Commit Graph

8006 Commits

Author SHA1 Message Date
SeongJae Park
5d2d42de18 mm/zswap.c: remove unnecessary parentheses
Fix following trivial checkpatch error:

  ERROR: return is not a function, parentheses are not required

Signed-off-by: SeongJae Park <sj38.park@gmail.com>
Acked-by: Seth Jennings <sjennings@variantweb.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-04-07 16:36:03 -07:00
Minchan Kim
60105e1248 mm/zswap: support multiple swap devices
Cai Liu reporeted that now zbud pool pages counting has a problem when
multiple swap is used because it just counts only one swap intead of all
of swap so zswap cannot control writeback properly.  The result is
unnecessary writeback or no writeback when we should really writeback.

IOW, it made zswap crazy.

Another problem in zswap is:

For example, let's assume we use two swap A and B with different
priority and A already has charged 19% long time ago and let's assume
that A swap is full now so VM start to use B so that B has charged 1%
recently.  It menas zswap charged (19% + 1%) is full by default.  Then,
if VM want to swap out more pages into B, zbud_reclaim_page would be
evict one of pages in B's pool and it would be repeated continuously.
It's totally LRU reverse problem and swap thrashing in B would happen.

This patch makes zswap consider mutliple swap by creating *a* zbud pool
which will be shared by multiple swap so all of zswap pages in multiple
swap keep order by LRU so it can prevent above two problems.

Signed-off-by: Minchan Kim <minchan@kernel.org>
Reported-by: Cai Liu <cai.liu@samsung.com>
Suggested-by: Weijie Yang <weijie.yang.kh@gmail.com>
Cc: Seth Jennings <sjennings@variantweb.net>
Reviewed-by: Bob Liu <bob.liu@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-04-07 16:36:03 -07:00
SeongJae Park
6335b19344 mm/zswap.c: update zsmalloc in comment to zbud
zswap used zsmalloc before and now using zbud.  But, some comments saying
it use zsmalloc yet.  Fix the trivial problems.

Signed-off-by: SeongJae Park <sj38.park@gmail.com>
Cc: Seth Jennings <sjenning@linux.vnet.ibm.com>
Cc: Minchan Kim <minchan@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-04-07 16:36:03 -07:00
SeongJae Park
6b4525164e mm/zswap.c: fix trivial typo and arrange indentation
Signed-off-by: SeongJae Park <sj38.park@gmail.com>
Cc: Seth Jennings <sjenning@linux.vnet.ibm.com>
Cc: Minchan Kim <minchan@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-04-07 16:36:03 -07:00
John Hubbard
ed12d845b5 mm/page_alloc.c: change mm debug routines back to EXPORT_SYMBOL
A new dump_page() routine was recently added, and marked
EXPORT_SYMBOL_GPL.  dump_page() was also added to the VM_BUG_ON_PAGE()
macro, and so the end result is that non-GPL code can no longer call
get_page() and a few other routines.

This only happens if the kernel was compiled with CONFIG_DEBUG_VM.

Change dump_page() to be EXPORT_SYMBOL.

Longer explanation:

Prior to commit 309381feae ("mm: dump page when hitting a VM_BUG_ON
using VM_BUG_ON_PAGE") , it was possible to build MIT-licensed (non-GPL)
drivers on Fedora.  Fedora is semi-unique, in that it sets
CONFIG_VM_DEBUG.

Because Fedora sets CONFIG_VM_DEBUG, they end up pulling in dump_page(),
via VM_BUG_ON_PAGE, via get_page().  As one of the authors of NVIDIA's
new, open source, "UVM-Lite" kernel module, I originally choose to use
the kernel's get_page() routine from within nvidia_uvm_page_cache.c,
because get_page() has always seemed to be very clearly intended for use
by non-GPL, driver code.

So I'm hoping that making get_page() widely accessible again will not be
too controversial.  We did check with Fedora first, and they responded
(https://bugzilla.redhat.com/show_bug.cgi?id=1074710#c3) that we should
try to get upstream changed, before asking Fedora to change.  Their
reasoning seems beneficial to Linux: leaving CONFIG_DEBUG_VM set allows
Fedora to help catch mm bugs.

Signed-off-by: John Hubbard <jhubbard@nvidia.com>
Cc: Sasha Levin <sasha.levin@oracle.com>
Cc: Josh Boyer <jwboyer@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-04-07 16:35:59 -07:00
Fabian Frederick
29f175d125 mm/readahead.c: inline ra_submit
Commit f9acc8c7b3 ("readahead: sanify file_ra_state names") left
ra_submit with a single function call.

Move ra_submit to internal.h and inline it to save some stack.  Thanks
to Andrew Morton for commenting different versions.

Signed-off-by: Fabian Frederick <fabf@skynet.be>
Suggested-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-04-07 16:35:58 -07:00
Mizuma, Masayoshi
55f67141a8 mm: hugetlb: fix softlockup when a large number of hugepages are freed.
When I decrease the value of nr_hugepage in procfs a lot, softlockup
happens.  It is because there is no chance of context switch during this
process.

On the other hand, when I allocate a large number of hugepages, there is
some chance of context switch.  Hence softlockup doesn't happen during
this process.  So it's necessary to add the context switch in the
freeing process as same as allocating process to avoid softlockup.

When I freed 12 TB hugapages with kernel-2.6.32-358.el6, the freeing
process occupied a CPU over 150 seconds and following softlockup message
appeared twice or more.

$ echo 6000000 > /proc/sys/vm/nr_hugepages
$ cat /proc/sys/vm/nr_hugepages
6000000
$ grep ^Huge /proc/meminfo
HugePages_Total:   6000000
HugePages_Free:    6000000
HugePages_Rsvd:        0
HugePages_Surp:        0
Hugepagesize:       2048 kB
$ echo 0 > /proc/sys/vm/nr_hugepages

BUG: soft lockup - CPU#16 stuck for 67s! [sh:12883] ...
Pid: 12883, comm: sh Not tainted 2.6.32-358.el6.x86_64 #1
Call Trace:
  free_pool_huge_page+0xb8/0xd0
  set_max_huge_pages+0x128/0x190
  hugetlb_sysctl_handler_common+0x113/0x140
  hugetlb_sysctl_handler+0x1e/0x20
  proc_sys_call_handler+0x97/0xd0
  proc_sys_write+0x14/0x20
  vfs_write+0xb8/0x1a0
  sys_write+0x51/0x90
  __audit_syscall_exit+0x265/0x290
  system_call_fastpath+0x16/0x1b

I have not confirmed this problem with upstream kernels because I am not
able to prepare the machine equipped with 12TB memory now.  However I
confirmed that the amount of decreasing hugepages was directly
proportional to the amount of required time.

I measured required times on a smaller machine.  It showed 130-145
hugepages decreased in a millisecond.

  Amount of decreasing     Required time      Decreasing rate
  hugepages                     (msec)         (pages/msec)
  ------------------------------------------------------------
  10,000 pages == 20GB         70 -  74          135-142
  30,000 pages == 60GB        208 - 229          131-144

It means decrement of 6TB hugepages will trigger softlockup with the
default threshold 20sec, in this decreasing rate.

Signed-off-by: Masayoshi Mizuma <m.mizuma@jp.fujitsu.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Wanpeng Li <liwanp@linux.vnet.ibm.com>
Cc: Aneesh Kumar <aneesh.kumar@linux.vnet.ibm.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-04-07 16:35:58 -07:00
Fabian Frederick
1676323030 mm/memblock.c: use PFN_PHYS()
Replace ((phys_addr_t)(x) << PAGE_SHIFT) by pfn macro.

Signed-off-by: Fabian Frederick <fabf@skynet.be>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-04-07 16:35:58 -07:00
Emil Medve
136199f0a6 memblock: use for_each_memblock()
This is a small cleanup.

Signed-off-by: Emil Medve <Emilian.Medve@Freescale.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-04-07 16:35:58 -07:00
Miklos Szeredi
ed6d7c8e57 mm: remove unused arg of set_page_dirty_balance()
There's only one caller of set_page_dirty_balance() and that will call it
with page_mkwrite == 0.

The page_mkwrite argument was unused since commit b827e496c8 "mm: close
page_mkwrite races".

Signed-off-by: Miklos Szeredi <mszeredi@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-04-07 16:35:57 -07:00
Vlastimil Babka
57e68e9cd6 mm: try_to_unmap_cluster() should lock_page() before mlocking
A BUG_ON(!PageLocked) was triggered in mlock_vma_page() by Sasha Levin
fuzzing with trinity.  The call site try_to_unmap_cluster() does not lock
the pages other than its check_page parameter (which is already locked).

The BUG_ON in mlock_vma_page() is not documented and its purpose is
somewhat unclear, but apparently it serializes against page migration,
which could otherwise fail to transfer the PG_mlocked flag.  This would
not be fatal, as the page would be eventually encountered again, but
NR_MLOCK accounting would become distorted nevertheless.  This patch adds
a comment to the BUG_ON in mlock_vma_page() and munlock_vma_page() to that
effect.

The call site try_to_unmap_cluster() is fixed so that for page !=
check_page, trylock_page() is attempted (to avoid possible deadlocks as we
already have check_page locked) and mlock_vma_page() is performed only
upon success.  If the page lock cannot be obtained, the page is left
without PG_mlocked, which is again not a problem in the whole unevictable
memory design.

Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Bob Liu <bob.liu@oracle.com>
Reported-by: Sasha Levin <sasha.levin@oracle.com>
Cc: Wanpeng Li <liwanp@linux.vnet.ibm.com>
Cc: Michel Lespinasse <walken@google.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Acked-by: Rik van Riel <riel@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Hugh Dickins <hughd@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-04-07 16:35:57 -07:00
Johannes Weiner
3a025760fc mm: page_alloc: spill to remote nodes before waking kswapd
On NUMA systems, a node may start thrashing cache or even swap anonymous
pages while there are still free pages on remote nodes.

This is a result of commits 81c0a2bb51 ("mm: page_alloc: fair zone
allocator policy") and fff4068cba ("mm: page_alloc: revert NUMA aspect
of fair allocation policy").

Before those changes, the allocator would first try all allowed zones,
including those on remote nodes, before waking any kswapds.  But now,
the allocator fastpath doubles as the fairness pass, which in turn can
only consider the local node to prevent remote spilling based on
exhausted fairness batches alone.  Remote nodes are only considered in
the slowpath, after the kswapds are woken up.  But if remote nodes still
have free memory, kswapd should not be woken to rebalance the local node
or it may thrash cash or swap prematurely.

Fix this by adding one more unfair pass over the zonelist that is
allowed to spill to remote nodes after the local fairness pass fails but
before entering the slowpath and waking the kswapds.

This also gets rid of the GFP_THISNODE exemption from the fairness
protocol because the unfair pass is no longer tied to kswapd, which
GFP_THISNODE is not allowed to wake up.

However, because remote spills can be more frequent now - we prefer them
over local kswapd reclaim - the allocation batches on remote nodes could
underflow more heavily.  When resetting the batches, use
atomic_long_read() directly instead of zone_page_state() to calculate the
delta as the latter filters negative counter values.

Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Rik van Riel <riel@redhat.com>
Acked-by: Mel Gorman <mgorman@suse.de>
Cc: <stable@kernel.org>		[3.12+]

Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-04-07 16:35:57 -07:00
Michal Hocko
d715ae08f2 memcg: rename high level charging functions
mem_cgroup_newpage_charge is used only for charging anonymous memory so
it is better to rename it to mem_cgroup_charge_anon.

mem_cgroup_cache_charge is used for file backed memory so rename it to
mem_cgroup_charge_file.

Signed-off-by: Michal Hocko <mhocko@suse.cz>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-04-07 16:35:57 -07:00
Johannes Weiner
6d1fdc4893 memcg: sanitize __mem_cgroup_try_charge() call protocol
Some callsites pass a memcg directly, some callsites pass an mm that
then has to be translated to a memcg.  This makes for a terrible
function interface.

Just push the mm-to-memcg translation into the respective callsites and
always pass a memcg to mem_cgroup_try_charge().

[mhocko@suse.cz: add charge mm helper]
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-04-07 16:35:57 -07:00
Michal Hocko
b6b6cc72bc memcg: do not replicate get_mem_cgroup_from_mm in __mem_cgroup_try_charge
__mem_cgroup_try_charge duplicates get_mem_cgroup_from_mm for charges
which came without a memcg.  The only reason seems to be a tiny
optimization when css_tryget is not called if the charge can be consumed
from the stock.  Nevertheless css_tryget is very cheap since it has been
reworked to use per-cpu counting so this optimization doesn't give us
anything these days.

So let's drop the code duplication so that the code is more readable.

Signed-off-by: Michal Hocko <mhocko@suse.cz>
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-04-07 16:35:56 -07:00
Johannes Weiner
df38197546 memcg: get_mem_cgroup_from_mm()
Instead of returning NULL from try_get_mem_cgroup_from_mm() when the mm
owner is exiting, just return root_mem_cgroup.  This makes sense for all
callsites and gets rid of some of them having to fallback manually.

[fengguang.wu@intel.com: fix warnings]
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Fengguang Wu <fengguang.wu@intel.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-04-07 16:35:56 -07:00
Johannes Weiner
03583f1a63 memcg: remove unnecessary !mm check from try_get_mem_cgroup_from_mm()
Users pass either a mm that has been established under task lock, or use
a verified current->mm, which means the task can't be exiting.

Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-04-07 16:35:56 -07:00
Johannes Weiner
284f39afea mm: memcg: push !mm handling out to page cache charge function
Only page cache charges can happen without an mm context, so push this
special case out of the inner core and into the cache charge function.

An ancient comment explains that the mm can also be NULL in case the
task is currently being migrated, but that is not actually true with the
current case, so just remove it.

Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-04-07 16:35:56 -07:00
Johannes Weiner
1bec6b333e mm: memcg: inline mem_cgroup_charge_common()
mem_cgroup_charge_common() is used by both cache and anon pages, but
most of its body only applies to anon pages and the remainder is not
worth having in a separate function.

Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-04-07 16:35:56 -07:00
Johannes Weiner
59d1d256e1 mm: memcg: remove mem_cgroup_move_account_page_stat()
It used to disable preemption and run sanity checks but now it's only
taking a number out of one percpu counter and putting it into another.
Do this directly in the callsite and save the indirection.

Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-04-07 16:35:56 -07:00
Johannes Weiner
7af467e8e1 mm: memcg: remove unnecessary preemption disabling
lock_page_cgroup() disables preemption, remove explicit preemption
disabling for code paths holding this lock.

Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-04-07 16:35:55 -07:00
Kirill A. Shutemov
d230dec18d mm: use 'const char *' insted of 'char *' for reason in dump_page()
I tried to use 'dump_page(page, __func__)' for debugging, but it triggers
warning:

  warning: passing argument 2 of `dump_page' discards `const' qualifier from pointer target type [enabled by default]

Let's convert 'reason' to 'const char *' in dump_page() and friends: we
shouldn't modify it anyway.

Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-04-07 16:35:55 -07:00
Gioh Kim
3643763834 mm/vmalloc.c: enhance vm_map_ram() comment
vm_map_ram() has a fragmentation problem when it cannot purge a
chunk(ie, 4M address space) if there is a pinning object in that
addresss space.  So it could consume all VMALLOC address space easily.

We can fix the fragmentation problem by using vmap instead of
vm_map_ram() but vmap() is known to be slow compared to vm_map_ram().
Minchan said vm_map_ram is 5 times faster than vmap in his tests.  So I
thought we should fix fragment problem of vm_map_ram because our
proprietary GPU driver has used it heavily.

On second thought, it's not an easy because we should reuse freed space
for solving the problem and it could make more IPI and bitmap operation
for searching hole.  It could mitigate API's goal which is very fast
mapping.  And even fragmentation problem wouldn't show in 64 bit
machine.

Another option is that the user should separate long-life and short-life
object and use vmap for long-life but vm_map_ram for short-life.  If we
inform the user about the characteristic of vm_map_ram the user can
choose one according to the page lifetime.

Let's add some notice messages to user.

[akpm@linux-foundation.org: tweak comment text]
Signed-off-by: Gioh Kim <gioh.kim@lge.com>
Reviewed-by: Zhang Yanfei <zhangyanfei@cn.fujitsu.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-04-07 16:35:55 -07:00
Choi Gi-yong
ac7149045d mm: fix 'ERROR: do not initialise globals to 0 or NULL' and coding style
Signed-off-by: Choi Gi-yong <yong@gnoy.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-04-07 16:35:55 -07:00
Mikulas Patocka
eb9a3c62a0 mempool: add unlikely and likely hints
Add unlikely and likely hints to the function mempool_free.  It lays out
the code in such a way that the common path is executed straighforward and
saves a cache line.

Signed-off-by: Mikulas Patocka <mpatocka@redhat.com>
Cc: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-04-07 16:35:55 -07:00
David Rientjes
da1c67a76f mm, compaction: determine isolation mode only once
The conditions that control the isolation mode in
isolate_migratepages_range() do not change during the iteration, so
extract them out and only define the value once.

This actually does have an effect, gcc doesn't optimize it itself because
of cc->sync.

Signed-off-by: David Rientjes <rientjes@google.com>
Cc: Mel Gorman <mgorman@suse.de>
Acked-by: Rik van Riel <riel@redhat.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-04-07 16:35:55 -07:00
David Rientjes
f0432d1596 mm, mempolicy: remove per-process flag
PF_MEMPOLICY is an unnecessary optimization for CONFIG_SLAB users.
There's no significant performance degradation to checking
current->mempolicy rather than current->flags & PF_MEMPOLICY in the
allocation path, especially since this is considered unlikely().

Running TCP_RR with netperf-2.4.5 through localhost on 16 cpu machine with
64GB of memory and without a mempolicy:

	threads		before		after
	16		1249409		1244487
	32		1281786		1246783
	48		1239175		1239138
	64		1244642		1241841
	80		1244346		1248918
	96		1266436		1254316
	112		1307398		1312135
	128		1327607		1326502

Per-process flags are a scarce resource so we should free them up whenever
possible and make them available.  We'll be using it shortly for memcg oom
reserves.

Signed-off-by: David Rientjes <rientjes@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Christoph Lameter <cl@linux-foundation.org>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Tejun Heo <tj@kernel.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Jianguo Wu <wujianguo@huawei.com>
Cc: Tim Hockin <thockin@google.com>
Cc: Christoph Lameter <cl@linux.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-04-07 16:35:54 -07:00
David Rientjes
2a389610a7 mm, mempolicy: rename slab_node for clarity
slab_node() is actually a mempolicy function, so rename it to
mempolicy_slab_node() to make it clearer that it used for processes with
mempolicies.

At the same time, cleanup its code by saving numa_mem_id() in a local
variable (since we require a node with memory, not just any node) and
remove an obsolete comment that assumes the mempolicy is actually passed
into the function.

Signed-off-by: David Rientjes <rientjes@google.com>
Acked-by: Christoph Lameter <cl@linux.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Christoph Lameter <cl@linux-foundation.org>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Tejun Heo <tj@kernel.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Jianguo Wu <wujianguo@huawei.com>
Cc: Tim Hockin <thockin@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-04-07 16:35:54 -07:00
Gideon Israel Dsouza
3b32123d73 mm: use macros from compiler.h instead of __attribute__((...))
To increase compiler portability there is <linux/compiler.h> which
provides convenience macros for various gcc constructs.  Eg: __weak for
__attribute__((weak)).  I've replaced all instances of gcc attributes with
the right macro in the memory management (/mm) subsystem.

[akpm@linux-foundation.org: while-we're-there consistency tweaks]
Signed-off-by: Gideon Israel Dsouza <gidisrael@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-04-07 16:35:54 -07:00
Davidlohr Bueso
615d6e8756 mm: per-thread vma caching
This patch is a continuation of efforts trying to optimize find_vma(),
avoiding potentially expensive rbtree walks to locate a vma upon faults.
The original approach (https://lkml.org/lkml/2013/11/1/410), where the
largest vma was also cached, ended up being too specific and random,
thus further comparison with other approaches were needed.  There are
two things to consider when dealing with this, the cache hit rate and
the latency of find_vma().  Improving the hit-rate does not necessarily
translate in finding the vma any faster, as the overhead of any fancy
caching schemes can be too high to consider.

We currently cache the last used vma for the whole address space, which
provides a nice optimization, reducing the total cycles in find_vma() by
up to 250%, for workloads with good locality.  On the other hand, this
simple scheme is pretty much useless for workloads with poor locality.
Analyzing ebizzy runs shows that, no matter how many threads are
running, the mmap_cache hit rate is less than 2%, and in many situations
below 1%.

The proposed approach is to replace this scheme with a small per-thread
cache, maximizing hit rates at a very low maintenance cost.
Invalidations are performed by simply bumping up a 32-bit sequence
number.  The only expensive operation is in the rare case of a seq
number overflow, where all caches that share the same address space are
flushed.  Upon a miss, the proposed replacement policy is based on the
page number that contains the virtual address in question.  Concretely,
the following results are seen on an 80 core, 8 socket x86-64 box:

1) System bootup: Most programs are single threaded, so the per-thread
   scheme does improve ~50% hit rate by just adding a few more slots to
   the cache.

+----------------+----------+------------------+
| caching scheme | hit-rate | cycles (billion) |
+----------------+----------+------------------+
| baseline       | 50.61%   | 19.90            |
| patched        | 73.45%   | 13.58            |
+----------------+----------+------------------+

2) Kernel build: This one is already pretty good with the current
   approach as we're dealing with good locality.

+----------------+----------+------------------+
| caching scheme | hit-rate | cycles (billion) |
+----------------+----------+------------------+
| baseline       | 75.28%   | 11.03            |
| patched        | 88.09%   | 9.31             |
+----------------+----------+------------------+

3) Oracle 11g Data Mining (4k pages): Similar to the kernel build workload.

+----------------+----------+------------------+
| caching scheme | hit-rate | cycles (billion) |
+----------------+----------+------------------+
| baseline       | 70.66%   | 17.14            |
| patched        | 91.15%   | 12.57            |
+----------------+----------+------------------+

4) Ebizzy: There's a fair amount of variation from run to run, but this
   approach always shows nearly perfect hit rates, while baseline is just
   about non-existent.  The amounts of cycles can fluctuate between
   anywhere from ~60 to ~116 for the baseline scheme, but this approach
   reduces it considerably.  For instance, with 80 threads:

+----------------+----------+------------------+
| caching scheme | hit-rate | cycles (billion) |
+----------------+----------+------------------+
| baseline       | 1.06%    | 91.54            |
| patched        | 99.97%   | 14.18            |
+----------------+----------+------------------+

[akpm@linux-foundation.org: fix nommu build, per Davidlohr]
[akpm@linux-foundation.org: document vmacache_valid() logic]
[akpm@linux-foundation.org: attempt to untangle header files]
[akpm@linux-foundation.org: add vmacache_find() BUG_ON]
[hughd@google.com: add vmacache_valid_mm() (from Oleg)]
[akpm@linux-foundation.org: coding-style fixes]
[akpm@linux-foundation.org: adjust and enhance comments]
Signed-off-by: Davidlohr Bueso <davidlohr@hp.com>
Reviewed-by: Rik van Riel <riel@redhat.com>
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Reviewed-by: Michel Lespinasse <walken@google.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Tested-by: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-04-07 16:35:53 -07:00
Ning Qu
d7c1755179 mm: implement ->map_pages for shmem/tmpfs
In shmem/tmpfs, we also use the generic filemap_map_pages, seems the
additional checking is not worth a separate version of map_pages for it.

Signed-off-by: Ning Qu <quning@google.com>
Acked-by: Hugh Dickins <hughd@google.com>
Cc: "Kirill A. Shutemov" <kirill@shutemov.name>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Rik van Riel <riel@redhat.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Dave Chinner <david@fromorbit.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-04-07 16:35:53 -07:00
Kirill A. Shutemov
1592eef015 mm: add debugfs tunable for fault_around_order
Let's allow people to tweak faultaround at runtime.

[akpm@linux-foundation.org: coding-style fixes]
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Rik van Riel <riel@redhat.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Matthew Wilcox <matthew.r.wilcox@intel.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Ning Qu <quning@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-04-07 16:35:53 -07:00
Kirill A. Shutemov
99e3e53f4e mm: cleanup size checks in filemap_fault() and filemap_map_pages()
Minor cleanups:
 - 'size' variable is now in bytes, not pages;
 - use round_up(): it should be easier to read.

Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Rik van Riel <riel@redhat.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Matthew Wilcox <matthew.r.wilcox@intel.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Ning Qu <quning@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-04-07 16:35:53 -07:00
Kirill A. Shutemov
f1820361f8 mm: implement ->map_pages for page cache
filemap_map_pages() is generic implementation of ->map_pages() for
filesystems who uses page cache.

It should be safe to use filemap_map_pages() for ->map_pages() if
filesystem use filemap_fault() for ->fault().

Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Rik van Riel <riel@redhat.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Matthew Wilcox <matthew.r.wilcox@intel.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Ning Qu <quning@gmail.com>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-04-07 16:35:53 -07:00
Kirill A. Shutemov
8c6e50b029 mm: introduce vm_ops->map_pages()
Here's new version of faultaround patchset.  It took a while to tune it
and collect performance data.

First patch adds new callback ->map_pages to vm_operations_struct.

->map_pages() is called when VM asks to map easy accessible pages.
Filesystem should find and map pages associated with offsets from
"pgoff" till "max_pgoff".  ->map_pages() is called with page table
locked and must not block.  If it's not possible to reach a page without
blocking, filesystem should skip it.  Filesystem should use do_set_pte()
to setup page table entry.  Pointer to entry associated with offset
"pgoff" is passed in "pte" field in vm_fault structure.  Pointers to
entries for other offsets should be calculated relative to "pte".

Currently VM use ->map_pages only on read page fault path.  We try to
map FAULT_AROUND_PAGES a time.  FAULT_AROUND_PAGES is 16 for now.
Performance data for different FAULT_AROUND_ORDER is below.

TODO:
 - implement ->map_pages() for shmem/tmpfs;
 - modify get_user_pages() to be able to use ->map_pages() and implement
   mmap(MAP_POPULATE|MAP_NONBLOCK) on top.

=========================================================================
Tested on 4-socket machine (120 threads) with 128GiB of RAM.

Few real-world workloads. The sweet spot for FAULT_AROUND_ORDER here is
somewhere between 3 and 5. Let's say 4 :)

Linux build (make -j60)
FAULT_AROUND_ORDER		Baseline	1		3		4		5		7		9
	minor-faults		283,301,572	247,151,987	212,215,789	204,772,882	199,568,944	194,703,779	193,381,485
	time, seconds		151.227629483	153.920996480	151.356125472	150.863792049	150.879207877	151.150764954	151.450962358
Linux rebuild (make -j60)
FAULT_AROUND_ORDER		Baseline	1		3		4		5		7		9
	minor-faults		5,396,854	4,148,444	2,855,286	2,577,282	2,361,957	2,169,573	2,112,643
	time, seconds		27.404543757	27.559725591	27.030057426	26.855045126	26.678618635	26.974523490	26.761320095
Git test suite (make -j60 test)
FAULT_AROUND_ORDER		Baseline	1		3		4		5		7		9
	minor-faults		129,591,823	99,200,751	66,106,718	57,606,410	51,510,808	45,776,813	44,085,515
	time, seconds		66.087215026	64.784546905	64.401156567	65.282708668	66.034016829	66.793780811	67.237810413

Two synthetic tests: access every word in file in sequential/random order.
It doesn't improve much after FAULT_AROUND_ORDER == 4.

Sequential access 16GiB file
FAULT_AROUND_ORDER		Baseline	1		3		4		5		7		9
 1 thread
	minor-faults		4,195,437	2,098,275	525,068		262,251		131,170		32,856		8,282
	time, seconds		7.250461742	6.461711074	5.493859139	5.488488147	5.707213983	5.898510832	5.109232856
 8 threads
	minor-faults		33,557,540	16,892,728	4,515,848	2,366,999	1,423,382	442,732		142,339
	time, seconds		16.649304881	9.312555263	6.612490639	6.394316732	6.669827501	6.75078944	6.371900528
 32 threads
	minor-faults		134,228,222	67,526,810	17,725,386	9,716,537	4,763,731	1,668,921	537,200
	time, seconds		49.164430543	29.712060103	12.938649729	10.175151004	11.840094583	9.594081325	9.928461797
 60 threads
	minor-faults		251,687,988	126,146,952	32,919,406	18,208,804	10,458,947	2,733,907	928,217
	time, seconds		86.260656897	49.626551828	22.335007632	17.608243696	16.523119035	16.339489186	16.326390902
 120 threads
	minor-faults		503,352,863	252,939,677	67,039,168	35,191,827	19,170,091	4,688,357	1,471,862
	time, seconds		124.589206333	79.757867787	39.508707872	32.167281632	29.972989292	28.729834575	28.042251622
Random access 1GiB file
 1 thread
	minor-faults		262,636		132,743		34,369		17,299		8,527		3,451		1,222
	time, seconds		15.351890914	16.613802482	16.569227308	15.179220992	16.557356122	16.578247824	15.365266994
 8 threads
	minor-faults		2,098,948	1,061,871	273,690		154,501		87,110		25,663		7,384
	time, seconds		15.040026343	15.096933500	14.474757288	14.289129964	14.411537468	14.296316837	14.395635804
 32 threads
	minor-faults		8,390,734	4,231,023	1,054,432	528,847		269,242		97,746		26,881
	time, seconds		20.430433109	21.585235358	22.115062928	14.872878951	14.880856305	14.883370649	14.821261690
 60 threads
	minor-faults		15,733,258	7,892,809	1,973,393	988,266		594,789		164,994		51,691
	time, seconds		26.577302548	25.692397770	18.728863715	20.153026398	21.619101933	17.745086260	17.613215273
 120 threads
	minor-faults		31,471,111	15,816,616	3,959,209	1,978,685	1,008,299	264,635		96,010
	time, seconds		41.835322703	40.459786095	36.085306105	35.313894834	35.814445675	36.552633793	34.289210594

Touch only one page in page table in 16GiB file
FAULT_AROUND_ORDER		Baseline	1		3		4		5		7		9
 1 thread
	minor-faults		8,372		8,324		8,270		8,260		8,249		8,239		8,237
	time, seconds		0.039892712	0.045369149	0.051846126	0.063681685	0.079095975	0.17652406	0.541213386
 8 threads
	minor-faults		65,731		65,681		65,628		65,620		65,608		65,599		65,596
	time, seconds		0.124159196	0.488600638	0.156854426	0.191901957	0.242631486	0.543569456	1.677303984
 32 threads
	minor-faults		262,388		262,341		262,285		262,276		262,266		262,257		263,183
	time, seconds		0.452421421	0.488600638	0.565020946	0.648229739	0.789850823	1.651584361	5.000361559
 60 threads
	minor-faults		491,822		491,792		491,723		491,711		491,701		491,691		491,825
	time, seconds		0.763288616	0.869620515	0.980727360	1.161732354	1.466915814	3.04041448	9.308612938
 120 threads
	minor-faults		983,466		983,655		983,366		983,372		983,363		984,083		984,164
	time, seconds		1.595846553	1.667902182	2.008959376	2.425380942	2.941368804	5.977807890	18.401846125

This patch (of 2):

Introduce new vm_ops callback ->map_pages() and uses it for mapping easy
accessible pages around fault address.

On read page fault, if filesystem provides ->map_pages(), we try to map up
to FAULT_AROUND_PAGES pages around page fault address in hope to reduce
number of minor page faults.

We call ->map_pages first and use ->fault() as fallback if page by the
offset is not ready to be mapped (cold page cache or something).

Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Rik van Riel <riel@redhat.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Matthew Wilcox <matthew.r.wilcox@intel.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Ning Qu <quning@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-04-07 16:35:52 -07:00
Kirill A. Shutemov
9164550ecd mm: disable split page table lock for !MMU
There's no reason to enable split page table lock if don't have page
tables.

It also triggers build error at least on ARM since we don't define
pmd_page() for !MMU.

  In file included from arch/arm/kernel/asm-offsets.c:14:0:
  include/linux/mm.h: In function 'pte_lockptr':
  include/linux/mm.h:1392:2: error: implicit declaration of function 'pmd_page' [-Werror=implicit-function-declaration]
  include/linux/mm.h:1392:2: warning: passing argument 1 of 'ptlock_ptr' makes pointer from integer without a cast [enabled by default]
  include/linux/mm.h:1384:27: note: expected 'struct page *' but argument is of type 'int'

Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Reported-by: Uwe Kleine-König <u.kleine-koenig@pengutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-04-07 16:35:52 -07:00
Alex Thorlton
1e1836e84f mm: revert "thp: make MADV_HUGEPAGE check for mm->def_flags"
The main motivation behind this patch is to provide a way to disable THP
for jobs where the code cannot be modified, and using a malloc hook with
madvise is not an option (i.e.  statically allocated data).  This patch
allows us to do just that, without affecting other jobs running on the
system.

We need to do this sort of thing for jobs where THP hurts performance,
due to the possibility of increased remote memory accesses that can be
created by situations such as the following:

When you touch 1 byte of an untouched, contiguous 2MB chunk, a THP will
be handed out, and the THP will be stuck on whatever node the chunk was
originally referenced from.  If many remote nodes need to do work on
that same chunk, they'll be making remote accesses.

With THP disabled, 4K pages can be handed out to separate nodes as
they're needed, greatly reducing the amount of remote accesses to
memory.

This patch is based on some of my work combined with some
suggestions/patches given by Oleg Nesterov.  The main goal here is to
add a prctl switch to allow us to disable to THP on a per mm_struct
basis.

Here's a bit of test data with the new patch in place...

First with the flag unset:

  # perf stat -a ./prctl_wrapper_mmv3 0 ./thp_pthread -C 0 -m 0 -c 512 -b 256g
  Setting thp_disabled for this task...
  thp_disable: 0
  Set thp_disabled state to 0
  Process pid = 18027

                                                                                                                       PF/
                                  MAX        MIN                                  TOTCPU/      TOT_PF/   TOT_PF/     WSEC/
  TYPE:               CPUS       WALL       WALL        SYS     USER     TOTCPU       CPU     WALL_SEC   SYS_SEC       CPU   NODES
   512      1.120      0.060      0.000    0.110      0.110     0.000    28571428864 -9223372036854775808  55803572      23

   Performance counter stats for './prctl_wrapper_mmv3_hack 0 ./thp_pthread -C 0 -m 0 -c 512 -b 256g':

    273719072.841402 task-clock                #  641.026 CPUs utilized           [100.00%]
           1,008,986 context-switches          #    0.000 M/sec                   [100.00%]
               7,717 CPU-migrations            #    0.000 M/sec                   [100.00%]
           1,698,932 page-faults               #    0.000 M/sec
  355,222,544,890,379 cycles                   #    1.298 GHz                     [100.00%]
  536,445,412,234,588 stalled-cycles-frontend  #  151.02% frontend cycles idle    [100.00%]
  409,110,531,310,223 stalled-cycles-backend   #  115.17% backend  cycles idle    [100.00%]
  148,286,797,266,411 instructions             #    0.42  insns per cycle
                                               #    3.62  stalled cycles per insn [100.00%]
  27,061,793,159,503 branches                  #   98.867 M/sec                   [100.00%]
       1,188,655,196 branch-misses             #    0.00% of all branches

       427.001706337 seconds time elapsed

Now with the flag set:

  # perf stat -a ./prctl_wrapper_mmv3 1 ./thp_pthread -C 0 -m 0 -c 512 -b 256g
  Setting thp_disabled for this task...
  thp_disable: 1
  Set thp_disabled state to 1
  Process pid = 144957

                                                                                                                       PF/
                                  MAX        MIN                                  TOTCPU/      TOT_PF/   TOT_PF/     WSEC/
  TYPE:               CPUS       WALL       WALL        SYS     USER     TOTCPU       CPU     WALL_SEC   SYS_SEC       CPU   NODES
   512      0.620      0.260      0.250    0.320      0.570     0.001    51612901376 128000000000 100806448      23

   Performance counter stats for './prctl_wrapper_mmv3_hack 1 ./thp_pthread -C 0 -m 0 -c 512 -b 256g':

    138789390.540183 task-clock                #  641.959 CPUs utilized           [100.00%]
             534,205 context-switches          #    0.000 M/sec                   [100.00%]
               4,595 CPU-migrations            #    0.000 M/sec                   [100.00%]
          63,133,119 page-faults               #    0.000 M/sec
  147,977,747,269,768 cycles                   #    1.066 GHz                     [100.00%]
  200,524,196,493,108 stalled-cycles-frontend  #  135.51% frontend cycles idle    [100.00%]
  105,175,163,716,388 stalled-cycles-backend   #   71.07% backend  cycles idle    [100.00%]
  180,916,213,503,160 instructions             #    1.22  insns per cycle
                                               #    1.11  stalled cycles per insn [100.00%]
  26,999,511,005,868 branches                  #  194.536 M/sec                   [100.00%]
         714,066,351 branch-misses             #    0.00% of all branches

       216.196778807 seconds time elapsed

As with previous versions of the patch, We're getting about a 2x
performance increase here.  Here's a link to the test case I used, along
with the little wrapper to activate the flag:

  http://oss.sgi.com/projects/memtests/thp_pthread_mmprctlv3.tar.gz

This patch (of 3):

Revert commit 8e72033f2a and add in code to fix up any issues caused
by the revert.

The revert is necessary because hugepage_madvise would return -EINVAL
when VM_NOHUGEPAGE is set, which will break subsequent chunks of this
patch set.

Here's a snip of an e-mail from Gerald detailing the original purpose of
this code, and providing justification for the revert:

  "The intent of commit 8e72033f2a was to guard against any future
   programming errors that may result in an madvice(MADV_HUGEPAGE) on
   guest mappings, which would crash the kernel.

   Martin suggested adding the bit to arch/s390/mm/pgtable.c, if
   8e72033f2a was to be reverted, because that check will also prevent
   a kernel crash in the case described above, it will now send a
   SIGSEGV instead.

   This would now also allow to do the madvise on other parts, if
   needed, so it is a more flexible approach.  One could also say that
   it would have been better to do it this way right from the
   beginning..."

Signed-off-by: Alex Thorlton <athorlton@sgi.com>
Suggested-by: Oleg Nesterov <oleg@redhat.com>
Tested-by: Christian Borntraeger <borntraeger@de.ibm.com>
Cc: Gerald Schaefer <gerald.schaefer@de.ibm.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Rik van Riel <riel@redhat.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-04-07 16:35:51 -07:00
Joonsoo Kim
b6c750163c mm/compaction: clean-up code on success of ballon isolation
It is just for clean-up to reduce code size and improve readability.
There is no functional change.

Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-04-07 16:35:51 -07:00
Joonsoo Kim
c122b2087a mm/compaction: check pageblock suitability once per pageblock
isolation_suitable() and migrate_async_suitable() is used to be sure
that this pageblock range is fine to be migragted.  It isn't needed to
call it on every page.  Current code do well if not suitable, but, don't
do well when suitable.

1) It re-checks isolation_suitable() on each page of a pageblock that was
   already estabilished as suitable.
2) It re-checks migrate_async_suitable() on each page of a pageblock that
   was not entered through the next_pageblock: label, because
   last_pageblock_nr is not otherwise updated.

This patch fixes situation by 1) calling isolation_suitable() only once
per pageblock and 2) always updating last_pageblock_nr to the pageblock
that was just checked.

Additionally, move PageBuddy() check after pageblock unit check, since
pageblock check is the first thing we should do and makes things more
simple.

[vbabka@suse.cz: rephrase commit description]
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-04-07 16:35:51 -07:00
Joonsoo Kim
be1aa03b97 mm/compaction: change the timing to check to drop the spinlock
It is odd to drop the spinlock when we scan (SWAP_CLUSTER_MAX - 1) th
pfn page.  This may results in below situation while isolating
migratepage.

1. try isolate 0x0 ~ 0x200 pfn pages.
2. When low_pfn is 0x1ff, ((low_pfn+1) % SWAP_CLUSTER_MAX) == 0, so drop
   the spinlock.
3. Then, to complete isolating, retry to aquire the lock.

I think that it is better to use SWAP_CLUSTER_MAX th pfn for checking the
criteria about dropping the lock.  This has no harm 0x0 pfn, because, at
this time, locked variable would be false.

Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-04-07 16:35:51 -07:00
Joonsoo Kim
01ead5340b mm/compaction: do not call suitable_migration_target() on every page
suitable_migration_target() checks that pageblock is suitable for
migration target.  In isolate_freepages_block(), it is called on every
page and this is inefficient.  So make it called once per pageblock.

suitable_migration_target() also checks if page is highorder or not, but
it's criteria for highorder is pageblock order.  So calling it once
within pageblock range has no problem.

Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-04-07 16:35:51 -07:00
Joonsoo Kim
7d348b9ea6 mm/compaction: disallow high-order page for migration target
Purpose of compaction is to get a high order page.  Currently, if we
find high-order page while searching migration target page, we break it
to order-0 pages and use them as migration target.  It is contrary to
purpose of compaction, so disallow high-order page to be used for
migration target.

Additionally, clean-up logic in suitable_migration_target() to simplify
the code.  There is no functional changes from this clean-up.

Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-04-07 16:35:51 -07:00
Michal Hocko
70ef57e6c2 mm: exclude memoryless nodes from zone_reclaim
We had a report about strange OOM killer strikes on a PPC machine
although there was a lot of swap free and a tons of anonymous memory
which could be swapped out.  In the end it turned out that the OOM was a
side effect of zone reclaim which wasn't unmapping and swapping out and
so the system was pushed to the OOM.  Although this sounds like a bug
somewhere in the kswapd vs.  zone reclaim vs.  direct reclaim
interaction numactl on the said hardware suggests that the zone reclaim
should not have been set in the first place:

  node 0 cpus: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
  node 0 size: 0 MB
  node 0 free: 0 MB
  node 2 cpus:
  node 2 size: 7168 MB
  node 2 free: 6019 MB
  node distances:
  node   0   2
  0:  10  40
  2:  40  10

So all the CPUs are associated with Node0 which doesn't have any memory
while Node2 contains all the available memory.  Node distances cause an
automatic zone_reclaim_mode enabling.

Zone reclaim is intended to keep the allocations local but this doesn't
make any sense on the memoryless nodes.  So let's exclude such nodes for
init_zone_allows_reclaim which evaluates zone reclaim behavior and
suitable reclaim_nodes.

Signed-off-by: Michal Hocko <mhocko@suse.cz>
Acked-by: David Rientjes <rientjes@google.com>
Acked-by: Nishanth Aravamudan <nacc@linux.vnet.ibm.com>
Tested-by: Nishanth Aravamudan <nacc@linux.vnet.ibm.com>
Acked-by: Mel Gorman <mgorman@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-04-07 16:35:50 -07:00
Davidlohr Bueso
7aa6b4ad5a mm/memory.c: update comment in unmap_single_vma()
The described issue now occurs inside mmap_region().  And unfortunately
is still valid.

Signed-off-by: Davidlohr Bueso <davidlohr@hp.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-04-07 16:35:50 -07:00
Weijie Yang
9bbc04eeb0 mm/vmscan: do not check compaction_ready on promoted zones
We abort direct reclaim if we find the zone is ready for compaction.
Sometimes the zone is just a promoted highmem zone to force a scan of
highmem, which is not the intended zone the caller want to allocate a
page from.  In this situation, setting aborted_reclaim to indicate the
caller turned back to retry the allocation is waste of time and could
cause a loop in __alloc_pages_slowpath().

This patch does not check compaction_ready() on promoted zones to avoid
the above situation.  Only set aborted_reclaim if the caller intended
zone is ready for compaction.

Signed-off-by: Weijie Yang <weijie.yang@samsung.com>
Acked-by: Rik van Riel <riel@redhat.com>
Acked-by: Mel Gorman <mgorman@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-04-07 16:35:50 -07:00
Weijie Yang
619d0d76c1 mm/vmscan: restore sc->gfp_mask after promoting it to __GFP_HIGHMEM
We promote sc->gfp_mask to __GFP_HIGHMEM to forcibly scan highmem if
there are too many buffer_heads pinning highmem.  See cc715d99e5 ("mm:
vmscan: forcibly scan highmem if there are too many buffer_heads pinning
highmem").

This patch restores sc->gfp_mask to its caller original value after
finishing the scan job, to avoid the impact on other invocations from
its upper caller, such as vmpressure_prio(), shrink_slab().

Signed-off-by: Weijie Yang <weijie.yang@samsung.com>
Acked-by: Mel Gorman <mgorman@suse.de>
Acked-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-04-07 16:35:50 -07:00
Rik van Riel
a5338093bf mm: move mmu notifier call from change_protection to change_pmd_range
The NUMA scanning code can end up iterating over many gigabytes of
unpopulated memory, especially in the case of a freshly started KVM
guest with lots of memory.

This results in the mmu notifier code being called even when there are
no mapped pages in a virtual address range.  The amount of time wasted
can be enough to trigger soft lockup warnings with very large KVM
guests.

This patch moves the mmu notifier call to the pmd level, which
represents 1GB areas of memory on x86-64.  Furthermore, the mmu notifier
code is only called from the address in the PMD where present mappings
are first encountered.

The hugetlbfs code is left alone for now; hugetlb mappings are not
relocatable, and as such are left alone by the NUMA code, and should
never trigger this problem to begin with.

Signed-off-by: Rik van Riel <riel@redhat.com>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Reported-by: Xing Gang <gang.xing@hp.com>
Tested-by: Chegu Vinod <chegu_vinod@hp.com>
Cc: Sasha Levin <sasha.levin@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-04-07 16:35:50 -07:00
Mel Gorman
1ad9f620c3 mm: numa: recheck for transhuge pages under lock during protection changes
Sasha reported the following bug using trinity

  kernel BUG at mm/mprotect.c:149!
  invalid opcode: 0000 [#1] PREEMPT SMP DEBUG_PAGEALLOC
  Dumping ftrace buffer:
     (ftrace buffer empty)
  Modules linked in:
  CPU: 20 PID: 26219 Comm: trinity-c216 Tainted: G        W    3.14.0-rc5-next-20140305-sasha-00011-ge06f5f3-dirty #105
  task: ffff8800b6c80000 ti: ffff880228436000 task.ti: ffff880228436000
  RIP: change_protection_range+0x3b3/0x500
  Call Trace:
    change_protection+0x25/0x30
    change_prot_numa+0x1b/0x30
    task_numa_work+0x279/0x360
    task_work_run+0xae/0xf0
    do_notify_resume+0x8e/0xe0
    retint_signal+0x4d/0x92

The VM_BUG_ON was added in -mm by the patch "mm,numa: reorganize
change_pmd_range".  The race existed without the patch but was just
harder to hit.

The problem is that a transhuge check is made without holding the PTL.
It's possible at the time of the check that a parallel fault clears the
pmd and inserts a new one which then triggers the VM_BUG_ON check.  This
patch removes the VM_BUG_ON but fixes the race by rechecking transhuge
under the PTL when marking page tables for NUMA hinting and bailing if a
race occurred.  It is not a problem for calls to mprotect() as they hold
mmap_sem for write.

Signed-off-by: Mel Gorman <mgorman@suse.de>
Reported-by: Sasha Levin <sasha.levin@oracle.com>
Reviewed-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-04-07 16:35:50 -07:00
Rik van Riel
88a9ab6e3d mm,numa: reorganize change_pmd_range()
Reorganize the order of ifs in change_pmd_range a little, in preparation
for the next patch.

[akpm@linux-foundation.org: fix indenting, per David]
Signed-off-by: Rik van Riel <riel@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Reported-by: Xing Gang <gang.xing@hp.com>
Tested-by: Chegu Vinod <chegu_vinod@hp.com>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Sasha Levin <sasha.levin@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-04-07 16:35:49 -07:00
Naoya Horiguchi
a9af0c5dfd mm/hugetlb.c: add NULL check of return value of huge_pte_offset
huge_pte_offset() could return NULL, so we need NULL check to avoid
potential NULL pointer dereferences.

Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Sasha Levin <sasha.levin@oracle.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-04-07 16:35:49 -07:00