/* * This file is subject to the terms and conditions of the GNU General Public * License. See the file "COPYING" in the main directory of this archive * for more details. * * Copyright (C) 2001-2005 Silicon Graphics, Inc. All rights reserved. */ #include #include #include #include #include #include #include #include #include #include #include "tio.h" #include "xtalk/xwidgetdev.h" #include "xtalk/hubdev.h" extern int sn_ioif_inited; /* ===================================================================== * DMA MANAGEMENT * * The Bridge ASIC provides three methods of doing DMA: via a "direct map" * register available in 32-bit PCI space (which selects a contiguous 2G * address space on some other widget), via "direct" addressing via 64-bit * PCI space (all destination information comes from the PCI address, * including transfer attributes), and via a "mapped" region that allows * a bunch of different small mappings to be established with the PMU. * * For efficiency, we most prefer to use the 32bit direct mapping facility, * since it requires no resource allocations. The advantage of using the * PMU over the 64-bit direct is that single-cycle PCI addressing can be * used; the advantage of using 64-bit direct over PMU addressing is that * we do not have to allocate entries in the PMU. */ static dma_addr_t pcibr_dmamap_ate32(struct pcidev_info *info, uint64_t paddr, size_t req_size, uint64_t flags) { struct pcidev_info *pcidev_info = info->pdi_host_pcidev_info; struct pcibus_info *pcibus_info = (struct pcibus_info *)pcidev_info-> pdi_pcibus_info; uint8_t internal_device = (PCI_SLOT(pcidev_info->pdi_host_pcidev_info-> pdi_linux_pcidev->devfn)) - 1; int ate_count; int ate_index; uint64_t ate_flags = flags | PCI32_ATE_V; uint64_t ate; uint64_t pci_addr; uint64_t xio_addr; uint64_t offset; /* PIC in PCI-X mode does not supports 32bit PageMap mode */ if (IS_PIC_SOFT(pcibus_info) && IS_PCIX(pcibus_info)) { return 0; } /* Calculate the number of ATEs needed. */ if (!(MINIMAL_ATE_FLAG(paddr, req_size))) { ate_count = IOPG((IOPGSIZE - 1) /* worst case start offset */ +req_size /* max mapping bytes */ - 1) + 1; /* round UP */ } else { /* assume requested target is page aligned */ ate_count = IOPG(req_size /* max mapping bytes */ - 1) + 1; /* round UP */ } /* Get the number of ATEs required. */ ate_index = pcibr_ate_alloc(pcibus_info, ate_count); if (ate_index < 0) return 0; /* In PCI-X mode, Prefetch not supported */ if (IS_PCIX(pcibus_info)) ate_flags &= ~(PCI32_ATE_PREF); xio_addr = IS_PIC_SOFT(pcibus_info) ? PHYS_TO_DMA(paddr) : PHYS_TO_TIODMA(paddr); offset = IOPGOFF(xio_addr); ate = ate_flags | (xio_addr - offset); /* If PIC, put the targetid in the ATE */ if (IS_PIC_SOFT(pcibus_info)) { ate |= (pcibus_info->pbi_hub_xid << PIC_ATE_TARGETID_SHFT); } ate_write(pcibus_info, ate_index, ate_count, ate); /* * Set up the DMA mapped Address. */ pci_addr = PCI32_MAPPED_BASE + offset + IOPGSIZE * ate_index; /* * If swap was set in device in pcibr_endian_set() * we need to turn swapping on. */ if (pcibus_info->pbi_devreg[internal_device] & PCIBR_DEV_SWAP_DIR) ATE_SWAP_ON(pci_addr); return pci_addr; } static dma_addr_t pcibr_dmatrans_direct64(struct pcidev_info * info, uint64_t paddr, uint64_t dma_attributes) { struct pcibus_info *pcibus_info = (struct pcibus_info *) ((info->pdi_host_pcidev_info)->pdi_pcibus_info); uint64_t pci_addr; /* Translate to Crosstalk View of Physical Address */ pci_addr = (IS_PIC_SOFT(pcibus_info) ? PHYS_TO_DMA(paddr) : PHYS_TO_TIODMA(paddr)) | dma_attributes; /* Handle Bus mode */ if (IS_PCIX(pcibus_info)) pci_addr &= ~PCI64_ATTR_PREF; /* Handle Bridge Chipset differences */ if (IS_PIC_SOFT(pcibus_info)) { pci_addr |= ((uint64_t) pcibus_info-> pbi_hub_xid << PIC_PCI64_ATTR_TARG_SHFT); } else pci_addr |= TIOCP_PCI64_CMDTYPE_MEM; /* If PCI mode, func zero uses VCHAN0, every other func uses VCHAN1 */ if (!IS_PCIX(pcibus_info) && PCI_FUNC(info->pdi_linux_pcidev->devfn)) pci_addr |= PCI64_ATTR_VIRTUAL; return pci_addr; } static dma_addr_t pcibr_dmatrans_direct32(struct pcidev_info * info, uint64_t paddr, size_t req_size, uint64_t flags) { struct pcidev_info *pcidev_info = info->pdi_host_pcidev_info; struct pcibus_info *pcibus_info = (struct pcibus_info *)pcidev_info-> pdi_pcibus_info; uint64_t xio_addr; uint64_t xio_base; uint64_t offset; uint64_t endoff; if (IS_PCIX(pcibus_info)) { return 0; } xio_addr = IS_PIC_SOFT(pcibus_info) ? PHYS_TO_DMA(paddr) : PHYS_TO_TIODMA(paddr); xio_base = pcibus_info->pbi_dir_xbase; offset = xio_addr - xio_base; endoff = req_size + offset; if ((req_size > (1ULL << 31)) || /* Too Big */ (xio_addr < xio_base) || /* Out of range for mappings */ (endoff > (1ULL << 31))) { /* Too Big */ return 0; } return PCI32_DIRECT_BASE | offset; } /* * Wrapper routine for free'ing DMA maps * DMA mappings for Direct 64 and 32 do not have any DMA maps. */ void pcibr_dma_unmap(struct pci_dev *hwdev, dma_addr_t dma_handle, int direction) { struct pcidev_info *pcidev_info = SN_PCIDEV_INFO(hwdev); struct pcibus_info *pcibus_info = (struct pcibus_info *)pcidev_info->pdi_pcibus_info; if (IS_PCI32_MAPPED(dma_handle)) { int ate_index; ate_index = IOPG((ATE_SWAP_OFF(dma_handle) - PCI32_MAPPED_BASE)); pcibr_ate_free(pcibus_info, ate_index); } } /* * On SN systems there is a race condition between a PIO read response and * DMA's. In rare cases, the read response may beat the DMA, causing the * driver to think that data in memory is complete and meaningful. This code * eliminates that race. This routine is called by the PIO read routines * after doing the read. For PIC this routine then forces a fake interrupt * on another line, which is logically associated with the slot that the PIO * is addressed to. It then spins while watching the memory location that * the interrupt is targetted to. When the interrupt response arrives, we * are sure that the DMA has landed in memory and it is safe for the driver * to proceed. For TIOCP use the Device(x) Write Request Buffer Flush * Bridge register since it ensures the data has entered the coherence domain, * unlike the PIC Device(x) Write Request Buffer Flush register. */ void sn_dma_flush(uint64_t addr) { nasid_t nasid; int is_tio; int wid_num; int i, j; uint64_t flags; uint64_t itte; struct hubdev_info *hubinfo; volatile struct sn_flush_device_list *p; struct sn_flush_nasid_entry *flush_nasid_list; if (!sn_ioif_inited) return; nasid = NASID_GET(addr); if (-1 == nasid_to_cnodeid(nasid)) return; hubinfo = (NODEPDA(nasid_to_cnodeid(nasid)))->pdinfo; if (!hubinfo) { BUG(); } flush_nasid_list = &hubinfo->hdi_flush_nasid_list; if (flush_nasid_list->widget_p == NULL) return; is_tio = (nasid & 1); if (is_tio) { int itte_index; if (TIO_HWIN(addr)) itte_index = 0; else if (TIO_BWIN_WINDOWNUM(addr)) itte_index = TIO_BWIN_WINDOWNUM(addr); else itte_index = -1; if (itte_index >= 0) { itte = flush_nasid_list->iio_itte[itte_index]; if (! TIO_ITTE_VALID(itte)) return; wid_num = TIO_ITTE_WIDGET(itte); } else wid_num = TIO_SWIN_WIDGETNUM(addr); } else { if (BWIN_WINDOWNUM(addr)) { itte = flush_nasid_list->iio_itte[BWIN_WINDOWNUM(addr)]; wid_num = IIO_ITTE_WIDGET(itte); } else wid_num = SWIN_WIDGETNUM(addr); } if (flush_nasid_list->widget_p[wid_num] == NULL) return; p = &flush_nasid_list->widget_p[wid_num][0]; /* find a matching BAR */ for (i = 0; i < DEV_PER_WIDGET; i++) { for (j = 0; j < PCI_ROM_RESOURCE; j++) { if (p->sfdl_bar_list[j].start == 0) break; if (addr >= p->sfdl_bar_list[j].start && addr <= p->sfdl_bar_list[j].end) break; } if (j < PCI_ROM_RESOURCE && p->sfdl_bar_list[j].start != 0) break; p++; } /* if no matching BAR, return without doing anything. */ if (i == DEV_PER_WIDGET) return; /* * For TIOCP use the Device(x) Write Request Buffer Flush Bridge * register since it ensures the data has entered the coherence * domain, unlike PIC. */ if (is_tio) { /* * Note: devices behind TIOCE should never be matched in the * above code, and so the following code is PIC/CP centric. * If CE ever needs the sn_dma_flush mechanism, we will have * to account for that here and in tioce_bus_fixup(). */ uint32_t tio_id = REMOTE_HUB_L(nasid, TIO_NODE_ID); uint32_t revnum = XWIDGET_PART_REV_NUM(tio_id); /* TIOCP BRINGUP WAR (PV907516): Don't write buffer flush reg */ if ((1 << XWIDGET_PART_REV_NUM_REV(revnum)) & PV907516) { return; } else { pcireg_wrb_flush_get(p->sfdl_pcibus_info, (p->sfdl_slot - 1)); } } else { spin_lock_irqsave(&((struct sn_flush_device_list *)p)-> sfdl_flush_lock, flags); *p->sfdl_flush_addr = 0; /* force an interrupt. */ *(volatile uint32_t *)(p->sfdl_force_int_addr) = 1; /* wait for the interrupt to come back. */ while (*(p->sfdl_flush_addr) != 0x10f) ; /* okay, everything is synched up. */ spin_unlock_irqrestore((spinlock_t *)&p->sfdl_flush_lock, flags); } return; } /* * DMA interfaces. Called from pci_dma.c routines. */ dma_addr_t pcibr_dma_map(struct pci_dev * hwdev, unsigned long phys_addr, size_t size) { dma_addr_t dma_handle; struct pcidev_info *pcidev_info = SN_PCIDEV_INFO(hwdev); /* SN cannot support DMA addresses smaller than 32 bits. */ if (hwdev->dma_mask < 0x7fffffff) { return 0; } if (hwdev->dma_mask == ~0UL) { /* * Handle the most common case: 64 bit cards. This * call should always succeed. */ dma_handle = pcibr_dmatrans_direct64(pcidev_info, phys_addr, PCI64_ATTR_PREF); } else { /* Handle 32-63 bit cards via direct mapping */ dma_handle = pcibr_dmatrans_direct32(pcidev_info, phys_addr, size, 0); if (!dma_handle) { /* * It is a 32 bit card and we cannot do direct mapping, * so we use an ATE. */ dma_handle = pcibr_dmamap_ate32(pcidev_info, phys_addr, size, PCI32_ATE_PREF); } } return dma_handle; } dma_addr_t pcibr_dma_map_consistent(struct pci_dev * hwdev, unsigned long phys_addr, size_t size) { dma_addr_t dma_handle; struct pcidev_info *pcidev_info = SN_PCIDEV_INFO(hwdev); if (hwdev->dev.coherent_dma_mask == ~0UL) { dma_handle = pcibr_dmatrans_direct64(pcidev_info, phys_addr, PCI64_ATTR_BAR); } else { dma_handle = (dma_addr_t) pcibr_dmamap_ate32(pcidev_info, phys_addr, size, PCI32_ATE_BAR); } return dma_handle; } EXPORT_SYMBOL(sn_dma_flush);