As EDAC doesn't use struct device itself, it created a parent dev
pointer called as "pdev". Now that we'll be converting it to use
struct device, instead of struct devsys, this needs to be fixed.
No functional changes.
Reviewed-by: Aristeu Rozanski <arozansk@redhat.com>
Acked-by: Chris Metcalf <cmetcalf@tilera.com>
Cc: Doug Thompson <norsk5@yahoo.com>
Cc: Borislav Petkov <borislav.petkov@amd.com>
Cc: Mark Gross <mark.gross@intel.com>
Cc: Jason Uhlenkott <juhlenko@akamai.com>
Cc: Tim Small <tim@buttersideup.com>
Cc: Ranganathan Desikan <ravi@jetztechnologies.com>
Cc: "Arvind R." <arvino55@gmail.com>
Cc: Olof Johansson <olof@lixom.net>
Cc: Egor Martovetsky <egor@pasemi.com>
Cc: Michal Marek <mmarek@suse.cz>
Cc: Jiri Kosina <jkosina@suse.cz>
Cc: Joe Perches <joe@perches.com>
Cc: Dmitry Eremin-Solenikov <dbaryshkov@gmail.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Hitoshi Mitake <h.mitake@gmail.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: "Niklas Söderlund" <niklas.soderlund@ericsson.com>
Cc: Shaohui Xie <Shaohui.Xie@freescale.com>
Cc: Josh Boyer <jwboyer@gmail.com>
Cc: linuxppc-dev@lists.ozlabs.org
Signed-off-by: Mauro Carvalho Chehab <mchehab@redhat.com>
Add a new tracepoint-based hardware events report method for
reporting Memory Controller events.
Part of the description bellow is shamelessly copied from Tony
Luck's notes about the Hardware Error BoF during LPC 2010 [1].
Tony, thanks for your notes and discussions to generate the
h/w error reporting requirements.
[1] http://lwn.net/Articles/416669/
We have several subsystems & methods for reporting hardware errors:
1) EDAC ("Error Detection and Correction"). In its original form
this consisted of a platform specific driver that read topology
information and error counts from chipset registers and reported
the results via a sysfs interface.
2) mcelog - x86 specific decoding of machine check bank registers
reporting in binary form via /dev/mcelog. Recent additions make use
of the APEI extensions that were documented in version 4.0a of the
ACPI specification to acquire more information about errors without
having to rely reading chipset registers directly. A user level
programs decodes into somewhat human readable format.
3) drivers/edac/mce_amd.c - this driver hooks into the mcelog path and
decodes errors reported via machine check bank registers in AMD
processors to the console log using printk();
Each of these mechanisms has a band of followers ... and none
of them appear to meet all the needs of all users.
As part of a RAS subsystem, let's encapsulate the memory error hardware
events into a trace facility.
The tracepoint printk will be displayed like:
mc_event: [quant] (Corrected|Uncorrected|Fatal) error:[error msg] on [label] ([location] [edac_mc detail] [driver_detail]
Where:
[quant] is the quantity of errors
[error msg] is the driver-specific error message
(e. g. "memory read", "bus error", ...);
[location] is the location in terms of memory controller and
branch/channel/slot, channel/slot or csrow/channel;
[label] is the memory stick label;
[edac_mc detail] describes the address location of the error
and the syndrome;
[driver detail] is driver-specifig error message details,
when needed/provided (e. g. "area:DMA", ...)
For example:
mc_event: 1 Corrected error:memory read on memory stick DIMM_1A (mc:0 location:0:0:0 page:0x586b6e offset:0xa66 grain:32 syndrome:0x0 area:DMA)
Of course, any userspace tools meant to handle errors should not parse
the above data. They should, instead, use the binary fields provided by
the tracepoint, mapping them directly into their Management Information
Base.
NOTE: The original patch was providing an additional mechanism for
MCA-based trace events that also contained MCA error register data.
However, as no agreement was reached so far for the MCA-based trace
events, for now, let's add events only for memory errors.
A latter patch is planned to change the tracepoint, for those types
of event.
Cc: Aristeu Rozanski <arozansk@redhat.com>
Cc: Doug Thompson <norsk5@yahoo.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Ingo Molnar <mingo@redhat.com>
Signed-off-by: Mauro Carvalho Chehab <mchehab@redhat.com>
There is a flag at the per-channel struct that indicates if there are
any 4R dimm on it. The way the presence of this flag were reported
is not ok, as it might give the false idea that the channel were filled
with 2R memories:
[ 580.588701] EDAC DEBUG: get_dimm_config: Ch1 phy rd1, wr1 (0x063f7431): 2 ranks, UDIMMs
[ 580.588704] EDAC DEBUG: get_dimm_config: dimm 0 1024 Mb offset: 0, bank: 8, rank: 1, row: 0x4000, col: 0x400
(in this case, just one 1R memory is filled on channel 1)
So, use a better way to represent the per-channel ranks information.
After the patch, it will show:
[ 2002.233978] EDAC DEBUG: get_dimm_config: Ch0 phy rd0, wr0 (0x063f7431): UDIMMs
[ 2002.233982] EDAC DEBUG: get_dimm_config: dimm 0 1024 Mb offset: 0, bank: 8, rank: 1, row: 0x4000, col: 0x400
[ 2002.233988] EDAC DEBUG: get_dimm_config: dimm 1 1024 Mb offset: 4, bank: 8, rank: 1, row: 0x4000, col: 0x400
(in this case, there isn't any 4R memories)
Reported-by: Borislav Petkov <borislav.petkov@amd.com>
Signed-off-by: Mauro Carvalho Chehab <mchehab@redhat.com>
The fatal error channel bits point to a single channel, and not
to a range of channels. Fix the code to properly report it,
instead of printing messages like:
kernel: EDAC MC0: INTERNAL ERROR: channel-b out of range (4 >= 4)
Signed-off-by: Mauro Carvalho Chehab <mchehab@redhat.com>
drivers/edac/i5100_edac.c: In function ‘i5100_init_csrows’:
drivers/edac/i5100_edac.c:862:3: warning: format ‘%zd’ expects argument of type ‘signed size_t’, but argument 5 has type ‘long unsigned int’ [-Wformat]
Reviewed-by: Aristeu Rozanski <arozansk@redhat.com>
Cc: "Niklas Söderlund" <niklas.soderlund@ericsson.com>
Cc: Borislav Petkov <borislav.petkov@amd.com>
Signed-off-by: Mauro Carvalho Chehab <mchehab@redhat.com>
The logic there is broken: it basically creates two csrows for
each DIMM and assumes that all DIMM's are dual rank. Only one of
the csrows will contain the entire DIMM size. If single rank
memories are found, they'll be marked with 0 bytes.
The check if the AMB is present were also wrong.
Yet, as the error reports don't use the memory size in order to
credit an error to the right DIMM, that part of the driver seems
to work. That's why probably nobody detected the issue yet.
After this patch, the memory layout is now properly reported,
when debug mode is enabled, and the number of ranks per dimm is
now shown:
calculate_dimm_size: ----------------------------------------------------------
calculate_dimm_size: slot 3 0 MB | 0 MB | 0 MB | 0 MB |
calculate_dimm_size: slot 2 0 MB | 0 MB | 0 MB | 0 MB |
calculate_dimm_size: ----------------------------------------------------------
calculate_dimm_size: slot 1 0 MB | 0 MB | 0 MB | 0 MB |
calculate_dimm_size: slot 0 512 MB 1R| 512 MB 1R| 512 MB 1R| 512 MB 1R|
calculate_dimm_size: ----------------------------------------------------------
calculate_dimm_size: channel 0 | channel 1 | channel 2 | channel 3 |
calculate_dimm_size: branch 0 | branch 1 |
(1R above means that all memories on my test machine are single-ranked)
Reviewed-by: Aristeu Rozanski <arozansk@redhat.com>
Cc: Doug Thompson <norsk5@yahoo.com>
Signed-off-by: Mauro Carvalho Chehab <mchehab@redhat.com>
Improves the debug output message, in order to better represent the
memory controller hierarchy, when outputing the debug messages.
No functional changes when debug is disabled.
Reviewed-by: Aristeu Rozanski <arozansk@redhat.com>
Signed-off-by: Mauro Carvalho Chehab <mchehab@redhat.com>
Remove some information that it is duplicated at the MCE log,
and don't have much usage for the error. Those data will be
added again, when creating a trace function that outputs both
memory errors and MCE fields.
Cc: Aristeu Rozanski <arozansk@redhat.com>
Signed-off-by: Mauro Carvalho Chehab <mchehab@redhat.com>
While userspace doesn't fill the dimm labels, add there the dimm location,
as described by the used memory model. This could eventually match what
is described at the dmidecode, making easier for people to identify the
memory.
For example, on an Intel motherboard where the DMI table is reliable,
the first memory stick is described as:
Memory Device
Array Handle: 0x0029
Error Information Handle: Not Provided
Total Width: 64 bits
Data Width: 64 bits
Size: 2048 MB
Form Factor: DIMM
Set: 1
Locator: A1_DIMM0
Bank Locator: A1_Node0_Channel0_Dimm0
Type: <OUT OF SPEC>
Type Detail: Synchronous
Speed: 800 MHz
Manufacturer: A1_Manufacturer0
Serial Number: A1_SerNum0
Asset Tag: A1_AssetTagNum0
Part Number: A1_PartNum0
The memory named as "A1_DIMM0" is physically located at the first
memory controller (node 0), at channel 0, dimm slot 0.
After this patch, the memory label will be filled with:
/sys/devices/system/edac/mc/csrow0/ch0_dimm_label:mc#0channel#0slot#0
And (after the new EDAC API patches) as:
/sys/devices/system/edac/mc/mc0/dimm0/dimm_label:mc#0channel#0slot#0
So, even if the memory label is not initialized on userspace, an useful
information with the error location is filled there, expecially since
several systems/motherboards are provided with enough info to map from
channel/slot (or branch/channel/slot) into the DIMM label. So, letting the
EDAC core fill it by default is a good thing.
It should noticed that, as the label filling happens at the
edac_mc_alloc(), drivers can override it to better describe the memories
(and some actually do it).
Cc: Aristeu Rozanski <arozansk@redhat.com>
Cc: Doug Thompson <norsk5@yahoo.com>
Signed-off-by: Mauro Carvalho Chehab <mchehab@redhat.com>
Now that all drivers got converted to use the new ABI, we can
drop the old one.
Acked-by: Chris Metcalf <cmetcalf@tilera.com>
Signed-off-by: Mauro Carvalho Chehab <mchehab@redhat.com>
The legacy edac ABI is going to be removed. Port the driver to use
and benefit from the new API functionality.
Cc: Borislav Petkov <borislav.petkov@amd.com>
Signed-off-by: Mauro Carvalho Chehab <mchehab@redhat.com>
The legacy edac ABI is going to be removed. Port the driver to use
and benefit from the new API functionality.
Acked-by: Chris Metcalf <cmetcalf@tilera.com>
Signed-off-by: Mauro Carvalho Chehab <mchehab@redhat.com>
The legacy edac ABI is going to be removed. Port the driver to use
and benefit from the new API functionality.
Signed-off-by: Mauro Carvalho Chehab <mchehab@redhat.com>
The legacy edac ABI is going to be removed. Port the driver to use
and benefit from the new API functionality.
Cc: Tim Small <tim@buttersideup.com>
Signed-off-by: Mauro Carvalho Chehab <mchehab@redhat.com>
The legacy edac ABI is going to be removed. Port the driver to use
and benefit from the new API functionality.
Cc: Josh Boyer <jwboyer@gmail.com>
Cc: Jiri Kosina <jkosina@suse.cz>
Cc: Borislav Petkov <borislav.petkov@amd.com>
Signed-off-by: Mauro Carvalho Chehab <mchehab@redhat.com>
The legacy edac ABI is going to be removed. Port the driver to use
and benefit from the new API functionality.
Cc: Olof Johansson <olof@lixom.net>
Cc: Egor Martovetsky <egor@pasemi.com>
Cc: linuxppc-dev@lists.ozlabs.org
Signed-off-by: Mauro Carvalho Chehab <mchehab@redhat.com>
The legacy edac ABI is going to be removed. Port the driver to use
and benefit from the new API functionality.
Cc: Borislav Petkov <borislav.petkov@amd.com>
Signed-off-by: Mauro Carvalho Chehab <mchehab@redhat.com>
The legacy edac ABI is going to be removed. Port the driver to use
and benefit from the new API functionality.
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Shaohui Xie <Shaohui.Xie@freescale.com>
Cc: Jiri Kosina <jkosina@suse.cz>
Signed-off-by: Mauro Carvalho Chehab <mchehab@redhat.com>
The legacy edac ABI is going to be removed. Port the driver to use
and benefit from the new API functionality.
Cc: Ranganathan Desikan <ravi@jetztechnologies.com>
Cc: "Arvind R." <arvino55@gmail.com>
Signed-off-by: Mauro Carvalho Chehab <mchehab@redhat.com>
The legacy edac ABI is going to be removed. Port the driver to use
and benefit from the new API functionality.
Signed-off-by: Mauro Carvalho Chehab <mchehab@redhat.com>
The legacy edac ABI is going to be removed. Port the driver to use
and benefit from the new API functionality.
Cc: Michal Marek <mmarek@suse.cz>
Signed-off-by: Mauro Carvalho Chehab <mchehab@redhat.com>
The legacy edac ABI is going to be removed. Port the driver to use
and benefit from the new API functionality.
Cc: Tim Small <tim@buttersideup.com>
Signed-off-by: Mauro Carvalho Chehab <mchehab@redhat.com>
The legacy edac ABI is going to be removed. Port the driver to use
and benefit from the new API functionality.
Signed-off-by: Mauro Carvalho Chehab <mchehab@redhat.com>
The legacy edac ABI is going to be removed. Port the driver to use
and benefit from the new API functionality.
Signed-off-by: Mauro Carvalho Chehab <mchehab@redhat.com>
The legacy edac ABI is going to be removed. Port the driver to use
and benefit from the new API functionality.
Signed-off-by: Mauro Carvalho Chehab <mchehab@redhat.com>
The legacy edac ABI is going to be removed. Port the driver to use
and benefit from the new API functionality.
Cc: "Niklas Söderlund" <niklas.soderlund@ericsson.com>
Cc: Borislav Petkov <borislav.petkov@amd.com>
Signed-off-by: Mauro Carvalho Chehab <mchehab@redhat.com>
The legacy edac ABI is going to be removed. Port the driver to use
and benefit from the new API functionality.
Cc: Doug Thompson <norsk5@yahoo.com>
Signed-off-by: Mauro Carvalho Chehab <mchehab@redhat.com>
The legacy edac ABI is going to be removed. Port the driver to use
and benefit from the new API functionality.
Cc: Hitoshi Mitake <h.mitake@gmail.com>
Cc: Borislav Petkov <borislav.petkov@amd.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Mauro Carvalho Chehab <mchehab@redhat.com>
The legacy edac ABI is going to be removed. Port the driver to use
and benefit from the new API functionality.
Cc: Jason Uhlenkott <juhlenko@akamai.com>
Signed-off-by: Mauro Carvalho Chehab <mchehab@redhat.com>
The legacy edac ABI is going to be removed. Port the driver to use
and benefit from the new API functionality.
Cc: Doug Thompson <norsk5@yahoo.com>
Signed-off-by: Mauro Carvalho Chehab <mchehab@redhat.com>
The legacy edac ABI is going to be removed. Port the driver to use
and benefit from the new API functionality.
Cc: Mark Gross <mark.gross@intel.com>
Cc: Doug Thompson <norsk5@yahoo.com>
Signed-off-by: Mauro Carvalho Chehab <mchehab@redhat.com>
The legacy edac ABI is going to be removed. Port the driver to use
and benefit from the new API functionality.
Cc: Dmitry Eremin-Solenikov <dbaryshkov@gmail.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Michal Marek <mmarek@suse.cz>
Signed-off-by: Mauro Carvalho Chehab <mchehab@redhat.com>
The legacy edac ABI is going to be removed. Port the driver to use
and benefit from the new API functionality.
Cc: Jiri Kosina <jkosina@suse.cz>
Cc: Joe Perches <joe@perches.com>
Signed-off-by: Mauro Carvalho Chehab <mchehab@redhat.com>
The legacy edac ABI is going to be removed. Port the driver to use
and benefit from the new API functionality.
Cc: Michal Marek <mmarek@suse.cz>
Signed-off-by: Mauro Carvalho Chehab <mchehab@redhat.com>
The legacy edac ABI is going to be removed. Port the driver to use
and benefit from the new API functionality.
Cc: Doug Thompson <norsk5@yahoo.com>
Cc: Borislav Petkov <borislav.petkov@amd.com>
Signed-off-by: Mauro Carvalho Chehab <mchehab@redhat.com>
Change the EDAC internal representation to work with non-csrow
based memory controllers.
There are lots of those memory controllers nowadays, and more
are coming. So, the EDAC internal representation needs to be
changed, in order to work with those memory controllers, while
preserving backward compatibility with the old ones.
The edac core was written with the idea that memory controllers
are able to directly access csrows.
This is not true for FB-DIMM and RAMBUS memory controllers.
Also, some recent advanced memory controllers don't present a per-csrows
view. Instead, they view memories as DIMMs, instead of ranks.
So, change the allocation and error report routines to allow
them to work with all types of architectures.
This will allow the removal of several hacks with FB-DIMM and RAMBUS
memory controllers.
Also, several tests were done on different platforms using different
x86 drivers.
TODO: a multi-rank DIMMs are currently represented by multiple DIMM
entries in struct dimm_info. That means that changing a label for one
rank won't change the same label for the other ranks at the same DIMM.
This bug is present since the beginning of the EDAC, so it is not a big
deal. However, on several drivers, it is possible to fix this issue, but
it should be a per-driver fix, as the csrow => DIMM arrangement may not
be equal for all. So, don't try to fix it here yet.
I tried to make this patch as short as possible, preceding it with
several other patches that simplified the logic here. Yet, as the
internal API changes, all drivers need changes. The changes are
generally bigger in the drivers for FB-DIMMs.
Cc: Aristeu Rozanski <arozansk@redhat.com>
Cc: Doug Thompson <norsk5@yahoo.com>
Cc: Borislav Petkov <borislav.petkov@amd.com>
Cc: Mark Gross <mark.gross@intel.com>
Cc: Jason Uhlenkott <juhlenko@akamai.com>
Cc: Tim Small <tim@buttersideup.com>
Cc: Ranganathan Desikan <ravi@jetztechnologies.com>
Cc: "Arvind R." <arvino55@gmail.com>
Cc: Olof Johansson <olof@lixom.net>
Cc: Egor Martovetsky <egor@pasemi.com>
Cc: Chris Metcalf <cmetcalf@tilera.com>
Cc: Michal Marek <mmarek@suse.cz>
Cc: Jiri Kosina <jkosina@suse.cz>
Cc: Joe Perches <joe@perches.com>
Cc: Dmitry Eremin-Solenikov <dbaryshkov@gmail.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Hitoshi Mitake <h.mitake@gmail.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: "Niklas Söderlund" <niklas.soderlund@ericsson.com>
Cc: Shaohui Xie <Shaohui.Xie@freescale.com>
Cc: Josh Boyer <jwboyer@gmail.com>
Cc: linuxppc-dev@lists.ozlabs.org
Signed-off-by: Mauro Carvalho Chehab <mchehab@redhat.com>
The edac core were written with the idea that memory controllers
are able to directly access csrows, and that the channels are
used inside a csrows select.
This is not true for FB-DIMM and RAMBUS memory controllers.
Also, some recent advanced memory controllers don't present a per-csrows
view. Instead, they view memories as DIMMs, instead of ranks, accessed
via csrow/channel.
So, changes are needed in order to allow the EDAC core to
work with all types of architectures.
In preparation for handling non-csrows based memory controllers,
add some memory structs and a macro:
enum hw_event_mc_err_type: describes the type of error
(corrected, uncorrected, fatal)
To be used by the new edac_mc_handle_error function;
enum edac_mc_layer: describes the type of a given memory
architecture layer (branch, channel, slot, csrow).
struct edac_mc_layer: describes the properties of a memory
layer (type, size, and if the layer
will be used on a virtual csrow.
EDAC_DIMM_PTR() - as the number of layers can vary from 1 to 3,
this macro converts from an address with up to 3 layers into
a linear address.
Reviewed-by: Borislav Petkov <bp@amd64.org>
Cc: Doug Thompson <norsk5@yahoo.com>
Signed-off-by: Mauro Carvalho Chehab <mchehab@redhat.com>
The edac_align_ptr() function is used to prepare data for a single
memory allocation kzalloc() call. It counts how many bytes are needed
by some data structure.
Using it as-is is not that trivial, as the quantity of memory elements
reserved is not there, but, instead, it is on a next call.
In order to avoid mistakes when using it, move the number of allocated
elements into it, making easier to use it.
Reviewed-by: Borislav Petkov <bp@amd64.org>
Cc: Aristeu Rozanski <arozansk@redhat.com>
Cc: Doug Thompson <norsk5@yahoo.com>
Signed-off-by: Mauro Carvalho Chehab <mchehab@redhat.com>
The number of pages is a dimm property. Move it to the dimm struct.
After this change, it is possible to add sysfs nodes for the DIMM's that
will properly represent the DIMM stick properties, including its size.
A TODO fix here is to properly represent dual-rank/quad-rank DIMMs when
the memory controller represents the memory via chip select rows.
Reviewed-by: Aristeu Rozanski <arozansk@redhat.com>
Acked-by: Borislav Petkov <borislav.petkov@amd.com>
Acked-by: Chris Metcalf <cmetcalf@tilera.com>
Cc: Doug Thompson <norsk5@yahoo.com>
Cc: Mark Gross <mark.gross@intel.com>
Cc: Jason Uhlenkott <juhlenko@akamai.com>
Cc: Tim Small <tim@buttersideup.com>
Cc: Ranganathan Desikan <ravi@jetztechnologies.com>
Cc: "Arvind R." <arvino55@gmail.com>
Cc: Olof Johansson <olof@lixom.net>
Cc: Egor Martovetsky <egor@pasemi.com>
Cc: Michal Marek <mmarek@suse.cz>
Cc: Jiri Kosina <jkosina@suse.cz>
Cc: Joe Perches <joe@perches.com>
Cc: Dmitry Eremin-Solenikov <dbaryshkov@gmail.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Hitoshi Mitake <h.mitake@gmail.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: "Niklas Söderlund" <niklas.soderlund@ericsson.com>
Cc: Shaohui Xie <Shaohui.Xie@freescale.com>
Cc: Josh Boyer <jwboyer@gmail.com>
Cc: linuxppc-dev@lists.ozlabs.org
Signed-off-by: Mauro Carvalho Chehab <mchehab@redhat.com>
Almost all edac drivers initialize csrow_info->first_page,
csrow_info->last_page and csrow_info->page_mask. Those vars are
used inside the EDAC core, in order to calculate the csrow affected
by an error, by using the routine edac_mc_find_csrow_by_page().
However, very few drivers actually use it:
e752x_edac.c
e7xxx_edac.c
i3000_edac.c
i82443bxgx_edac.c
i82860_edac.c
i82875p_edac.c
i82975x_edac.c
r82600_edac.c
There also a few other drivers that have their own calculus
formula internally using those vars.
All the others are just wasting time by initializing those
data.
While initializing data without using them won't cause any troubles, as
those information is stored at the wrong place (at csrows structure), it
is better to remove what is unused, in order to simplify the next patch.
Reviewed-by: Aristeu Rozanski <arozansk@redhat.com>
Acked-by: Borislav Petkov <borislav.petkov@amd.com>
Acked-by: Chris Metcalf <cmetcalf@tilera.com>
Cc: Doug Thompson <norsk5@yahoo.com>
Cc: Hitoshi Mitake <h.mitake@gmail.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: "Niklas Söderlund" <niklas.soderlund@ericsson.com>
Cc: Josh Boyer <jwboyer@gmail.com>
Cc: Jiri Kosina <jkosina@suse.cz>
Signed-off-by: Mauro Carvalho Chehab <mchehab@redhat.com>
On systems based on chip select rows, all channels need to use memories
with the same properties, otherwise the memories on channels A and B
won't be recognized.
However, such assumption is not true for all types of memory
controllers.
Controllers for FB-DIMM's don't have such requirements.
Also, modern Intel controllers seem to be capable of handling such
differences.
So, we need to get rid of storing the DIMM information into a per-csrow
data, storing it, instead at the right place.
The first step is to move grain, mtype, dtype and edac_mode to the
per-dimm struct.
Reviewed-by: Aristeu Rozanski <arozansk@redhat.com>
Reviewed-by: Borislav Petkov <borislav.petkov@amd.com>
Acked-by: Chris Metcalf <cmetcalf@tilera.com>
Cc: Doug Thompson <norsk5@yahoo.com>
Cc: Borislav Petkov <borislav.petkov@amd.com>
Cc: Mark Gross <mark.gross@intel.com>
Cc: Jason Uhlenkott <juhlenko@akamai.com>
Cc: Tim Small <tim@buttersideup.com>
Cc: Ranganathan Desikan <ravi@jetztechnologies.com>
Cc: "Arvind R." <arvino55@gmail.com>
Cc: Olof Johansson <olof@lixom.net>
Cc: Egor Martovetsky <egor@pasemi.com>
Cc: Michal Marek <mmarek@suse.cz>
Cc: Jiri Kosina <jkosina@suse.cz>
Cc: Joe Perches <joe@perches.com>
Cc: Dmitry Eremin-Solenikov <dbaryshkov@gmail.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Hitoshi Mitake <h.mitake@gmail.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: James Bottomley <James.Bottomley@parallels.com>
Cc: "Niklas Söderlund" <niklas.soderlund@ericsson.com>
Cc: Shaohui Xie <Shaohui.Xie@freescale.com>
Cc: Josh Boyer <jwboyer@gmail.com>
Cc: Mike Williams <mike@mikebwilliams.com>
Cc: linuxppc-dev@lists.ozlabs.org
Signed-off-by: Mauro Carvalho Chehab <mchehab@redhat.com>
The way a DIMM is currently represented implies that they're
linked into a per-csrow struct. However, some drivers don't see
csrows, as they're ridden behind some chip like the AMB's
on FBDIMM's, for example.
This forced drivers to fake^Wvirtualize a csrow struct, and to create
a mess under csrow/channel original's concept.
Move the DIMM labels into a per-DIMM struct, and add there
the real location of the socket, in terms of csrow/channel.
Latter patches will modify the location to properly represent the
memory architecture.
All other drivers will use a per-csrow type of location.
Some of those drivers will require a latter conversion, as
they also fake the csrows internally.
TODO: While this patch doesn't change the existing behavior, on
csrows-based memory controllers, a csrow/channel pair points to a memory
rank. There's a known bug at the EDAC core that allows having different
labels for the same DIMM, if it has more than one rank. A latter patch
is need to merge the several ranks for a DIMM into the same dimm_info
struct, in order to avoid having different labels for the same DIMM.
The edac_mc_alloc() will now contain a per-dimm initialization loop that
will be changed by latter patches in order to match other types of
memory architectures.
Reviewed-by: Aristeu Rozanski <arozansk@redhat.com>
Reviewed-by: Borislav Petkov <borislav.petkov@amd.com>
Cc: Doug Thompson <norsk5@yahoo.com>
Cc: Ranganathan Desikan <ravi@jetztechnologies.com>
Cc: "Arvind R." <arvino55@gmail.com>
Cc: "Niklas Söderlund" <niklas.soderlund@ericsson.com>
Signed-off-by: Mauro Carvalho Chehab <mchehab@redhat.com>
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2.0.18 (GNU/Linux)
iQEcBAABAgAGBQJPt7wpAAoJEDeqqVYsXL0MgZUIAL6SMaBmgCZxZEb1pCymrn3c
DLESwPGoA5lPs62ojZ1C8jhZhmEA7nfv+iDDCA/YYMPbyctD3ZH7moHgEJCHyvqJ
9SByxT3uuYU4fxfQ1xxUQOe96gpuS9zBhvUYrfP6+/hdZakBAPqCWxVTqz1eET90
2V09EBGiiTXwtFt9KZ640Tg1p+MBM8tI/lVaq8DCU4Sj99YNV9ZC26j6UszyI/NC
K6doZjQ7nfCG/Ul88MwCH/akqCqupscwty1iXvuFTExVF5jfuCmMN2aaIShDlBPE
ygAkc3j611FDcZXMnNbwUsD/jduR4V7FGQ2yg6U0D/IYZ+07aYC/51qksOu+amY=
=KV0L
-----END PGP SIGNATURE-----
Merge tag 'parisc-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/jejb/parisc-2.6
Pull PA-RISC fixes from James Bottomley:
"This is a set of three bug fixes that gets parisc running again on
systems with PA1.1 processors.
Two fix regressions introduced in 2.6.39 and one fixes a prefetch bug
that only affects PA7300LC processors. We also have another pending
fix to do with the sectional arrangement of vmlinux.lds, but there's a
query on it during testing on one particular system type, so I'll hold
off sending it in for now."
* tag 'parisc-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/jejb/parisc-2.6:
[PARISC] fix panic on prefetch(NULL) on PA7300LC
[PARISC] fix crash in flush_icache_page_asm on PA1.1
[PARISC] fix PA1.1 oops on boot
Pull x86 linker bug workarounds from Peter Anvin.
GNU ld-2.22.52.0.[12] (*) has an unfortunate bug where it incorrectly
turns certain relocation entries absolute. Section-relative symbols
that are part of otherwise empty sections are silently changed them to
absolute. We rely on section-relative symbols staying section-relative,
and actually have several sections in the linker script solely for this
purpose.
See for example
http://sourceware.org/bugzilla/show_bug.cgi?id=14052
We could just black-list the buggy linker, but it appears that it got
shipped in at least F17, and possibly other distros too, so it's sadly
not some rare unusual case.
This backports the workaround from the x86/trampoline branch, and as
Peter says: "This is not a minimal fix, not at all, but it is a tested
code base."
* 'x86/ld-fix' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86, relocs: When printing an error, say relative or absolute
x86, relocs: Workaround for binutils 2.22.52.0.1 section bug
x86, realmode: 16-bit real-mode code support for relocs tool
(*) That's a manly release numbering system. Stupid, sure. But manly.
Pull block layer fixes from Jens Axboe:
"A few small, but important fixes. Most of them are marked for stable
as well
- Fix failure to release a semaphore on error path in mtip32xx.
- Fix crashable condition in bio_get_nr_vecs().
- Don't mark end-of-disk buffers as mapped, limit it to i_size.
- Fix for build problem with CONFIG_BLOCK=n on arm at least.
- Fix for a buffer overlow on UUID partition printing.
- Trivial removal of unused variables in dac960."
* 'for-linus' of git://git.kernel.dk/linux-block:
block: fix buffer overflow when printing partition UUIDs
Fix blkdev.h build errors when BLOCK=n
bio allocation failure due to bio_get_nr_vecs()
block: don't mark buffers beyond end of disk as mapped
mtip32xx: release the semaphore on an error path
dac960: Remove unused variables from DAC960_CreateProcEntries()
Pull one more networking bug-fix from David Miller:
"One last straggler.
Eric Dumazet's pktgen unload oops fix was not entirely complete, but
all the cases should be handled properly now.... fingers crossed."
* git://git.kernel.org/pub/scm/linux/kernel/git/davem/net:
pktgen: fix module unload for good
Occasionally, testing memcg's move_charge_at_immigrate on rc7 shows
a flurry of hundreds of warnings at kernel/res_counter.c:96, where
res_counter_uncharge_locked() does WARN_ON(counter->usage < val).
The first trace of each flurry implicates __mem_cgroup_cancel_charge()
of mc.precharge, and an audit of mc.precharge handling points to
mem_cgroup_move_charge_pte_range()'s THP handling in commit 12724850e8
("memcg: avoid THP split in task migration").
Checking !mc.precharge is good everywhere else, when a single page is to
be charged; but here the "mc.precharge -= HPAGE_PMD_NR" likely to
follow, is liable to result in underflow (a lot can change since the
precharge was estimated).
Simply check against HPAGE_PMD_NR: there's probably a better
alternative, trying precharge for more, splitting if unsuccessful; but
this one-liner is safer for now - no kernel/res_counter.c:96 warnings
seen in 26 hours.
Signed-off-by: Hugh Dickins <hughd@google.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>