/* * Dynamic DMA mapping support. */ #include #include #include #include #include #include #include #include #include #include #include dma_addr_t bad_dma_address __read_mostly; EXPORT_SYMBOL(bad_dma_address); /* Dummy device used for NULL arguments (normally ISA). Better would be probably a smaller DMA mask, but this is bug-to-bug compatible to i386. */ struct device fallback_dev = { .bus_id = "fallback device", .coherent_dma_mask = DMA_32BIT_MASK, .dma_mask = &fallback_dev.coherent_dma_mask, }; /* Allocate DMA memory on node near device */ noinline static void * dma_alloc_pages(struct device *dev, gfp_t gfp, unsigned order) { struct page *page; int node; node = dev_to_node(dev); page = alloc_pages_node(node, gfp, order); return page ? page_address(page) : NULL; } /* * Allocate memory for a coherent mapping. */ void * dma_alloc_coherent(struct device *dev, size_t size, dma_addr_t *dma_handle, gfp_t gfp) { void *memory; unsigned long dma_mask = 0; u64 bus; if (!dev) dev = &fallback_dev; dma_mask = dev->coherent_dma_mask; if (dma_mask == 0) dma_mask = DMA_32BIT_MASK; /* Device not DMA able */ if (dev->dma_mask == NULL) return NULL; /* Don't invoke OOM killer */ gfp |= __GFP_NORETRY; /* Kludge to make it bug-to-bug compatible with i386. i386 uses the normal dma_mask for alloc_coherent. */ dma_mask &= *dev->dma_mask; /* Why <=? Even when the mask is smaller than 4GB it is often larger than 16MB and in this case we have a chance of finding fitting memory in the next higher zone first. If not retry with true GFP_DMA. -AK */ if (dma_mask <= DMA_32BIT_MASK) gfp |= GFP_DMA32; again: memory = dma_alloc_pages(dev, gfp, get_order(size)); if (memory == NULL) return NULL; { int high, mmu; bus = virt_to_bus(memory); high = (bus + size) >= dma_mask; mmu = high; if (force_iommu && !(gfp & GFP_DMA)) mmu = 1; else if (high) { free_pages((unsigned long)memory, get_order(size)); /* Don't use the 16MB ZONE_DMA unless absolutely needed. It's better to use remapping first. */ if (dma_mask < DMA_32BIT_MASK && !(gfp & GFP_DMA)) { gfp = (gfp & ~GFP_DMA32) | GFP_DMA; goto again; } /* Let low level make its own zone decisions */ gfp &= ~(GFP_DMA32|GFP_DMA); if (dma_ops->alloc_coherent) return dma_ops->alloc_coherent(dev, size, dma_handle, gfp); return NULL; } memset(memory, 0, size); if (!mmu) { *dma_handle = virt_to_bus(memory); return memory; } } if (dma_ops->alloc_coherent) { free_pages((unsigned long)memory, get_order(size)); gfp &= ~(GFP_DMA|GFP_DMA32); return dma_ops->alloc_coherent(dev, size, dma_handle, gfp); } if (dma_ops->map_simple) { *dma_handle = dma_ops->map_simple(dev, virt_to_phys(memory), size, PCI_DMA_BIDIRECTIONAL); if (*dma_handle != bad_dma_address) return memory; } if (panic_on_overflow) panic("dma_alloc_coherent: IOMMU overflow by %lu bytes\n",size); free_pages((unsigned long)memory, get_order(size)); return NULL; } EXPORT_SYMBOL(dma_alloc_coherent); /* * Unmap coherent memory. * The caller must ensure that the device has finished accessing the mapping. */ void dma_free_coherent(struct device *dev, size_t size, void *vaddr, dma_addr_t bus) { WARN_ON(irqs_disabled()); /* for portability */ if (dma_ops->unmap_single) dma_ops->unmap_single(dev, bus, size, 0); free_pages((unsigned long)vaddr, get_order(size)); } EXPORT_SYMBOL(dma_free_coherent);