While copy_to/from_user_page() users are uncommon, there is one in
drivers/staging/lustre/lustre/libcfs/linux/linux-curproc.c which leads
to the following:
ERROR: "sparc32_cachetlb_ops" [drivers/staging/lustre/lustre/libcfs/libcfs.ko] undefined!
during routine allmodconfig build coverage. The reason this happens
is as follows:
In arch/sparc/include/asm/cacheflush_32.h we have:
#define flush_cache_page(vma,addr,pfn) \
sparc32_cachetlb_ops->cache_page(vma, addr)
#define copy_to_user_page(vma, page, vaddr, dst, src, len) \
do { \
flush_cache_page(vma, vaddr, page_to_pfn(page));\
memcpy(dst, src, len); \
} while (0)
#define copy_from_user_page(vma, page, vaddr, dst, src, len) \
do { \
flush_cache_page(vma, vaddr, page_to_pfn(page));\
memcpy(dst, src, len); \
} while (0)
However, sparc32_cachetlb_ops isn't exported and hence the error.
Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
None of these files are actually using any __init type directives
and hence don't need to include <linux/init.h>. Most are just a
left over from __devinit and __cpuinit removal, or simply due to
code getting copied from one driver to the next.
Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
After merging the final tree, today's linux-next build (sparc64 defconfig)
failed like this:
arch/sparc/mm/init_64.c: In function 'pte_alloc_one':
arch/sparc/mm/init_64.c:2568:9: error: unused variable 'pte' [-Werror=unused-variable]
Caused by the merge between commit 37b3a8ff3e ("sparc64: Move from 4MB
to 8MB huge pages") and commit 1ae9ae5f7d ("sparc: handle
pgtable_page_ctor() fail") (I had the following merge fix in linux-next,
but it didn't seem to propagate upstream - may have forgotten to point it
out :-().
Signed-off-by: Stephen Rothwell <sfr@canb.auug.org.au>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Pull sparc update from David Miller:
1) Implement support for up to 47-bit physical addresses on sparc64.
2) Support HAVE_CONTEXT_TRACKING on sparc64, from Kirill Tkhai.
3) Fix Simba bridge window calculations, from Kjetil Oftedal.
* git://git.kernel.org/pub/scm/linux/kernel/git/davem/sparc-next:
sparc64: Implement HAVE_CONTEXT_TRACKING
sparc64: Add self-IPI support for smp_send_reschedule()
sparc: PCI: Fix incorrect address calculation of PCI Bridge windows on Simba-bridges
sparc64: Encode huge PMDs using PTE encoding.
sparc64: Move to 64-bit PGDs and PMDs.
sparc64: Move from 4MB to 8MB huge pages.
sparc64: Make PAGE_OFFSET variable.
sparc64: Fix inconsistent max-physical-address defines.
sparc64: Document the shift counts used to validate linear kernel addresses.
sparc64: Define PAGE_OFFSET in terms of physical address bits.
sparc64: Use PAGE_OFFSET instead of a magic constant.
sparc64: Clean up 64-bit mmap exclusion defines.
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Acked-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently mm->pmd_huge_pte protected by page table lock. It will not
work with split lock. We have to have per-pmd pmd_huge_pte for proper
access serialization.
For now, let's just introduce wrapper to access mm->pmd_huge_pte.
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Tested-by: Alex Thorlton <athorlton@sgi.com>
Cc: Alex Thorlton <athorlton@sgi.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: "Eric W . Biederman" <ebiederm@xmission.com>
Cc: "Paul E . McKenney" <paulmck@linux.vnet.ibm.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Dave Jones <davej@redhat.com>
Cc: David Howells <dhowells@redhat.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Kees Cook <keescook@chromium.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Michael Kerrisk <mtk.manpages@gmail.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Robin Holt <robinmholt@gmail.com>
Cc: Sedat Dilek <sedat.dilek@gmail.com>
Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Mark the places when the system are in user or are in kernel.
This is used to make full dynticks system (tickless) --
CONFIG_NO_HZ_FULL dependence.
Signed-off-by: Kirill Tkhai <tkhai@yandex.ru>
CC: David Miller <davem@davemloft.net>
Signed-off-by: David S. Miller <davem@davemloft.net>
Now that we have 64-bits for PMDs we can stop using special encodings
for the huge PMD values, and just put real PTEs in there.
We allocate a _PAGE_PMD_HUGE bit to distinguish between plain PMDs and
huge ones. It is the same for both 4U and 4V PTE layouts.
We also use _PAGE_SPECIAL to indicate the splitting state, since a
huge PMD cannot also be special.
All of the PMD --> PTE translation code disappears, and most of the
huge PMD bit modifications and tests just degenerate into the PTE
operations. In particular USER_PGTABLE_CHECK_PMD_HUGE becomes
trivial.
As a side effect, normal PMDs don't shift the physical address around.
This also speeds up the page table walks in the TLB miss paths since
they don't have to do the shifts any more.
Another non-trivial aspect is that pte_modify() has to be changed
to preserve the _PAGE_PMD_HUGE bits as well as the page size field
of the pte.
Signed-off-by: David S. Miller <davem@davemloft.net>
To make the page tables compact, we were using 32-bit PGDs and PMDs.
We only had to support <= 43 bits of physical addresses so this was
quite feasible.
In order to support larger physical addresses we have to move to
64-bit PGDs and PMDs.
Most of the changes are straight-forward:
1) {pgd,pmd}_t --> unsigned long
2) Anything that tries to use plain "unsigned int" types with pgd/pmd
values needs to be adjusted. In particular things like "0U" become
"0UL".
3) {PGDIR,PMD}_BITS decrease by one.
4) In the assembler page table walkers, use "ldxa" instead of "lduwa"
and adjust the low bit masks to clear out the low 3 bits instead of
just the low 2 bits during pgd/pmd address formation.
Also, use PTRS_PER_PGD and PTRS_PER_PMD in the sizing of the
swapper_{pg_dir,low_pmd_dir} arrays.
This patch does not try to take advantage of having 64-bits in the
PMDs to simplify the hugepage code, that will come in a subsequent
change.
Signed-off-by: David S. Miller <davem@davemloft.net>
The impetus for this is that we would like to move to 64-bit PMDs and
PGDs, but that would result in only supporting a 42-bit address space
with the current page table layout. It'd be nice to support at least
43-bits.
The reason we'd end up with only 42-bits after making PMDs and PGDs
64-bit is that we only use half-page sized PTE tables in order to make
PMDs line up to 4MB, the hardware huge page size we use.
So what we do here is we make huge pages 8MB, and fabricate them using
4MB hw TLB entries.
Facilitate this by providing a "REAL_HPAGE_SHIFT" which is used in
places that really need to operate on hardware 4MB pages.
Use full pages (512 entries) for PTE tables, and adjust PMD_SHIFT,
PGD_SHIFT, and the build time CPP test as needed. Use a CPP test to
make sure REAL_HPAGE_SHIFT and the _PAGE_SZHUGE_* we use match up.
This makes the pgtable cache completely unused, so remove the code
managing it and the state used in mm_context_t. Now we have less
spinlocks taken in the page table allocation path.
The technique we use to fabricate the 8MB pages is to transfer bit 22
from the missing virtual address into the PTEs physical address field.
That takes care of the transparent huge pages case.
For hugetlb, we fill things in at the PTE level and that code already
puts the sub huge page physical bits into the PTEs, based upon the
offset, so there is nothing special we need to do. It all just works
out.
So, a small amount of complexity in the THP case, but this code is
about to get much simpler when we move the 64-bit PMDs as we can move
away from the fancy 32-bit huge PMD encoding and just put a real PTE
value in there.
With bug fixes and help from Bob Picco.
Signed-off-by: David S. Miller <davem@davemloft.net>
Choose PAGE_OFFSET dynamically based upon cpu type.
Original UltraSPARC-I (spitfire) chips only supported a 44-bit
virtual address space.
Newer chips (T4 and later) support 52-bit virtual addresses
and up to 47-bits of physical memory space.
Therefore we have to adjust PAGE_SIZE dynamically based upon
the capabilities of the chip.
Note that this change alone does not allow us to support > 43-bit
physical memory, to do that we need to re-arrange our page table
support. The current encodings of the pmd_t and pgd_t pointers
restricts us to "32 + 11" == 43 bits.
This change can waste quite a bit of memory for the various tables.
In particular, a future change should work to size and allocate
kern_linear_bitmap[] and sparc64_valid_addr_bitmap[] dynamically.
This isn't easy as we really cannot take a TLB miss when accessing
kern_linear_bitmap[]. We'd have to lock it into the TLB or similar.
Signed-off-by: David S. Miller <davem@davemloft.net>
Acked-by: Bob Picco <bob.picco@oracle.com>
This way we can see exactly what they are derived from, and in particular
how they would change if we were to use a different PAGE_OFFSET value.
Signed-off-by: David S. Miller <davem@davemloft.net>
Acked-by: Bob Picco <bob.picco@oracle.com>
This pertains to all of the computations of the kernel fast
TLB miss xor values.
Based upon a patch by Bob Picco.
Signed-off-by: David S. Miller <davem@davemloft.net>
Acked-by: Bob Picco <bob.picco@oracle.com>
Older UltraSPARC chips had an address space hole due to the MMU only
supporting 44-bit virtual addresses.
The top end of this hole also has the same value as the current
definition of PAGE_OFFSET, so this can be confusing.
Consolidate the defines for the userspace mmap exclusion range into
page_64.h and use them in sys_sparc_64.c and hugetlbpage.c
Signed-off-by: David S. Miller <davem@davemloft.net>
Acked-by: Bob Picco <bob.picco@oracle.com>
Unlike global OOM handling, memory cgroup code will invoke the OOM killer
in any OOM situation because it has no way of telling faults occuring in
kernel context - which could be handled more gracefully - from
user-triggered faults.
Pass a flag that identifies faults originating in user space from the
architecture-specific fault handlers to generic code so that memcg OOM
handling can be improved.
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Michal Hocko <mhocko@suse.cz>
Cc: David Rientjes <rientjes@google.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: azurIt <azurit@pobox.sk>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently hugepage migration works well only for pmd-based hugepages
(mainly due to lack of testing,) so we had better not enable migration of
other levels of hugepages until we are ready for it.
Some users of hugepage migration (mbind, move_pages, and migrate_pages) do
page table walk and check pud/pmd_huge() there, so they are safe. But the
other users (softoffline and memory hotremove) don't do this, so without
this patch they can try to migrate unexpected types of hugepages.
To prevent this, we introduce hugepage_migration_support() as an
architecture dependent check of whether hugepage are implemented on a pmd
basis or not. And on some architecture multiple sizes of hugepages are
available, so hugepage_migration_support() also checks hugepage size.
Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Hillf Danton <dhillf@gmail.com>
Cc: Wanpeng Li <liwanp@linux.vnet.ibm.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Hugh Dickins <hughd@google.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Rik van Riel <riel@redhat.com>
Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The __cpuinit type of throwaway sections might have made sense
some time ago when RAM was more constrained, but now the savings
do not offset the cost and complications. For example, the fix in
commit 5e427ec2d0 ("x86: Fix bit corruption at CPU resume time")
is a good example of the nasty type of bugs that can be created
with improper use of the various __init prefixes.
After a discussion on LKML[1] it was decided that cpuinit should go
the way of devinit and be phased out. Once all the users are gone,
we can then finally remove the macros themselves from linux/init.h.
Note that some harmless section mismatch warnings may result, since
notify_cpu_starting() and cpu_up() are arch independent (kernel/cpu.c)
are flagged as __cpuinit -- so if we remove the __cpuinit from
arch specific callers, we will also get section mismatch warnings.
As an intermediate step, we intend to turn the linux/init.h cpuinit
content into no-ops as early as possible, since that will get rid
of these warnings. In any case, they are temporary and harmless.
This removes all the arch/sparc uses of the __cpuinit macros from
C files and removes __CPUINIT from assembly files. Note that even
though arch/sparc/kernel/trampoline_64.S has instances of ".previous"
in it, they are all paired off against explicit ".section" directives,
and not implicitly paired with __CPUINIT (unlike mips and arm were).
[1] https://lkml.org/lkml/2013/5/20/589
Cc: "David S. Miller" <davem@davemloft.net>
Cc: sparclinux@vger.kernel.org
Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
Commit e4c6bfd2d7 ("mm: rearrange
vm_area_struct for fewer cache misses") changed the layout of the
vm_area_struct structure, it broke several SPARC32 assembly routines
which used numerical constants for accessing the vm_mm field.
This patch defines the VMA_VM_MM constant to replace the immediate values.
Signed-off-by: Olivier DANET <odanet@caramail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Pull powerpc updates from Ben Herrenschmidt:
"This is the powerpc changes for the 3.11 merge window. In addition to
the usual bug fixes and small updates, the main highlights are:
- Support for transparent huge pages by Aneesh Kumar for 64-bit
server processors. This allows the use of 16M pages as transparent
huge pages on kernels compiled with a 64K base page size.
- Base VFIO support for KVM on power by Alexey Kardashevskiy
- Wiring up of our nvram to the pstore infrastructure, including
putting compressed oopses in there by Aruna Balakrishnaiah
- Move, rework and improve our "EEH" (basically PCI error handling
and recovery) infrastructure. It is no longer specific to pseries
but is now usable by the new "powernv" platform as well (no
hypervisor) by Gavin Shan.
- I fixed some bugs in our math-emu instruction decoding and made it
usable to emulate some optional FP instructions on processors with
hard FP that lack them (such as fsqrt on Freescale embedded
processors).
- Support for Power8 "Event Based Branch" facility by Michael
Ellerman. This facility allows what is basically "userspace
interrupts" for performance monitor events.
- A bunch of Transactional Memory vs. Signals bug fixes and HW
breakpoint/watchpoint fixes by Michael Neuling.
And more ... I appologize in advance if I've failed to highlight
something that somebody deemed worth it."
* 'next' of git://git.kernel.org/pub/scm/linux/kernel/git/benh/powerpc: (156 commits)
pstore: Add hsize argument in write_buf call of pstore_ftrace_call
powerpc/fsl: add MPIC timer wakeup support
powerpc/mpic: create mpic subsystem object
powerpc/mpic: add global timer support
powerpc/mpic: add irq_set_wake support
powerpc/85xx: enable coreint for all the 64bit boards
powerpc/8xx: Erroneous double irq_eoi() on CPM IRQ in MPC8xx
powerpc/fsl: Enable CONFIG_E1000E in mpc85xx_smp_defconfig
powerpc/mpic: Add get_version API both for internal and external use
powerpc: Handle both new style and old style reserve maps
powerpc/hw_brk: Fix off by one error when validating DAWR region end
powerpc/pseries: Support compression of oops text via pstore
powerpc/pseries: Re-organise the oops compression code
pstore: Pass header size in the pstore write callback
powerpc/powernv: Fix iommu initialization again
powerpc/pseries: Inform the hypervisor we are using EBB regs
powerpc/perf: Add power8 EBB support
powerpc/perf: Core EBB support for 64-bit book3s
powerpc/perf: Drop MMCRA from thread_struct
powerpc/perf: Don't enable if we have zero events
...
Concentrate code to modify totalram_pages into the mm core, so the arch
memory initialized code doesn't need to take care of it. With these
changes applied, only following functions from mm core modify global
variable totalram_pages: free_bootmem_late(), free_all_bootmem(),
free_all_bootmem_node(), adjust_managed_page_count().
With this patch applied, it will be much more easier for us to keep
totalram_pages and zone->managed_pages in consistence.
Signed-off-by: Jiang Liu <jiang.liu@huawei.com>
Acked-by: David Howells <dhowells@redhat.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: "Michael S. Tsirkin" <mst@redhat.com>
Cc: <sworddragon2@aol.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Chris Metcalf <cmetcalf@tilera.com>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jeremy Fitzhardinge <jeremy@goop.org>
Cc: Jianguo Wu <wujianguo@huawei.com>
Cc: Joonsoo Kim <js1304@gmail.com>
Cc: Kamezawa Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Cc: Marek Szyprowski <m.szyprowski@samsung.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Michel Lespinasse <walken@google.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Cc: Tang Chen <tangchen@cn.fujitsu.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Wen Congyang <wency@cn.fujitsu.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com>
Cc: Yinghai Lu <yinghai@kernel.org>
Cc: Russell King <rmk@arm.linux.org.uk>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Change signature of free_reserved_area() according to Russell King's
suggestion to fix following build warnings:
arch/arm/mm/init.c: In function 'mem_init':
arch/arm/mm/init.c:603:2: warning: passing argument 1 of 'free_reserved_area' makes integer from pointer without a cast [enabled by default]
free_reserved_area(__va(PHYS_PFN_OFFSET), swapper_pg_dir, 0, NULL);
^
In file included from include/linux/mman.h:4:0,
from arch/arm/mm/init.c:15:
include/linux/mm.h:1301:22: note: expected 'long unsigned int' but argument is of type 'void *'
extern unsigned long free_reserved_area(unsigned long start, unsigned long end,
mm/page_alloc.c: In function 'free_reserved_area':
>> mm/page_alloc.c:5134:3: warning: passing argument 1 of 'virt_to_phys' makes pointer from integer without a cast [enabled by default]
In file included from arch/mips/include/asm/page.h:49:0,
from include/linux/mmzone.h:20,
from include/linux/gfp.h:4,
from include/linux/mm.h:8,
from mm/page_alloc.c:18:
arch/mips/include/asm/io.h:119:29: note: expected 'const volatile void *' but argument is of type 'long unsigned int'
mm/page_alloc.c: In function 'free_area_init_nodes':
mm/page_alloc.c:5030:34: warning: array subscript is below array bounds [-Warray-bounds]
Also address some minor code review comments.
Signed-off-by: Jiang Liu <jiang.liu@huawei.com>
Reported-by: Arnd Bergmann <arnd@arndb.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: "Michael S. Tsirkin" <mst@redhat.com>
Cc: <sworddragon2@aol.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Chris Metcalf <cmetcalf@tilera.com>
Cc: David Howells <dhowells@redhat.com>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jeremy Fitzhardinge <jeremy@goop.org>
Cc: Jianguo Wu <wujianguo@huawei.com>
Cc: Joonsoo Kim <js1304@gmail.com>
Cc: Kamezawa Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Cc: Marek Szyprowski <m.szyprowski@samsung.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Michel Lespinasse <walken@google.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Cc: Tang Chen <tangchen@cn.fujitsu.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Wen Congyang <wency@cn.fujitsu.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com>
Cc: Yinghai Lu <yinghai@kernel.org>
Cc: Russell King <rmk@arm.linux.org.uk>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2.0.19 (GNU/Linux)
iQEcBAABAgAGBQJR0K2gAAoJEHm+PkMAQRiGWsEH+gMZSN1qRm34hZ82q1Tx7HvL
Eb/Gsl3Qw/7G2TlTqgjBUs36IdqV9O2cui/aa3/TfXvdvrx+0GlhRkEwQPc+ygcO
Mvoyoke4tT4+4jVFdCg1J8avREsa28/6oaHs0ZZxuVmJBBLTJH7aXaNsGn6eU1q9
9+p798MQis6naIiPC63somlZcCIiBhsuWCPWpEfLMn8G1HWAFTM3xXIbNBqe/brS
bmIOfhomlIZ5dcdaXGvjtP3+KJhkNDwhkPC4tVYu8JqqgSlrE+a+EGyEuuGqKk10
U+swiqyuD31uBI9ga54u/2FzSqDiAu6YOcMXevjo/m3g9XLdYbYLvN+nvN8alCQ=
=Ob6Z
-----END PGP SIGNATURE-----
Merge tag 'v3.10' into next
Merge 3.10 in order to get some of the last minute powerpc
changes, resolve conflicts and add additional fixes on top
of them.
This will be later used by powerpc THP support. In powerpc we want to use
pgtable for storing the hash index values. So instead of adding them to
mm_context list, we would like to store them in the second half of pmd
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Reviewed-by: Andrea Arcangeli <aarcange@redhat.com>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
This fixes a race where a cpu may re-load a tlb from a stale tsb right
after it has been flushed by a remote function call.
I still see some instability when stressing the system with parallel
kernel builds while creating memory pressure by writing to
/proc/sys/vm/nr_hugepages, but this patch improves the stability
significantly.
Signed-off-by: Dave Kleikamp <dave.kleikamp@oracle.com>
Acked-by: Bob Picco <bob.picco@oracle.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
The Machine Description (MD) property "address-congruence-offset" is
optional. According to the MD specification the value is assumed 0UL when
not present. This caused early boot failure on T5.
Signed-off-by: Bob Picco <bob.picco@oracle.com>
CC: sparclinux@vger.kernel.org
Signed-off-by: David S. Miller <davem@davemloft.net>
Use common help functions to free reserved pages.
Signed-off-by: Jiang Liu <jiang.liu@huawei.com>
Acked-by: David S. Miller <davem@davemloft.net>
Acked-by: Sam Ravnborg <sam@ravnborg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The sparse code, when asking the architecture to populate the vmemmap,
specifies the section range as a starting page and a number of pages.
This is an awkward interface, because none of the arch-specific code
actually thinks of the range in terms of 'struct page' units and always
translates it to bytes first.
In addition, later patches mix huge page and regular page backing for
the vmemmap. For this, they need to call vmemmap_populate_basepages()
on sub-section ranges with PAGE_SIZE and PMD_SIZE in mind. But these
are not necessarily multiples of the 'struct page' size and so this unit
is too coarse.
Just translate the section range into bytes once in the generic sparse
code, then pass byte ranges down the stack.
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Ben Hutchings <ben@decadent.org.uk>
Cc: Bernhard Schmidt <Bernhard.Schmidt@lrz.de>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Russell King <rmk@arm.linux.org.uk>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: "Luck, Tony" <tony.luck@intel.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Acked-by: David S. Miller <davem@davemloft.net>
Tested-by: David S. Miller <davem@davemloft.net>
Cc: Wu Fengguang <fengguang.wu@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Use helper function free_highmem_page() to free highmem pages into
the buddy system.
Signed-off-by: Jiang Liu <jiang.liu@huawei.com>
Cc: "David S. Miller" <davem@davemloft.net>
Acked-by: Sam Ravnborg <sam@ravnborg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
As reported by Dave Kleikamp, when we emit cross calls to do batched
TLB flush processing we have a race because we do not synchronize on
the sibling cpus completing the cross call.
So meanwhile the TLB batch can be reset (tb->tlb_nr set to zero, etc.)
and either flushes are missed or flushes will flush the wrong
addresses.
Fix this by using generic infrastructure to synchonize on the
completion of the cross call.
This first required getting the flush_tlb_pending() call out from
switch_to() which operates with locks held and interrupts disabled.
The problem is that smp_call_function_many() cannot be invoked with
IRQs disabled and this is explicitly checked for with WARN_ON_ONCE().
We get the batch processing outside of locked IRQ disabled sections by
using some ideas from the powerpc port. Namely, we only batch inside
of arch_{enter,leave}_lazy_mmu_mode() calls. If we're not in such a
region, we flush TLBs synchronously.
1) Get rid of xcall_flush_tlb_pending and per-cpu type
implementations.
2) Do TLB batch cross calls instead via:
smp_call_function_many()
tlb_pending_func()
__flush_tlb_pending()
3) Batch only in lazy mmu sequences:
a) Add 'active' member to struct tlb_batch
b) Define __HAVE_ARCH_ENTER_LAZY_MMU_MODE
c) Set 'active' in arch_enter_lazy_mmu_mode()
d) Run batch and clear 'active' in arch_leave_lazy_mmu_mode()
e) Check 'active' in tlb_batch_add_one() and do a synchronous
flush if it's clear.
4) Add infrastructure for synchronous TLB page flushes.
a) Implement __flush_tlb_page and per-cpu variants, patch
as needed.
b) Likewise for xcall_flush_tlb_page.
c) Implement smp_flush_tlb_page() to invoke the cross-call.
d) Wire up global_flush_tlb_page() to the right routine based
upon CONFIG_SMP
5) It turns out that singleton batches are very common, 2 out of every
3 batch flushes have only a single entry in them.
The batch flush waiting is very expensive, both because of the poll
on sibling cpu completeion, as well as because passing the tlb batch
pointer to the sibling cpus invokes a shared memory dereference.
Therefore, in flush_tlb_pending(), if there is only one entry in
the batch perform a completely asynchronous global_flush_tlb_page()
instead.
Reported-by: Dave Kleikamp <dave.kleikamp@oracle.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Acked-by: Dave Kleikamp <dave.kleikamp@oracle.com>
get_new_mmu_context() is always called with interrupts disabled.
So it's possible to do this micro optimization.
(Also fix the comment to switch_mm, which is called in both cases)
Signed-off-by: Kirill Tkhai <tkhai@yandex.ru>
CC: David Miller <davem@davemloft.net>
Signed-off-by: David S. Miller <davem@davemloft.net>
IOMMU_NPTES is 64K PTEs, so the size is 256KB (= 64K * sizeof(iopte_t))
Signed-off-by: Akinobu Mita <akinobu.mita@gmail.com>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: sparclinux@vger.kernel.org
Signed-off-by: David S. Miller <davem@davemloft.net>
srmmu_nocache_bitmap is cleared by bit_map_init(). But bit_map_init()
attempts to clear by memset(), so it can't clear the trailing edge of
bitmap properly on big-endian architecture if the number of bits is not
a multiple of BITS_PER_LONG.
Actually, the number of bits in srmmu_nocache_bitmap is not always
a multiple of BITS_PER_LONG. It is calculated as below:
bitmap_bits = srmmu_nocache_size >> SRMMU_NOCACHE_BITMAP_SHIFT;
srmmu_nocache_size is decided proportionally by the amount of system RAM
and it is rounded to a multiple of PAGE_SIZE. SRMMU_NOCACHE_BITMAP_SHIFT
is defined as (PAGE_SHIFT - 4). So it can only be said that bitmap_bits
is a multiple of 16.
This fixes the problem by using bitmap_clear() instead of memset()
in bit_map_init() and this also uses BITS_TO_LONGS() to calculate correct
size at bitmap allocation time.
Signed-off-by: Akinobu Mita <akinobu.mita@gmail.com>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: sparclinux@vger.kernel.org
Signed-off-by: David S. Miller <davem@davemloft.net>
Common hibernation code looks at num_physpages during suspend and restore.
Restore is able to be called from initcall, which is before initmem freeing.
This case leads to restore fail.
Signed-off-by: Kirill Tkhai <tkhai@yandex.ru>
CC: David Miller <davem@davemloft.net>
CC: Sam Ravnborg <sam@ravnborg.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
swap_lock is heavily contended when I test swap to 3 fast SSD (even
slightly slower than swap to 2 such SSD). The main contention comes
from swap_info_get(). This patch tries to fix the gap with adding a new
per-partition lock.
Global data like nr_swapfiles, total_swap_pages, least_priority and
swap_list are still protected by swap_lock.
nr_swap_pages is an atomic now, it can be changed without swap_lock. In
theory, it's possible get_swap_page() finds no swap pages but actually
there are free swap pages. But sounds not a big problem.
Accessing partition specific data (like scan_swap_map and so on) is only
protected by swap_info_struct.lock.
Changing swap_info_struct.flags need hold swap_lock and
swap_info_struct.lock, because scan_scan_map() will check it. read the
flags is ok with either the locks hold.
If both swap_lock and swap_info_struct.lock must be hold, we always hold
the former first to avoid deadlock.
swap_entry_free() can change swap_list. To delete that code, we add a
new highest_priority_index. Whenever get_swap_page() is called, we
check it. If it's valid, we use it.
It's a pity get_swap_page() still holds swap_lock(). But in practice,
swap_lock() isn't heavily contended in my test with this patch (or I can
say there are other much more heavier bottlenecks like TLB flush). And
BTW, looks get_swap_page() doesn't really need the lock. We never free
swap_info[] and we check SWAP_WRITEOK flag. The only risk without the
lock is we could swapout to some low priority swap, but we can quickly
recover after several rounds of swap, so sounds not a big deal to me.
But I'd prefer to fix this if it's a real problem.
"swap: make each swap partition have one address_space" improved the
swapout speed from 1.7G/s to 2G/s. This patch further improves the
speed to 2.3G/s, so around 15% improvement. It's a multi-process test,
so TLB flush isn't the biggest bottleneck before the patches.
[arnd@arndb.de: fix it for nommu]
[hughd@google.com: add missing unlock]
[minchan@kernel.org: get rid of lockdep whinge on sys_swapon]
Signed-off-by: Shaohua Li <shli@fusionio.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Minchan Kim <minchan.kim@gmail.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Seth Jennings <sjenning@linux.vnet.ibm.com>
Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Cc: Xiao Guangrong <xiaoguangrong@linux.vnet.ibm.com>
Cc: Dan Magenheimer <dan.magenheimer@oracle.com>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Hugh Dickins <hughd@google.com>
Signed-off-by: Minchan Kim <minchan@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Introduce a new API vmemmap_free() to free and remove vmemmap
pagetables. Since pagetable implements are different, each architecture
has to provide its own version of vmemmap_free(), just like
vmemmap_populate().
Note: vmemmap_free() is not implemented for ia64, ppc, s390, and sparc.
[mhocko@suse.cz: fix implicit declaration of remove_pagetable]
Signed-off-by: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com>
Signed-off-by: Jianguo Wu <wujianguo@huawei.com>
Signed-off-by: Wen Congyang <wency@cn.fujitsu.com>
Signed-off-by: Tang Chen <tangchen@cn.fujitsu.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Jiang Liu <jiang.liu@huawei.com>
Cc: Kamezawa Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Lai Jiangshan <laijs@cn.fujitsu.com>
Cc: Wu Jianguo <wujianguo@huawei.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Signed-off-by: Michal Hocko <mhocko@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
For removing memmap region of sparse-vmemmap which is allocated bootmem,
memmap region of sparse-vmemmap needs to be registered by
get_page_bootmem(). So the patch searches pages of virtual mapping and
registers the pages by get_page_bootmem().
NOTE: register_page_bootmem_memmap() is not implemented for ia64,
ppc, s390, and sparc. So introduce CONFIG_HAVE_BOOTMEM_INFO_NODE
and revert register_page_bootmem_info_node() when platform doesn't
support it.
It's implemented by adding a new Kconfig option named
CONFIG_HAVE_BOOTMEM_INFO_NODE, which will be automatically selected
by memory-hotplug feature fully supported archs(currently only on
x86_64).
Since we have 2 config options called MEMORY_HOTPLUG and
MEMORY_HOTREMOVE used for memory hot-add and hot-remove separately,
and codes in function register_page_bootmem_info_node() are only
used for collecting infomation for hot-remove, so reside it under
MEMORY_HOTREMOVE.
Besides page_isolation.c selected by MEMORY_ISOLATION under
MEMORY_HOTPLUG is also such case, move it too.
[mhocko@suse.cz: put register_page_bootmem_memmap inside CONFIG_MEMORY_HOTPLUG_SPARSE]
[linfeng@cn.fujitsu.com: introduce CONFIG_HAVE_BOOTMEM_INFO_NODE and revert register_page_bootmem_info_node()]
[mhocko@suse.cz: remove the arch specific functions without any implementation]
[linfeng@cn.fujitsu.com: mm/Kconfig: move auto selects from MEMORY_HOTPLUG to MEMORY_HOTREMOVE as needed]
[rientjes@google.com: fix defined but not used warning]
Signed-off-by: Wen Congyang <wency@cn.fujitsu.com>
Signed-off-by: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com>
Signed-off-by: Tang Chen <tangchen@cn.fujitsu.com>
Reviewed-by: Wu Jianguo <wujianguo@huawei.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Jiang Liu <jiang.liu@huawei.com>
Cc: Jianguo Wu <wujianguo@huawei.com>
Cc: Kamezawa Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Lai Jiangshan <laijs@cn.fujitsu.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Signed-off-by: Michal Hocko <mhocko@suse.cz>
Signed-off-by: Lin Feng <linfeng@cn.fujitsu.com>
Signed-off-by: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pull x86 mm changes from Peter Anvin:
"This is a huge set of several partly interrelated (and concurrently
developed) changes, which is why the branch history is messier than
one would like.
The *really* big items are two humonguous patchsets mostly developed
by Yinghai Lu at my request, which completely revamps the way we
create initial page tables. In particular, rather than estimating how
much memory we will need for page tables and then build them into that
memory -- a calculation that has shown to be incredibly fragile -- we
now build them (on 64 bits) with the aid of a "pseudo-linear mode" --
a #PF handler which creates temporary page tables on demand.
This has several advantages:
1. It makes it much easier to support things that need access to data
very early (a followon patchset uses this to load microcode way
early in the kernel startup).
2. It allows the kernel and all the kernel data objects to be invoked
from above the 4 GB limit. This allows kdump to work on very large
systems.
3. It greatly reduces the difference between Xen and native (Xen's
equivalent of the #PF handler are the temporary page tables created
by the domain builder), eliminating a bunch of fragile hooks.
The patch series also gets us a bit closer to W^X.
Additional work in this pull is the 64-bit get_user() work which you
were also involved with, and a bunch of cleanups/speedups to
__phys_addr()/__pa()."
* 'x86-mm-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (105 commits)
x86, mm: Move reserving low memory later in initialization
x86, doc: Clarify the use of asm("%edx") in uaccess.h
x86, mm: Redesign get_user with a __builtin_choose_expr hack
x86: Be consistent with data size in getuser.S
x86, mm: Use a bitfield to mask nuisance get_user() warnings
x86/kvm: Fix compile warning in kvm_register_steal_time()
x86-32: Add support for 64bit get_user()
x86-32, mm: Remove reference to alloc_remap()
x86-32, mm: Remove reference to resume_map_numa_kva()
x86-32, mm: Rip out x86_32 NUMA remapping code
x86/numa: Use __pa_nodebug() instead
x86: Don't panic if can not alloc buffer for swiotlb
mm: Add alloc_bootmem_low_pages_nopanic()
x86, 64bit, mm: hibernate use generic mapping_init
x86, 64bit, mm: Mark data/bss/brk to nx
x86: Merge early kernel reserve for 32bit and 64bit
x86: Add Crash kernel low reservation
x86, kdump: Remove crashkernel range find limit for 64bit
memblock: Add memblock_mem_size()
x86, boot: Not need to check setup_header version for setup_data
...
If our first THP installation for an MM is via the set_pmd_at() done
during khugepaged's collapsing we'll end up in tsb_grow() trying to do
a GFP_KERNEL allocation with several locks held.
Simply using GFP_ATOMIC in this situation is not the best option
because we really can't have this fail, so we'd really like to keep
this an order 0 GFP_KERNEL allocation if possible.
Also, doing the TSB allocation from khugepaged is a really bad idea
because we'll allocate it potentially from the wrong NUMA node in that
context.
So what we do is defer the hugepage TSB allocation until the first TLB
miss we take on a hugepage. This is slightly tricky because we have
to handle two unusual cases:
1) Taking the first hugepage TLB miss in the window trap handler.
We'll call the winfix_trampoline when that is detected.
2) An initial TSB allocation via TLB miss races with a hugetlb
fault on another cpu running the same MM. We handle this by
unconditionally loading the TSB we see into the current cpu
even if it's non-NULL at hugetlb_setup time.
Reported-by: Meelis Roos <mroos@ut.ee>
Signed-off-by: David S. Miller <davem@davemloft.net>
Accomodate the possibility that the TSB might be NULL at
the point that update_mmu_cache() is invoked. This is
necessary because we will sometimes need to defer the TSB
allocation to the first fault that happens in the 'mm'.
Seperate out the hugepage PTE test into a seperate function
so that the logic is clearer.
Signed-off-by: David S. Miller <davem@davemloft.net>
We should "|= more_flags" rather than "= more_flags".
Reported-by: David Rientjes <rientjes@google.com>
Acked-by: David Rientjes <rientjes@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Mostly mirrors the s390 logic, as unlike x86 we don't need the
SetPageReferenced() bits.
On sparc64 we also lack a user/privileged bit in the huge PMDs.
In order to make this work for THP and non-THP builds, some header
file adjustments were necessary. Namely, provide the PMD_HUGE_* bit
defines and the pmd_large() inline unconditionally rather than
protected by TRANSPARENT_HUGEPAGE.
Reported-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Coming patches to x86/mm2 require the changes and advanced baseline in
x86/boot.
Resolved Conflicts:
arch/x86/kernel/setup.c
mm/nobootmem.c
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
CONFIG_HOTPLUG is going away as an option. As a result, the __dev*
markings need to be removed.
This change removes the use of __devinit, __devexit_p, __devinitdata,
and __devexit from these drivers.
Based on patches originally written by Bill Pemberton, but redone by me
in order to handle some of the coding style issues better, by hand.
Cc: Bill Pemberton <wfp5p@virginia.edu>
Cc: "David S. Miller" <davem@davemloft.net>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Pull big execve/kernel_thread/fork unification series from Al Viro:
"All architectures are converted to new model. Quite a bit of that
stuff is actually shared with architecture trees; in such cases it's
literally shared branch pulled by both, not a cherry-pick.
A lot of ugliness and black magic is gone (-3KLoC total in this one):
- kernel_thread()/kernel_execve()/sys_execve() redesign.
We don't do syscalls from kernel anymore for either kernel_thread()
or kernel_execve():
kernel_thread() is essentially clone(2) with callback run before we
return to userland, the callbacks either never return or do
successful do_execve() before returning.
kernel_execve() is a wrapper for do_execve() - it doesn't need to
do transition to user mode anymore.
As a result kernel_thread() and kernel_execve() are
arch-independent now - they live in kernel/fork.c and fs/exec.c
resp. sys_execve() is also in fs/exec.c and it's completely
architecture-independent.
- daemonize() is gone, along with its parts in fs/*.c
- struct pt_regs * is no longer passed to do_fork/copy_process/
copy_thread/do_execve/search_binary_handler/->load_binary/do_coredump.
- sys_fork()/sys_vfork()/sys_clone() unified; some architectures
still need wrappers (ones with callee-saved registers not saved in
pt_regs on syscall entry), but the main part of those suckers is in
kernel/fork.c now."
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/signal: (113 commits)
do_coredump(): get rid of pt_regs argument
print_fatal_signal(): get rid of pt_regs argument
ptrace_signal(): get rid of unused arguments
get rid of ptrace_signal_deliver() arguments
new helper: signal_pt_regs()
unify default ptrace_signal_deliver
flagday: kill pt_regs argument of do_fork()
death to idle_regs()
don't pass regs to copy_process()
flagday: don't pass regs to copy_thread()
bfin: switch to generic vfork, get rid of pointless wrappers
xtensa: switch to generic clone()
openrisc: switch to use of generic fork and clone
unicore32: switch to generic clone(2)
score: switch to generic fork/vfork/clone
c6x: sanitize copy_thread(), get rid of clone(2) wrapper, switch to generic clone()
take sys_fork/sys_vfork/sys_clone prototypes to linux/syscalls.h
mn10300: switch to generic fork/vfork/clone
h8300: switch to generic fork/vfork/clone
tile: switch to generic clone()
...
Conflicts:
arch/microblaze/include/asm/Kbuild
Update the sparc64 hugetlb_get_unmapped_area function to make use of
vm_unmapped_area() instead of implementing a brute force search.
Signed-off-by: Michel Lespinasse <walken@google.com>
Reviewed-by: Rik van Riel <riel@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Russell King <linux@arm.linux.org.uk>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Paul Mundt <lethal@linux-sh.org>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Chris Metcalf <cmetcalf@tilera.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Now NO_BOOTMEM version free_all_bootmem_node() does not really
do free_bootmem at all, and it only call
register_page_bootmem_info_node instead.
That is confusing, try to kill that free_all_bootmem_node().
Before that, this patch will remove calling of free_all_bootmem_node()
We add register_page_bootmem_info() to call register_page_bootmem_info_node
directly.
Also could use free_all_bootmem() for numa case, and it is just
the same as free_low_memory_core_early().
Signed-off-by: Yinghai Lu <yinghai@kernel.org>
Link: http://lkml.kernel.org/r/1353123563-3103-45-git-send-email-yinghai@kernel.org
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: sparclinux@vger.kernel.org
Acked-by: "David S. Miller" <davem@davemloft.net>
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>