *pcm; int err; int capture = 0; if (rpcm) *rpcm = NULL; if (device == 0) capture = 1; if ((err = snd_pcm_new(emu->card, "emu10k1x", device, 1, capture, &pcm)) < 0) return err; pcm->private_data = emu; switch(device) { case 0: snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_emu10k1x_playback_ops); snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_emu10k1x_capture_ops); break; case 1: case 2: snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_emu10k1x_playback_ops); break; } pcm->info_flags = 0; pcm->dev_subclass = SNDRV_PCM_SUBCLASS_GENERIC_MIX; switch(device) { case 0: strcpy(pcm->name, "EMU10K1X Front"); break; case 1: strcpy(pcm->name, "EMU10K1X Rear"); break; case 2: strcpy(pcm->name, "EMU10K1X Center/LFE"); break; } emu->pcm = pcm; snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV, snd_dma_pci_data(emu->pci), 32*1024, 32*1024); if (rpcm) *rpcm = pcm; return 0; } static int __devinit snd_emu10k1x_create(struct snd_card *card, struct pci_dev *pci, struct emu10k1x **rchip) { struct emu10k1x *chip; int err; int ch; static struct snd_device_ops ops = { .dev_free = snd_emu10k1x_dev_free, }; *rchip = NULL; if ((err = pci_enable_device(pci)) < 0) return err; if (pci_set_dma_mask(pci, 0x0fffffff) < 0 || pci_set_consistent_dma_mask(pci, 0x0fffffff) < 0) { snd_printk(KERN_ERR "error to set 28bit mask DMA\n"); pci_disable_device(pci); return -ENXIO; } chip = kzalloc(sizeof(*chip), GFP_KERNEL); if (chip == NULL) { pci_disable_device(pci); return -ENOMEM; } chip->card = card; chip->pci = pci; chip->irq = -1; spin_lock_init(&chip->emu_lock); spin_lock_init(&chip->voice_lock); chip->port = pci_resource_start(pci, 0); if ((chip->res_port = request_region(chip->port, 8, "EMU10K1X")) == NULL) { snd_printk(KERN_ERR "emu10k1x: cannot allocate the port 0x%lx\n", chip->port); snd_emu10k1x_free(chip); return -EBUSY; } if (request_irq(pci->irq, snd_emu10k1x_interrupt, SA_INTERRUPT|SA_SHIRQ, "EMU10K1X", (void *)chip)) { snd_printk(KERN_ERR "emu10k1x: cannot grab irq %d\n", pci->irq); snd_emu10k1x_free(chip); return -EBUSY; } chip->irq = pci->irq; if(snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV, snd_dma_pci_data(pci), 4 * 1024, &chip->dma_buffer) < 0) { snd_emu10k1x_free(chip); return -ENOMEM; } pci_set_master(pci); /* read revision & serial */ pci_read_config_byte(pci, PCI_REVISION_ID, (char *)&chip->revision); pci_read_config_dword(pci, PCI_SUBSYSTEM_VENDOR_ID, &chip->serial); pci_read_config_word(pci, PCI_SUBSYSTEM_ID, &chip->model); snd_printk(KERN_INFO "Model %04x Rev %08x Serial %08x\n", chip->model, chip->revision, chip->serial); outl(0, chip->port + INTE); for(ch = 0; ch < 3; ch++) { chip->voices[ch].emu = chip; chip->voices[ch].number = ch; } /* * Init to 0x02109204 : * Clock accuracy = 0 (1000ppm) * Sample Rate = 2 (48kHz) * Audio Channel = 1 (Left of 2) * Source Number = 0 (Unspecified) * Generation Status = 1 (Original for Cat Code 12) * Cat Code = 12 (Digital Signal Mixer) * Mode = 0 (Mode 0) * Emphasis = 0 (None) * CP = 1 (Copyright unasserted) * AN = 0 (Audio data) * P = 0 (Consumer) */ snd_emu10k1x_ptr_write(chip, SPCS0, 0, chip->spdif_bits[0] = SPCS_CLKACCY_1000PPM | SPCS_SAMPLERATE_48 | SPCS_CHANNELNUM_LEFT | SPCS_SOURCENUM_UNSPEC | SPCS_GENERATIONSTATUS | 0x00001200 | 0x00000000 | SPCS_EMPHASIS_NONE | SPCS_COPYRIGHT); snd_emu10k1x_ptr_write(chip, SPCS1, 0, chip->spdif_bits[1] = SPCS_CLKACCY_1000PPM | SPCS_SAMPLERATE_48 | SPCS_CHANNELNUM_LEFT | SPCS_SOURCENUM_UNSPEC | SPCS_GENERATIONSTATUS | 0x00001200 | 0x00000000 | SPCS_EMPHASIS_NONE | SPCS_COPYRIGHT); snd_emu10k1x_ptr_write(chip, SPCS2, 0, chip->spdif_bits[2] = SPCS_CLKACCY_1000PPM | SPCS_SAMPLERATE_48 | SPCS_CHANNELNUM_LEFT | SPCS_SOURCENUM_UNSPEC | SPCS_GENERATIONSTATUS | 0x00001200 | 0x00000000 | SPCS_EMPHASIS_NONE | SPCS_COPYRIGHT); snd_emu10k1x_ptr_write(chip, SPDIF_SELECT, 0, 0x700); // disable SPDIF snd_emu10k1x_ptr_write(chip, ROUTING, 0, 0x1003F); // routing snd_emu10k1x_gpio_write(chip, 0x1080); // analog mode outl(HCFG_LOCKSOUNDCACHE|HCFG_AUDIOENABLE, chip->port+HCFG); if ((err = snd_device_new(card, SNDRV_DEV_LOWLEVEL, chip, &ops)) < 0) { snd_emu10k1x_free(chip); return err; } *rchip = chip; return 0; } static void snd_emu10k1x_proc_reg_read(struct snd_info_entry *entry, struct snd_info_buffer *buffer) { struct emu10k1x *emu = entry->private_data; unsigned long value,value1,value2; unsigned long flags; int i; snd_iprintf(buffer, "Registers:\n\n"); for(i = 0; i < 0x20; i+=4) { spin_lock_irqsave(&emu->emu_lock, flags); value = inl(emu->port + i); spin_unlock_irqrestore(&emu->emu_lock, flags); snd_iprintf(buffer, "Register %02X: %08lX\n", i, value); } snd_iprintf(buffer, "\nRegisters\n\n"); for(i = 0; i <= 0x48; i++) { value = snd_emu10k1x_ptr_read(emu, i, 0); if(i < 0x10 || (i >= 0x20 && i < 0x40)) { value1 = snd_emu10k1x_ptr_read(emu, i, 1); value2 = snd_emu10k1x_ptr_read(emu, i, 2); snd_iprintf(buffer, "%02X: %08lX %08lX %08lX\n", i, value, value1, value2); } else { snd_iprintf(buffer, "%02X: %08lX\n", i, value); } } } static void snd_emu10k1x_proc_reg_write(struct snd_info_entry *entry, struct snd_info_buffer *buffer) { struct emu10k1x *emu = entry->private_data; char line[64]; unsigned int reg, channel_id , val; while (!snd_info_get_line(buffer, line, sizeof(line))) { if (sscanf(line, "%x %x %x", ®, &channel_id, &val) != 3) continue; if ((reg < 0x49) && (reg >=0) && (val <= 0xffffffff) && (channel_id >=0) && (channel_id <= 2) ) snd_emu10k1x_ptr_write(emu, reg, channel_id, val); } } static int __devinit snd_emu10k1x_proc_init(struct emu10k1x * emu) { struct snd_info_entry *entry; if(! snd_card_proc_new(emu->card, "emu10k1x_regs", &entry)) { snd_info_set_text_ops(entry, emu, 1024, snd_emu10k1x_proc_reg_read); entry->c.text.write_size = 64; entry->c.text.write = snd_emu10k1x_proc_reg_write; entry->mode |= S_IWUSR; entry->private_data = emu; } return 0; } static int snd_emu10k1x_shared_spdif_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) { uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN; uinfo->count = 1; uinfo->value.integer.min = 0; uinfo->value.integer.max = 1; return 0; } static int snd_emu10k1x_shared_spdif_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct emu10k1x *emu = snd_kcontrol_chip(kcontrol); ucontrol->value.integer.value[0] = (snd_emu10k1x_ptr_read(emu, SPDIF_SELECT, 0) == 0x700) ? 0 : 1; return 0; } static int snd_emu10k1x_shared_spdif_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct emu10k1x *emu = snd_kcontrol_chip(kcontrol); unsigned int val; int change = 0; val = ucontrol->value.integer.value[0] ; if (val) { // enable spdif output snd_emu10k1x_ptr_write(emu, SPDIF_SELECT, 0, 0x000); snd_emu10k1x_ptr_write(emu, ROUTING, 0, 0x700); snd_emu10k1x_gpio_write(emu, 0x1000); } else { // disable spdif output snd_emu10k1x_ptr_write(emu, SPDIF_SELECT, 0, 0x700); snd_emu10k1x_ptr_write(emu, ROUTING, 0, 0x1003F); snd_emu10k1x_gpio_write(emu, 0x1080); } return change; } static struct snd_kcontrol_new snd_emu10k1x_shared_spdif __devinitdata = { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = "Analog/Digital Output Jack", .info = snd_emu10k1x_shared_spdif_info, .get = snd_emu10k1x_shared_spdif_get, .put = snd_emu10k1x_shared_spdif_put }; static int snd_emu10k1x_spdif_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) { uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958; uinfo->count = 1; return 0; } static int snd_emu10k1x_spdif_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct emu10k1x *emu = snd_kcontrol_chip(kcontrol); unsigned int idx = snd_ctl_get_ioffidx(kcontrol, &ucontrol->id); ucontrol->value.iec958.status[0] = (emu->spdif_bits[idx] >> 0) & 0xff; ucontrol->value.iec958.status[1] = (emu->spdif_bits[idx] >> 8) & 0xff; ucontrol->value.iec958.status[2] = (emu->spdif_bits[idx] >> 16) & 0xff; ucontrol->value.iec958.status[3] = (emu->spdif_bits[idx] >> 24) & 0xff; return 0; } static int snd_emu10k1x_spdif_get_mask(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { ucontrol->value.iec958.status[0] = 0xff; ucontrol->value.iec958.status[1] = 0xff; ucontrol->value.iec958.status[2] = 0xff; ucontrol->value.iec958.status[3] = 0xff; return 0; } static int snd_emu10k1x_spdif_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct emu10k1x *emu = snd_kcontrol_chip(kcontrol); unsigned int idx = snd_ctl_get_ioffidx(kcontrol, &ucontrol->id); int change; unsigned int val; val = (ucontrol->value.iec958.status[0] << 0) | (ucontrol->value.iec958.status[1] << 8) | (ucontrol->value.iec958.status[2] << 16) | (ucontrol->value.iec958.status[3] << 24); change = val != emu->spdif_bits[idx]; if (change) { snd_emu10k1x_ptr_write(emu, SPCS0 + idx, 0, val); emu->spdif_bits[idx] = val; } return change; } static struct snd_kcontrol_new snd_emu10k1x_spdif_mask_control = { .access = SNDRV_CTL_ELEM_ACCESS_READ, .iface = SNDRV_CTL_ELEM_IFACE_PCM, .name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,MASK), .count = 3, .info = snd_emu10k1x_spdif_info, .get = snd_emu10k1x_spdif_get_mask }; static struct snd_kcontrol_new snd_emu10k1x_spdif_control = { .iface = SNDRV_CTL_ELEM_IFACE_PCM, .name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,DEFAULT), .count = 3, .info = snd_emu10k1x_spdif_info, .get = snd_emu10k1x_spdif_get, .put = snd_emu10k1x_spdif_put }; static int __devinit snd_emu10k1x_mixer(struct emu10k1x *emu) { int err; struct snd_kcontrol *kctl; struct snd_card *card = emu->card; if ((kctl = snd_ctl_new1(&snd_emu10k1x_spdif_mask_control, emu)) == NULL) return -ENOMEM; if ((err = snd_ctl_add(card, kctl))) return err; if ((kctl = snd_ctl_new1(&snd_emu10k1x_shared_spdif, emu)) == NULL) return -ENOMEM; if ((err = snd_ctl_add(card, kctl))) return err; if ((kctl = snd_ctl_new1(&snd_emu10k1x_spdif_control, emu)) == NULL) return -ENOMEM; if ((err = snd_ctl_add(card, kctl))) return err; return 0; } #define EMU10K1X_MIDI_MODE_INPUT (1<<0) #define EMU10K1X_MIDI_MODE_OUTPUT (1<<1) static inline unsigned char mpu401_read(struct emu10k1x *emu, struct emu10k1x_midi *mpu, int idx) { return (unsigned char)snd_emu10k1x_ptr_read(emu, mpu->port + idx, 0); } static inline void mpu401_write(struct emu10k1x *emu, struct emu10k1x_midi *mpu, int data, int idx) { snd_emu10k1x_ptr_write(emu, mpu->port + idx, 0, data); } #define mpu401_write_data(emu, mpu, data) mpu401_write(emu, mpu, data, 0) #define mpu401_write_cmd(emu, mpu, data) mpu401_write(emu, mpu, data, 1) #define mpu401_read_data(emu, mpu) mpu401_read(emu, mpu, 0) #define mpu401_read_stat(emu, mpu) mpu401_read(emu, mpu, 1) #define mpu401_input_avail(emu,mpu) (!(mpu401_read_stat(emu,mpu) & 0x80)) #define mpu401_output_ready(emu,mpu) (!(mpu401_read_stat(emu,mpu) & 0x40)) #define MPU401_RESET 0xff #define MPU401_ENTER_UART 0x3f #define MPU401_ACK 0xfe static void mpu401_clear_rx(struct emu10k1x *emu, struct emu10k1x_midi *mpu) { int timeout = 100000; for (; timeout > 0 && mpu401_input_avail(emu, mpu); timeout--) mpu401_read_data(emu, mpu); #ifdef CONFIG_SND_DEBUG if (timeout <= 0) snd_printk(KERN_ERR "cmd: clear rx timeout (status = 0x%x)\n", mpu401_read_stat(emu, mpu)); #endif } /* */ static void do_emu10k1x_midi_interrupt(struct emu10k1x *emu, struct emu10k1x_midi *midi, unsigned int status) { unsigned char byte; if (midi->rmidi == NULL) { snd_emu10k1x_intr_disable(emu, midi->tx_enable | midi->rx_enable); return; } spin_lock(&midi->input_lock); if ((status & midi->ipr_rx) && mpu401_input_avail(emu, midi)) { if (!(midi->midi_mode & EMU10K1X_MIDI_MODE_INPUT)) { mpu401_clear_rx(emu, midi); } else { byte = mpu401_read_data(emu, midi); if (midi->substream_input) snd_rawmidi_receive(midi->substream_input, &byte, 1); } } spin_unlock(&midi->input_lock); spin_lock(&midi->output_lock); if ((status & midi->ipr_tx) && mpu401_output_ready(emu, midi)) { if (midi->substream_output && snd_rawmidi_transmit(midi->substream_output, &byte, 1) == 1) { mpu401_write_data(emu, midi, byte); } else { snd_emu10k1x_intr_disable(emu, midi->tx_enable); } } spin_unlock(&midi->output_lock); } static void snd_emu10k1x_midi_interrupt(struct emu10k1x *emu, unsigned int status) { do_emu10k1x_midi_interrupt(emu, &emu->midi, status); } static void snd_emu10k1x_midi_cmd(struct emu10k1x * emu, struct emu10k1x_midi *midi, unsigned char cmd, int ack) { unsigned long flags; int timeout, ok; spin_lock_irqsave(&midi->input_lock, flags); mpu401_write_data(emu, midi, 0x00); /* mpu401_clear_rx(emu, midi); */ mpu401_write_cmd(emu, midi, cmd); if (ack) { ok = 0; timeout = 10000; while (!ok && timeout-- > 0) { if (mpu401_input_avail(emu, midi)) { if (mpu401_read_data(emu, midi) == MPU401_ACK) ok = 1; } } if (!ok && mpu401_read_data(emu, midi) == MPU401_ACK) ok = 1; } else { ok = 1; } spin_unlock_irqrestore(&midi->input_lock, flags); if (!ok) snd_printk(KERN_ERR "midi_cmd: 0x%x failed at 0x%lx (status = 0x%x, data = 0x%x)!!!\n", cmd, emu->port, mpu401_read_stat(emu, midi), mpu401_read_data(emu, midi)); } static int snd_emu10k1x_midi_input_open(struct snd_rawmidi_substream *substream) { struct emu10k1x *emu; struct emu10k1x_midi *midi = substream->rmidi->private_data; unsigned long flags; emu = midi->emu; snd_assert(emu, return -ENXIO); spin_lock_irqsave(&midi->open_lock, flags); midi->midi_mode |= EMU10K1X_MIDI_MODE_INPUT; midi->substream_input = substream; if (!(midi->midi_mode & EMU10K1X_MIDI_MODE_OUTPUT)) { spin_unlock_irqrestore(&midi->open_lock, flags); snd_emu10k1x_midi_cmd(emu, midi, MPU401_RESET, 1); snd_emu10k1x_midi_cmd(emu, midi, MPU401_ENTER_UART, 1); } else { spin_unlock_irqrestore(&midi->open_lock, flags); } return 0; } static int snd_emu10k1x_midi_output_open(struct snd_rawmidi_substream *substream) { struct emu10k1x *emu; struct emu10k1x_midi *midi = substream->rmidi->private_data; unsigned long flags; emu = midi->emu; snd_assert(emu, return -ENXIO); spin_lock_irqsave(&midi->open_lock, flags); midi->midi_mode |= EMU10K1X_MIDI_MODE_OUTPUT; midi->substream_output = substream; if (!(midi->midi_mode & EMU10K1X_MIDI_MODE_INPUT)) { spin_unlock_irqrestore(&midi->open_lock, flags); snd_emu10k1x_midi_cmd(emu, midi, MPU401_RESET, 1); snd_emu10k1x_midi_cmd(emu, midi, MPU401_ENTER_UART, 1); } else { spin_unlock_irqrestore(&midi->open_lock, flags); } return 0; } static int snd_emu10k1x_midi_input_close(struct snd_rawmidi_substream *substream) { struct emu10k1x *emu; struct emu10k1x_midi *midi = substream->rmidi->private_data; unsigned long flags; emu = midi->emu; snd_assert(emu, return -ENXIO); spin_lock_irqsave(&midi->open_lock, flags); snd_emu10k1x_intr_disable(emu, midi->rx_enable); midi->midi_mode &= ~EMU10K1X_MIDI_MODE_INPUT; midi->substream_input = NULL; if (!(midi->midi_mode & EMU10K1X_MIDI_MODE_OUTPUT)) { spin_unlock_irqrestore(&midi->open_lock, flags); snd_emu10k1x_midi_cmd(emu, midi, MPU401_RESET, 0); } else { spin_unlock_irqrestore(&midi->open_lock, flags); } return 0; } static int snd_emu10k1x_midi_output_close(struct snd_rawmidi_substream *substream) { struct emu10k1x *emu; struct emu10k1x_midi *midi = substream->rmidi->private_data; unsigned long flags; emu = midi->emu; snd_assert(emu, return -ENXIO); spin_lock_irqsave(&midi->open_lock, flags); snd_emu10k1x_intr_disable(emu, midi->tx_enable); midi->midi_mode &= ~EMU10K1X_MIDI_MODE_OUTPUT; midi->substream_output = NULL; if (!(midi->midi_mode & EMU10K1X_MIDI_MODE_INPUT)) { spin_unlock_irqrestore(&midi->open_lock, flags); snd_emu10k1x_midi_cmd(emu, midi, MPU401_RESET, 0); } else { spin_unlock_irqrestore(&midi->open_lock, flags); } return 0; } static void snd_emu10k1x_midi_input_trigger(struct snd_rawmidi_substream *substream, int up) { struct emu10k1x *emu; struct emu10k1x_midi *midi = substream->rmidi->private_data; emu = midi->emu; snd_assert(emu, return); if (up) snd_emu10k1x_intr_enable(emu, midi->rx_enable); else snd_emu10k1x_intr_disable(emu, midi->rx_enable); } static void snd_emu10k1x_midi_output_trigger(struct snd_rawmidi_substream *substream, int up) { struct emu10k1x *emu; struct emu10k1x_midi *midi = substream->rmidi->private_data; unsigned long flags; emu = midi->emu; snd_assert(emu, return); if (up) { int max = 4; unsigned char byte; /* try to send some amount of bytes here before interrupts */ spin_lock_irqsave(&midi->output_lock, flags); while (max > 0) { if (mpu401_output_ready(emu, midi)) { if (!(midi->midi_mode & EMU10K1X_MIDI_MODE_OUTPUT) || snd_rawmidi_transmit(substream, &byte, 1) != 1) { /* no more data */ spin_unlock_irqrestore(&midi->output_lock, flags); return; } mpu401_write_data(emu, midi, byte); max--; } else { break; } } spin_unlock_irqrestore(&midi->output_lock, flags); snd_emu10k1x_intr_enable(emu, midi->tx_enable); } else { snd_emu10k1x_intr_disable(emu, midi->tx_enable); } } /* */ static struct snd_rawmidi_ops snd_emu10k1x_midi_output = { .open = snd_emu10k1x_midi_output_open, .close = snd_emu10k1x_midi_output_close, .trigger = snd_emu10k1x_midi_output_trigger, }; static struct snd_rawmidi_ops snd_emu10k1x_midi_input = { .open = snd_emu10k1x_midi_input_open, .close = snd_emu10k1x_midi_input_close, .trigger = snd_emu10k1x_midi_input_trigger, }; static void snd_emu10k1x_midi_free(struct snd_rawmidi *rmidi) { struct emu10k1x_midi *midi = rmidi->private_data; midi->interrupt = NULL; midi->rmidi = NULL; } static int __devinit emu10k1x_midi_init(struct emu10k1x *emu, struct emu10k1x_midi *midi, int device, char *name) { struct snd_rawmidi *rmidi; int err; if ((err = snd_rawmidi_new(emu->card, name, device, 1, 1, &rmidi)) < 0) return err; midi->emu = emu; spin_lock_init(&midi->open_lock); spin_lock_init(&midi->input_lock); spin_lock_init(&midi->output_lock); strcpy(rmidi->name, name); snd_rawmidi_set_ops(rmidi, SNDRV_RAWMIDI_STREAM_OUTPUT, &snd_emu10k1x_midi_output); snd_rawmidi_set_ops(rmidi, SNDRV_RAWMIDI_STREAM_INPUT, &snd_emu10k1x_midi_input); rmidi->info_flags |= SNDRV_RAWMIDI_INFO_OUTPUT | SNDRV_RAWMIDI_INFO_INPUT | SNDRV_RAWMIDI_INFO_DUPLEX; rmidi->private_data = midi; rmidi->private_free = snd_emu10k1x_midi_free; midi->rmidi = rmidi; return 0; } static int __devinit snd_emu10k1x_midi(struct emu10k1x *emu) { struct emu10k1x_midi *midi = &emu->midi; int err; if ((err = emu10k1x_midi_init(emu, midi, 0, "EMU10K1X MPU-401 (UART)")) < 0) return err; midi->tx_enable = INTE_MIDITXENABLE; midi->rx_enable = INTE_MIDIRXENABLE; midi->port = MUDATA; midi->ipr_tx = IPR_MIDITRANSBUFEMPTY; midi->ipr_rx = IPR_MIDIRECVBUFEMPTY; midi->interrupt = snd_emu10k1x_midi_interrupt; return 0; } static int __devinit snd_emu10k1x_probe(struct pci_dev *pci, const struct pci_device_id *pci_id) { static int dev; struct snd_card *card; struct emu10k1x *chip; int err; if (dev >= SNDRV_CARDS) return -ENODEV; if (!enable[dev]) { dev++; return -ENOENT; } card = snd_card_new(index[dev], id[dev], THIS_MODULE, 0); if (card == NULL) return -ENOMEM; if ((err = snd_emu10k1x_create(card, pci, &chip)) < 0) { snd_card_free(card); return err; } if ((err = snd_emu10k1x_pcm(chip, 0, NULL)) < 0) { snd_card_free(card); return err; } if ((err = snd_emu10k1x_pcm(chip, 1, NULL)) < 0) { snd_card_free(card); return err; } if ((err = snd_emu10k1x_pcm(chip, 2, NULL)) < 0) { snd_card_free(card); return err; } if ((err = snd_emu10k1x_ac97(chip)) < 0) { snd_card_free(card); return err; } if ((err = snd_emu10k1x_mixer(chip)) < 0) { snd_card_free(card); return err; } if ((err = snd_emu10k1x_midi(chip)) < 0) { snd_card_free(card); return err; } snd_emu10k1x_proc_init(chip); strcpy(card->driver, "EMU10K1X"); strcpy(card->shortname, "Dell Sound Blaster Live!"); sprintf(card->longname, "%s at 0x%lx irq %i", card->shortname, chip->port, chip->irq); if ((err = snd_card_register(card)) < 0) { snd_card_free(card); return err; } pci_set_drvdata(pci, card); dev++; return 0; } static void __devexit snd_emu10k1x_remove(struct pci_dev *pci) { snd_card_free(pci_get_drvdata(pci)); pci_set_drvdata(pci, NULL); } // PCI IDs static struct pci_device_id snd_emu10k1x_ids[] = { { 0x1102, 0x0006, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 }, /* Dell OEM version (EMU10K1) */ { 0, } }; MODULE_DEVICE_TABLE(pci, snd_emu10k1x_ids); // pci_driver definition static struct pci_driver driver = { .name = "EMU10K1X", .id_table = snd_emu10k1x_ids, .probe = snd_emu10k1x_probe, .remove = __devexit_p(snd_emu10k1x_remove), }; // initialization of the module static int __init alsa_card_emu10k1x_init(void) { int err; if ((err = pci_register_driver(&driver)) > 0) return err; return 0; } // clean up the module static void __exit alsa_card_emu10k1x_exit(void) { pci_unregister_driver(&driver); } module_init(alsa_card_emu10k1x_init) module_exit(alsa_card_emu10k1x_exit)