Fix trivial comment typo for tk_setup_internals().
Signed-off-by: Yijing Wang <wangyijing@huawei.com>
Signed-off-by: John Stultz <john.stultz@linaro.org>
Since 48cdc135d4 (Implement a shadow timekeeper), we have to
call timekeeping_update() after any adjustment to the timekeeping
structure in order to make sure that any adjustments to the structure
persist.
In the timekeeping suspend path, we udpate the timekeeper
structure, so we should be sure to update the shadow-timekeeper
before releasing the timekeeping locks. Currently this isn't done.
In most cases, the next time related code to run would be
timekeeping_resume, which does update the shadow-timekeeper, but
in an abundence of caution, this patch adds the call to
timekeeping_update() in the suspend path.
Cc: Sasha Levin <sasha.levin@oracle.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Prarit Bhargava <prarit@redhat.com>
Cc: Richard Cochran <richardcochran@gmail.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: stable <stable@vger.kernel.org> #3.10+
Signed-off-by: John Stultz <john.stultz@linaro.org>
A think-o in the calculation of the monotonic -> tai time offset
results in CLOCK_TAI timers and nanosleeps to expire late (the
latency is ~2x the tai offset).
Fix this by adding the tai offset from the realtime offset instead
of subtracting.
Cc: Sasha Levin <sasha.levin@oracle.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Prarit Bhargava <prarit@redhat.com>
Cc: Richard Cochran <richardcochran@gmail.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: stable <stable@vger.kernel.org> #3.10+
Signed-off-by: John Stultz <john.stultz@linaro.org>
Since the xtime lock was split into the timekeeping lock and
the jiffies lock, we no longer need to call update_wall_time()
while holding the jiffies lock.
Thus, this patch splits update_wall_time() out from do_timer().
This allows us to get away from calling clock_was_set_delayed()
in update_wall_time() and instead use the standard clock_was_set()
call that previously would deadlock, as it causes the jiffies lock
to be acquired.
Cc: Sasha Levin <sasha.levin@oracle.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Prarit Bhargava <prarit@redhat.com>
Cc: Richard Cochran <richardcochran@gmail.com>
Cc: Ingo Molnar <mingo@kernel.org>
Signed-off-by: John Stultz <john.stultz@linaro.org>
As part of normal operaions, the hrtimer subsystem frequently calls
into the timekeeping code, creating a locking order of
hrtimer locks -> timekeeping locks
clock_was_set_delayed() was suppoed to allow us to avoid deadlocks
between the timekeeping the hrtimer subsystem, so that we could
notify the hrtimer subsytem the time had changed while holding
the timekeeping locks. This was done by scheduling delayed work
that would run later once we were out of the timekeeing code.
But unfortunately the lock chains are complex enoguh that in
scheduling delayed work, we end up eventually trying to grab
an hrtimer lock.
Sasha Levin noticed this in testing when the new seqlock lockdep
enablement triggered the following (somewhat abrieviated) message:
[ 251.100221] ======================================================
[ 251.100221] [ INFO: possible circular locking dependency detected ]
[ 251.100221] 3.13.0-rc2-next-20131206-sasha-00005-g8be2375-dirty #4053 Not tainted
[ 251.101967] -------------------------------------------------------
[ 251.101967] kworker/10:1/4506 is trying to acquire lock:
[ 251.101967] (timekeeper_seq){----..}, at: [<ffffffff81160e96>] retrigger_next_event+0x56/0x70
[ 251.101967]
[ 251.101967] but task is already holding lock:
[ 251.101967] (hrtimer_bases.lock#11){-.-...}, at: [<ffffffff81160e7c>] retrigger_next_event+0x3c/0x70
[ 251.101967]
[ 251.101967] which lock already depends on the new lock.
[ 251.101967]
[ 251.101967]
[ 251.101967] the existing dependency chain (in reverse order) is:
[ 251.101967]
-> #5 (hrtimer_bases.lock#11){-.-...}:
[snipped]
-> #4 (&rt_b->rt_runtime_lock){-.-...}:
[snipped]
-> #3 (&rq->lock){-.-.-.}:
[snipped]
-> #2 (&p->pi_lock){-.-.-.}:
[snipped]
-> #1 (&(&pool->lock)->rlock){-.-...}:
[ 251.101967] [<ffffffff81194803>] validate_chain+0x6c3/0x7b0
[ 251.101967] [<ffffffff81194d9d>] __lock_acquire+0x4ad/0x580
[ 251.101967] [<ffffffff81194ff2>] lock_acquire+0x182/0x1d0
[ 251.101967] [<ffffffff84398500>] _raw_spin_lock+0x40/0x80
[ 251.101967] [<ffffffff81153e69>] __queue_work+0x1a9/0x3f0
[ 251.101967] [<ffffffff81154168>] queue_work_on+0x98/0x120
[ 251.101967] [<ffffffff81161351>] clock_was_set_delayed+0x21/0x30
[ 251.101967] [<ffffffff811c4bd1>] do_adjtimex+0x111/0x160
[ 251.101967] [<ffffffff811e2711>] compat_sys_adjtimex+0x41/0x70
[ 251.101967] [<ffffffff843a4b49>] ia32_sysret+0x0/0x5
[ 251.101967]
-> #0 (timekeeper_seq){----..}:
[snipped]
[ 251.101967] other info that might help us debug this:
[ 251.101967]
[ 251.101967] Chain exists of:
timekeeper_seq --> &rt_b->rt_runtime_lock --> hrtimer_bases.lock#11
[ 251.101967] Possible unsafe locking scenario:
[ 251.101967]
[ 251.101967] CPU0 CPU1
[ 251.101967] ---- ----
[ 251.101967] lock(hrtimer_bases.lock#11);
[ 251.101967] lock(&rt_b->rt_runtime_lock);
[ 251.101967] lock(hrtimer_bases.lock#11);
[ 251.101967] lock(timekeeper_seq);
[ 251.101967]
[ 251.101967] *** DEADLOCK ***
[ 251.101967]
[ 251.101967] 3 locks held by kworker/10:1/4506:
[ 251.101967] #0: (events){.+.+.+}, at: [<ffffffff81154960>] process_one_work+0x200/0x530
[ 251.101967] #1: (hrtimer_work){+.+...}, at: [<ffffffff81154960>] process_one_work+0x200/0x530
[ 251.101967] #2: (hrtimer_bases.lock#11){-.-...}, at: [<ffffffff81160e7c>] retrigger_next_event+0x3c/0x70
[ 251.101967]
[ 251.101967] stack backtrace:
[ 251.101967] CPU: 10 PID: 4506 Comm: kworker/10:1 Not tainted 3.13.0-rc2-next-20131206-sasha-00005-g8be2375-dirty #4053
[ 251.101967] Workqueue: events clock_was_set_work
So the best solution is to avoid calling clock_was_set_delayed() while
holding the timekeeping lock, and instead using a flag variable to
decide if we should call clock_was_set() once we've released the locks.
This works for the case here, where the do_adjtimex() was the deadlock
trigger point. Unfortuantely, in update_wall_time() we still hold
the jiffies lock, which would deadlock with the ipi triggered by
clock_was_set(), preventing us from calling it even after we drop the
timekeeping lock. So instead call clock_was_set_delayed() at that point.
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Prarit Bhargava <prarit@redhat.com>
Cc: Richard Cochran <richardcochran@gmail.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Sasha Levin <sasha.levin@oracle.com>
Cc: stable <stable@vger.kernel.org> #3.10+
Reported-by: Sasha Levin <sasha.levin@oracle.com>
Tested-by: Sasha Levin <sasha.levin@oracle.com>
Signed-off-by: John Stultz <john.stultz@linaro.org>
In 780427f0e1 (Indicate that clock was set in the pvclock
gtod notifier), logic was added to pass a CLOCK_WAS_SET
notification to the pvclock notifier chain.
While that patch added a action flag returned from
accumulate_nsecs_to_secs(), it only uses the returned value
in one location, and not in the logarithmic accumulation.
This means if a leap second triggered during the logarithmic
accumulation (which is most likely where it would happen),
the notification that the clock was set would not make it to
the pv notifiers.
This patch extends the logarithmic_accumulation pass down
that action flag so proper notification will occur.
This patch also changes the varialbe action -> clock_set
per Ingo's suggestion.
Cc: Sasha Levin <sasha.levin@oracle.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: David Vrabel <david.vrabel@citrix.com>
Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Cc: Prarit Bhargava <prarit@redhat.com>
Cc: Richard Cochran <richardcochran@gmail.com>
Cc: <xen-devel@lists.xen.org>
Cc: stable <stable@vger.kernel.org> #3.11+
Signed-off-by: John Stultz <john.stultz@linaro.org>
Since 48cdc135d4 (Implement a shadow timekeeper), we have to
call timekeeping_update() after any adjustment to the timekeeping
structure in order to make sure that any adjustments to the structure
persist.
Unfortunately, the updates to the tai offset via adjtimex do not
trigger this update, causing adjustments to the tai offset to be
made and then over-written by the previous value at the next
update_wall_time() call.
This patch resovles the issue by calling timekeeping_update()
right after setting the tai offset.
Cc: Sasha Levin <sasha.levin@oracle.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Prarit Bhargava <prarit@redhat.com>
Cc: Richard Cochran <richardcochran@gmail.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: stable <stable@vger.kernel.org> #3.10+
Signed-off-by: John Stultz <john.stultz@linaro.org>
The posix cpu timers code makes a heavy use of BUG_ON()
but none of these concern fatal issues that require
to stop the machine. So let's just warn the user when
some internal state slips out of our hands.
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Kosaki Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
The remaining uses of tasklist_lock were mostly about synchronizing
against sighand modifications, getting coherent and safe group samples
and also thread/process wide timers list handling.
All of this is already safely synchronizable with the target's
sighand lock. Let's use it on these places instead.
Also update the comments about locking.
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Kosaki Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Timer deletion doesn't need the tasklist lock.
We need to protect against:
* concurrent access to the lists p->cputime_expires and
p->sighand->cputime_expires
* task reaping that may also delete the timer list entry
* timer firing
We already hold the timer lock which protects us against concurrent
timer firing.
The rest only need the targets sighand to be locked.
So hold it and drop the use of tasklist_lock there.
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Kosaki Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
There is no need for the tasklist_lock just to take a process
wide clock sample.
All we need is to get a coherent sample that doesn't race with
exit() and exec():
* exit() may be concurrently reaping a task and flushing its time
* sighand is unstable under exit() and exec(), and the latter also
result in group leader that can change
To protect against these, locking the target's sighand is enough.
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Kosaki Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Consolidate the clock sampling common code used for both local
and remote targets.
Note that this introduces a tiny user ABI change: if a
PID is passed to clock_gettime() along the clockid,
we used to forbid a process wide clock sample when that
PID doesn't belong to a group leader. Now after this patch
we allow process wide clock samples if that PID belongs to
the current task, even if the current task is not the
group leader.
But local process wide clock samples are allowed if PID == 0
(current task) even if the current task is not the group leader.
So in the end this should be no big deal as this actually harmonize
the behaviour when the remote sample is actually a local one.
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Kosaki Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Now that we've removed all the optimizations that could
result in NULL timer's targets, we can remove all the
associated special case handling.
Also add some warnings on NULL targets to spot any possible
leftover.
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Kosaki Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
When a timer's target is seen to be buried, for example on calls
to timer_gettime(), the posix cpu timers code behaves a bit
like a garbage collector and releases early the reference to the
task.
Then again, this optimization complicates the code for no much
value: it's up to the user to release the timer and its associated
ressources by calling timer_delete() after it buries the target
tasks.
Remove this to simplify the code.
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Kosaki Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Now that we removed dead thread posix cpu timers caching,
lets remove the dead process wide version. This caching
is similar to the per thread version but it should be even
more rare:
* If the process id dead, we are not reading its timers
status from a thread belonging to its group since they
are all dead. So this caching only concern remote process
timers reads. Now posix cpu timers using itimers or timer_settime()
can't do remote process timers anyway so it's not even clear if there
is actually a user for this caching.
* Unlike per thread timers caching, this only applies to
zombies targets. Buried targets' process wide timers return
0 values. But then again, timer_gettime() can't read remote
process timers, so if the process is dead, there can't be
any reader left anyway.
Then again this caching seem to complicate the code for
corner cases that are probably not worth it. So lets get
rid of it.
Also remove the sample snapshot on dying process timer
that is now useless, as suggested by Kosaki.
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Kosaki Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
When a task is exiting or has exited, its posix cpu timers
don't tick anymore and won't elapse further. It's too late
for them to expire.
So any further call to timer_gettime() on these timers will
return the same remaining expiry time.
The current code optimize this by caching the remaining delta
and storing it where we use to save the absolute expiration time.
This way, the future calls to timer_gettime() won't need to
compute the difference between the absolute expiration time and
the current time anymore.
Now this optimization doesn't seem to bring much value. Computing
the timer remaining delta is not very costly. Fetching the timer
value OTOH can be costly in two ways:
* CPUCLOCK_SCHED read requires to lock the target's rq. But some
optimizations are on the way to make task_sched_runtime() not holding
the rq lock of a non-running target.
* CPUCLOCK_VIRT/CPUCLOCK_PROF read simply consist in fetching
current->utime/current->stime except when the system uses full
dynticks cputime accounting. The latter requires a per task lock
in order to correctly compute user and system time. But once the
target is dead, this lock shouldn't be contended anyway.
All in one this caching doesn't seem to be justified.
Given that it complicates the code significantly for
few wins, let's remove it on single thread timers.
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Kosaki Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Pull dynticks updates from Frederic Weisbecker:
* Fix a bug where posix cpu timers requeued due to interval got ignored on full
dynticks CPUs (not a regression though as it only impacts full dynticks and the
bug is there since we merged full dynticks).
* Optimizations and cleanups on the use of per CPU APIs to improve code readability,
performance and debuggability in the nohz subsystem;
* Optimize posix cpu timer by sparing stub workqueue queue with full dynticks off case
* Rename some functions to extend with *_this_cpu() suffix for clarity
* Refine the naming of some context tracking subsystem state accessors
* Trivial spelling fix by Paul Gortmaker
Signed-off-by: Ingo Molnar <mingo@kernel.org>
A posix CPU timer can be rearmed while it is firing or after it is
notified with a signal. This can happen for example with timers that
were set with a non zero interval in timer_settime().
This rearming can happen in two places:
1) On timer firing time, which happens on the target's tick. If the timer
can't trigger a signal because it is ignored, it reschedules itself
to honour the timer interval.
2) On signal handling from the timer's notification target. This one
can be a different task than the timer's target itself. Once the
signal is notified, the notification target rearms the timer, again
to honour the timer interval.
When a timer is rearmed, we need to notify the full dynticks CPUs
such that they restart their tick in case they are running tasks that
may have a share in elapsing this timer.
Now the 1st case above handles full dynticks CPUs with a call to
posix_cpu_timer_kick_nohz() from the posix cpu timer firing code. But
the second case ignores the fact that some CPUs may run non-idle tasks
with their tick off. As a result, when a timer is resheduled after its signal
notification, the full dynticks CPUs may completely ignore it and not
tick on the timer as expected
This patch fixes this bug by handling both cases in one. All we need
is to move the kick to the rearming common code in posix_cpu_timer_schedule().
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Olivier Langlois <olivier@olivierlanglois.net>
After a posix cpu timer is set, a workqueue is scheduled in order to
kick the full dynticks CPUs and let them restart their tick if
necessary in case the task they are running is concerned by the
new timer.
This kick is implemented by way of IPIs, which require interrupts
to be enabled, hence the need for a workqueue to raise them because
the posix cpu timer set path has interrupts disabled.
Now if there is no full dynticks CPU on the system, the workqueue is
still scheduled but it simply won't send any IPI and return immediately.
So lets spare that worqueue when it is not needed.
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Use a function with a meaningful name to check the global context
tracking state. static_key_false() is a bit confusing for reviewers.
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
A few functions use remote per CPU access APIs when they
deal with local values.
Just do the right conversion to improve performance, code
readability and debug checks.
While at it, lets extend some of these function names with *_this_cpu()
suffix in order to display their purpose more clearly.
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Pull irq fixes from Thomas Gleixner:
- Correction of fuzzy and fragile IRQ_RETVAL macro
- IRQ related resume fix affecting only XEN
- ARM/GIC fix for chained GIC controllers
* 'irq-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
irqchip: Gic: fix boot for chained gics
irq: Enable all irqs unconditionally in irq_resume
genirq: Correct fuzzy and fragile IRQ_RETVAL() definition
Pull scheduler fixes from Ingo Molnar:
"Various smaller fixlets, all over the place"
* 'sched-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
sched/doc: Fix generation of device-drivers
sched: Expose preempt_schedule_irq()
sched: Fix a trivial typo in comments
sched: Remove unused variable in 'struct sched_domain'
sched: Avoid NULL dereference on sd_busy
sched: Check sched_domain before computing group power
MAINTAINERS: Update file patterns in the lockdep and scheduler entries
Pull perf fixes from Ingo Molnar:
"Misc kernel and tooling fixes"
* 'perf-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
tools lib traceevent: Fix conversion of pointer to integer of different size
perf/trace: Properly use u64 to hold event_id
perf: Remove fragile swevent hlist optimization
ftrace, perf: Avoid infinite event generation loop
tools lib traceevent: Fix use of multiple options in processing field
perf header: Fix possible memory leaks in process_group_desc()
perf header: Fix bogus group name
perf tools: Tag thread comm as overriden
Pull workqueue fixes from Tejun Heo:
"This contains one important fix. The NUMA support added a while back
broke ordering guarantees on ordered workqueues. It was enforced by
having single frontend interface with @max_active == 1 but the NUMA
support puts multiple interfaces on unbound workqueues on NUMA
machines thus breaking the ordered guarantee. This is fixed by
disabling NUMA support on ordered workqueues.
The above and a couple other patches were sitting in for-3.12-fixes
but I forgot to push that out, so they ended up waiting a bit too
long. My aplogies.
Other fixes are minor"
* 'for-3.13-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/wq:
workqueue: fix pool ID allocation leakage and remove BUILD_BUG_ON() in init_workqueues
workqueue: fix comment typo for __queue_work()
workqueue: fix ordered workqueues in NUMA setups
workqueue: swap set_cpus_allowed_ptr() and PF_NO_SETAFFINITY
Pull cgroup fixes from Tejun Heo:
"Fixes for three issues.
- cgroup destruction path could swamp system_wq possibly leading to
deadlock. This actually seems to happen in the wild with memcg
because memcg destruction path adds nested dependency on system_wq.
Resolved by isolating cgroup destruction work items on its
dedicated workqueue.
- Possible locking context deadlock through seqcount reported by
lockdep
- Memory leak under certain conditions"
* 'for-3.13-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup:
cgroup: fix cgroup_subsys_state leak for seq_files
cpuset: Fix memory allocator deadlock
cgroup: use a dedicated workqueue for cgroup destruction
The init_kernel_text() and core_kernel_text() functions should not
include the labels _einittext and _etext when checking if an address is
inside the .text or .init sections.
Signed-off-by: Helge Deller <deller@gmx.de>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
If a cgroup file implements either read_map() or read_seq_string(),
such file is served using seq_file by overriding file->f_op to
cgroup_seqfile_operations, which also overrides the release method to
single_release() from cgroup_file_release().
Because cgroup_file_open() didn't use to acquire any resources, this
used to be fine, but since f7d58818ba ("cgroup: pin
cgroup_subsys_state when opening a cgroupfs file"), cgroup_file_open()
pins the css (cgroup_subsys_state) which is put by
cgroup_file_release(). The patch forgot to update the release path
for seq_files and each open/release cycle leaks a css reference.
Fix it by updating cgroup_file_release() to also handle seq_files and
using it for seq_file release path too.
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: stable@vger.kernel.org # v3.12
Juri hit the below lockdep report:
[ 4.303391] ======================================================
[ 4.303392] [ INFO: SOFTIRQ-safe -> SOFTIRQ-unsafe lock order detected ]
[ 4.303394] 3.12.0-dl-peterz+ #144 Not tainted
[ 4.303395] ------------------------------------------------------
[ 4.303397] kworker/u4:3/689 [HC0[0]:SC0[0]:HE0:SE1] is trying to acquire:
[ 4.303399] (&p->mems_allowed_seq){+.+...}, at: [<ffffffff8114e63c>] new_slab+0x6c/0x290
[ 4.303417]
[ 4.303417] and this task is already holding:
[ 4.303418] (&(&q->__queue_lock)->rlock){..-...}, at: [<ffffffff812d2dfb>] blk_execute_rq_nowait+0x5b/0x100
[ 4.303431] which would create a new lock dependency:
[ 4.303432] (&(&q->__queue_lock)->rlock){..-...} -> (&p->mems_allowed_seq){+.+...}
[ 4.303436]
[ 4.303898] the dependencies between the lock to be acquired and SOFTIRQ-irq-unsafe lock:
[ 4.303918] -> (&p->mems_allowed_seq){+.+...} ops: 2762 {
[ 4.303922] HARDIRQ-ON-W at:
[ 4.303923] [<ffffffff8108ab9a>] __lock_acquire+0x65a/0x1ff0
[ 4.303926] [<ffffffff8108cbe3>] lock_acquire+0x93/0x140
[ 4.303929] [<ffffffff81063dd6>] kthreadd+0x86/0x180
[ 4.303931] [<ffffffff816ded6c>] ret_from_fork+0x7c/0xb0
[ 4.303933] SOFTIRQ-ON-W at:
[ 4.303933] [<ffffffff8108abcc>] __lock_acquire+0x68c/0x1ff0
[ 4.303935] [<ffffffff8108cbe3>] lock_acquire+0x93/0x140
[ 4.303940] [<ffffffff81063dd6>] kthreadd+0x86/0x180
[ 4.303955] [<ffffffff816ded6c>] ret_from_fork+0x7c/0xb0
[ 4.303959] INITIAL USE at:
[ 4.303960] [<ffffffff8108a884>] __lock_acquire+0x344/0x1ff0
[ 4.303963] [<ffffffff8108cbe3>] lock_acquire+0x93/0x140
[ 4.303966] [<ffffffff81063dd6>] kthreadd+0x86/0x180
[ 4.303969] [<ffffffff816ded6c>] ret_from_fork+0x7c/0xb0
[ 4.303972] }
Which reports that we take mems_allowed_seq with interrupts enabled. A
little digging found that this can only be from
cpuset_change_task_nodemask().
This is an actual deadlock because an interrupt doing an allocation will
hit get_mems_allowed()->...->__read_seqcount_begin(), which will spin
forever waiting for the write side to complete.
Cc: John Stultz <john.stultz@linaro.org>
Cc: Mel Gorman <mgorman@suse.de>
Reported-by: Juri Lelli <juri.lelli@gmail.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Tested-by: Juri Lelli <juri.lelli@gmail.com>
Acked-by: Li Zefan <lizefan@huawei.com>
Acked-by: Mel Gorman <mgorman@suse.de>
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: stable@vger.kernel.org
Tony reported that aa0d532605 ("ia64: Use preempt_schedule_irq")
broke PREEMPT=n builds on ia64.
Ok, wrapped my brain around it. I tripped over the magic asm foo which
has a single need_resched check and schedule point for both sys call
return and interrupt return.
So you need the schedule_preempt_irq() for kernel preemption from
interrupt return while on a normal syscall preemption a schedule would
be sufficient. But using schedule_preempt_irq() is not harmful here in
any way. It just sets the preempt_active bit also in cases where it
would not be required.
Even on preempt=n kernels adding the preempt_active bit is completely
harmless. So instead of having an extra function, moving the existing
one out of the ifdef PREEMPT looks like the sanest thing to do.
It would also allow getting rid of various other sti/schedule/cli asm
magic in other archs.
Reported-and-Tested-by: Tony Luck <tony.luck@gmail.com>
Fixes: aa0d532605 ("ia64: Use preempt_schedule_irq")
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
[slightly edited Changelog]
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/alpine.DEB.2.02.1311211230030.30673@ionos.tec.linutronix.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
1) is a bug fix that happens when root does the following:
echo function_graph > current_tracer
modprobe foo
echo nop > current_tracer
This causes the ftrace internal accounting to get screwed up and
crashes ftrace, preventing the user from using the function tracer
after that.
2) if a TRACE_EVENT has a string field, and NULL is given for it.
The internal trace event code does a strlen() and strcpy() on the
source of field. If it is NULL it causes the system to oops.
This bug has been there since 2.6.31, but no TRACE_EVENT ever passed
in a NULL to the string field, until now.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1.4.14 (GNU/Linux)
iQEcBAABAgAGBQJSlUw+AAoJEKQekfcNnQGugTYIAJQ7Zfhor2Jrw7XzkcBDpQv9
kqL/NvjLfyA49BLwba0VJCqJA56dEfW7kaSa7Wx0qAHdHKATLDA8G4c9FdHRAmZf
WJ4jDbrcJqc7DA2vEn4aUuczwvTMx0H1KJHPMAu9taEno3YocIzCMxkuNYelwAz2
XUkUGtR7olF85pyVccfZLKnKPtslSwxWoG6WgEqiAap6fIorPlcSXBVYFqLKVTRJ
P2e847eqxMF5ACLmv3dWiEvTPtWY91abN1zpeJYQNjBtQJmzVlvRcXYE6TwPUIFg
RtB9n3SrT+0lEWvcxDbQi+4hKHf+JQLkGaYwWCMJihbdF4sh36olzpUOimKVqsk=
=+9+v
-----END PGP SIGNATURE-----
Merge tag 'trace-fixes-v3.13-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt/linux-trace
Pull tracing fixes from Steven Rostedt:
"This includes two fixes.
1) is a bug fix that happens when root does the following:
echo function_graph > current_tracer
modprobe foo
echo nop > current_tracer
This causes the ftrace internal accounting to get screwed up and
crashes ftrace, preventing the user from using the function tracer
after that.
2) if a TRACE_EVENT has a string field, and NULL is given for it.
The internal trace event code does a strlen() and strcpy() on the
source of field. If it is NULL it causes the system to oops.
This bug has been there since 2.6.31, but no TRACE_EVENT ever passed
in a NULL to the string field, until now"
* tag 'trace-fixes-v3.13-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt/linux-trace:
ftrace: Fix function graph with loading of modules
tracing: Allow events to have NULL strings
Commit 8c4f3c3fa9 "ftrace: Check module functions being traced on reload"
fixed module loading and unloading with respect to function tracing, but
it missed the function graph tracer. If you perform the following
# cd /sys/kernel/debug/tracing
# echo function_graph > current_tracer
# modprobe nfsd
# echo nop > current_tracer
You'll get the following oops message:
------------[ cut here ]------------
WARNING: CPU: 2 PID: 2910 at /linux.git/kernel/trace/ftrace.c:1640 __ftrace_hash_rec_update.part.35+0x168/0x1b9()
Modules linked in: nfsd exportfs nfs_acl lockd ipt_MASQUERADE sunrpc ip6t_REJECT nf_conntrack_ipv6 nf_defrag_ipv6 ip6table_filter ip6_tables uinput snd_hda_codec_idt
CPU: 2 PID: 2910 Comm: bash Not tainted 3.13.0-rc1-test #7
Hardware name: To Be Filled By O.E.M. To Be Filled By O.E.M./To be filled by O.E.M., BIOS SDBLI944.86P 05/08/2007
0000000000000668 ffff8800787efcf8 ffffffff814fe193 ffff88007d500000
0000000000000000 ffff8800787efd38 ffffffff8103b80a 0000000000000668
ffffffff810b2b9a ffffffff81a48370 0000000000000001 ffff880037aea000
Call Trace:
[<ffffffff814fe193>] dump_stack+0x4f/0x7c
[<ffffffff8103b80a>] warn_slowpath_common+0x81/0x9b
[<ffffffff810b2b9a>] ? __ftrace_hash_rec_update.part.35+0x168/0x1b9
[<ffffffff8103b83e>] warn_slowpath_null+0x1a/0x1c
[<ffffffff810b2b9a>] __ftrace_hash_rec_update.part.35+0x168/0x1b9
[<ffffffff81502f89>] ? __mutex_lock_slowpath+0x364/0x364
[<ffffffff810b2cc2>] ftrace_shutdown+0xd7/0x12b
[<ffffffff810b47f0>] unregister_ftrace_graph+0x49/0x78
[<ffffffff810c4b30>] graph_trace_reset+0xe/0x10
[<ffffffff810bf393>] tracing_set_tracer+0xa7/0x26a
[<ffffffff810bf5e1>] tracing_set_trace_write+0x8b/0xbd
[<ffffffff810c501c>] ? ftrace_return_to_handler+0xb2/0xde
[<ffffffff811240a8>] ? __sb_end_write+0x5e/0x5e
[<ffffffff81122aed>] vfs_write+0xab/0xf6
[<ffffffff8150a185>] ftrace_graph_caller+0x85/0x85
[<ffffffff81122dbd>] SyS_write+0x59/0x82
[<ffffffff8150a185>] ftrace_graph_caller+0x85/0x85
[<ffffffff8150a2d2>] system_call_fastpath+0x16/0x1b
---[ end trace 940358030751eafb ]---
The above mentioned commit didn't go far enough. Well, it covered the
function tracer by adding checks in __register_ftrace_function(). The
problem is that the function graph tracer circumvents that (for a slight
efficiency gain when function graph trace is running with a function
tracer. The gain was not worth this).
The problem came with ftrace_startup() which should always be called after
__register_ftrace_function(), if you want this bug to be completely fixed.
Anyway, this solution moves __register_ftrace_function() inside of
ftrace_startup() and removes the need to call them both.
Reported-by: Dave Wysochanski <dwysocha@redhat.com>
Fixes: ed926f9b35 ("ftrace: Use counters to enable functions to trace")
Cc: stable@vger.kernel.org # 3.0+
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
When the system enters suspend, it disables all interrupts in
suspend_device_irqs(), including the interrupts marked EARLY_RESUME.
On the resume side things are different. The EARLY_RESUME interrupts
are reenabled in sys_core_ops->resume and the non EARLY_RESUME
interrupts are reenabled in the normal system resume path.
When suspend_noirq() failed or suspend is aborted for any other
reason, we might omit the resume side call to sys_core_ops->resume()
and therefor the interrupts marked EARLY_RESUME are not reenabled and
stay disabled forever.
To solve this, enable all irqs unconditionally in irq_resume()
regardless whether interrupts marked EARLY_RESUMEhave been already
enabled or not.
This might try to reenable already enabled interrupts in the non
failure case, but the only affected platform is XEN and it has been
confirmed that it does not cause any side effects.
[ tglx: Massaged changelog. ]
Signed-off-by: Laxman Dewangan <ldewangan@nvidia.com>
Acked-by-and-tested-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Acked-by: Heiko Stuebner <heiko@sntech.de>
Reviewed-by: Pavel Machek <pavel@ucw.cz>
Cc: <ian.campbell@citrix.com>
Cc: <rjw@rjwysocki.net>
Cc: <len.brown@intel.com>
Cc: <gregkh@linuxfoundation.org>
Cc: stable@vger.kernel.org
Link: http://lkml.kernel.org/r/1385388587-16442-1-git-send-email-ldewangan@nvidia.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Pull crypto update from Herbert Xu:
- Made x86 ablk_helper generic for ARM
- Phase out chainiv in favour of eseqiv (affects IPsec)
- Fixed aes-cbc IV corruption on s390
- Added constant-time crypto_memneq which replaces memcmp
- Fixed aes-ctr in omap-aes
- Added OMAP3 ROM RNG support
- Add PRNG support for MSM SoC's
- Add and use Job Ring API in caam
- Misc fixes
[ NOTE! This pull request was sent within the merge window, but Herbert
has some questionable email sending setup that makes him public enemy
#1 as far as gmail is concerned. So most of his emails seem to be
trapped by gmail as spam, resulting in me not seeing them. - Linus ]
* git://git.kernel.org/pub/scm/linux/kernel/git/herbert/crypto-2.6: (49 commits)
crypto: s390 - Fix aes-cbc IV corruption
crypto: omap-aes - Fix CTR mode counter length
crypto: omap-sham - Add missing modalias
padata: make the sequence counter an atomic_t
crypto: caam - Modify the interface layers to use JR API's
crypto: caam - Add API's to allocate/free Job Rings
crypto: caam - Add Platform driver for Job Ring
hwrng: msm - Add PRNG support for MSM SoC's
ARM: DT: msm: Add Qualcomm's PRNG driver binding document
crypto: skcipher - Use eseqiv even on UP machines
crypto: talitos - Simplify key parsing
crypto: picoxcell - Simplify and harden key parsing
crypto: ixp4xx - Simplify and harden key parsing
crypto: authencesn - Simplify key parsing
crypto: authenc - Export key parsing helper function
crypto: mv_cesa: remove deprecated IRQF_DISABLED
hwrng: OMAP3 ROM Random Number Generator support
crypto: sha256_ssse3 - also test for BMI2
crypto: mv_cesa - Remove redundant of_match_ptr
crypto: sahara - Remove redundant of_match_ptr
...
When one work starts execution, the high bits of work's data contain
pool ID. It can represent a maximum of WORK_OFFQ_POOL_NONE. Pool ID
is assigned WORK_OFFQ_POOL_NONE when the work being initialized
indicating that no pool is associated and get_work_pool() uses it to
check the associated pool. So if worker_pool_assign_id() assigns a
ID greater than or equal WORK_OFFQ_POOL_NONE to a pool, it triggers
leakage, and it may break the non-reentrance guarantee.
This patch fix this issue by modifying the worker_pool_assign_id()
function calling idr_alloc() by setting @end param WORK_OFFQ_POOL_NONE.
Furthermore, in the current implementation, the BUILD_BUG_ON() in
init_workqueues makes no sense. The number of worker pools needed
cannot be determined at compile time, because the number of backing
pools for UNBOUND workqueues is dynamic based on the assigned custom
attributes. So remove it.
tj: Minor comment and indentation updates.
Signed-off-by: Li Bin <huawei.libin@huawei.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
An ordered workqueue implements execution ordering by using single
pool_workqueue with max_active == 1. On a given pool_workqueue, work
items are processed in FIFO order and limiting max_active to 1
enforces the queued work items to be processed one by one.
Unfortunately, 4c16bd327c ("workqueue: implement NUMA affinity for
unbound workqueues") accidentally broke this guarantee by applying
NUMA affinity to ordered workqueues too. On NUMA setups, an ordered
workqueue would end up with separate pool_workqueues for different
nodes. Each pool_workqueue still limits max_active to 1 but multiple
work items may be executed concurrently and out of order depending on
which node they are queued to.
Fix it by using dedicated ordered_wq_attrs[] when creating ordered
workqueues. The new attrs match the unbound ones except that no_numa
is always set thus forcing all NUMA nodes to share the default
pool_workqueue.
While at it, add sanity check in workqueue creation path which
verifies that an ordered workqueues has only the default
pool_workqueue.
Signed-off-by: Tejun Heo <tj@kernel.org>
Reported-by: Libin <huawei.libin@huawei.com>
Cc: stable@vger.kernel.org
Cc: Lai Jiangshan <laijs@cn.fujitsu.com>
Move the setting of PF_NO_SETAFFINITY up before set_cpus_allowed()
in create_worker(). Otherwise userland can change ->cpus_allowed
in between.
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
Since be44562613 ("cgroup: remove synchronize_rcu() from
cgroup_diput()"), cgroup destruction path makes use of workqueue. css
freeing is performed from a work item from that point on and a later
commit, ea15f8ccdb ("cgroup: split cgroup destruction into two
steps"), moves css offlining to workqueue too.
As cgroup destruction isn't depended upon for memory reclaim, the
destruction work items were put on the system_wq; unfortunately, some
controller may block in the destruction path for considerable duration
while holding cgroup_mutex. As large part of destruction path is
synchronized through cgroup_mutex, when combined with high rate of
cgroup removals, this has potential to fill up system_wq's max_active
of 256.
Also, it turns out that memcg's css destruction path ends up queueing
and waiting for work items on system_wq through work_on_cpu(). If
such operation happens while system_wq is fully occupied by cgroup
destruction work items, work_on_cpu() can't make forward progress
because system_wq is full and other destruction work items on
system_wq can't make forward progress because the work item waiting
for work_on_cpu() is holding cgroup_mutex, leading to deadlock.
This can be fixed by queueing destruction work items on a separate
workqueue. This patch creates a dedicated workqueue -
cgroup_destroy_wq - for this purpose. As these work items shouldn't
have inter-dependencies and mostly serialized by cgroup_mutex anyway,
giving high concurrency level doesn't buy anything and the workqueue's
@max_active is set to 1 so that destruction work items are executed
one by one on each CPU.
Hugh Dickins: Because cgroup_init() is run before init_workqueues(),
cgroup_destroy_wq can't be allocated from cgroup_init(). Do it from a
separate core_initcall(). In the future, we probably want to reorder
so that workqueue init happens before cgroup_init().
Signed-off-by: Tejun Heo <tj@kernel.org>
Reported-by: Hugh Dickins <hughd@google.com>
Reported-by: Shawn Bohrer <shawn.bohrer@gmail.com>
Link: http://lkml.kernel.org/r/20131111220626.GA7509@sbohrermbp13-local.rgmadvisors.com
Link: http://lkml.kernel.org/g/alpine.LNX.2.00.1310301606080.2333@eggly.anvils
Cc: stable@vger.kernel.org # v3.9+
Pull security subsystem updates from James Morris:
"In this patchset, we finally get an SELinux update, with Paul Moore
taking over as maintainer of that code.
Also a significant update for the Keys subsystem, as well as
maintenance updates to Smack, IMA, TPM, and Apparmor"
and since I wanted to know more about the updates to key handling,
here's the explanation from David Howells on that:
"Okay. There are a number of separate bits. I'll go over the big bits
and the odd important other bit, most of the smaller bits are just
fixes and cleanups. If you want the small bits accounting for, I can
do that too.
(1) Keyring capacity expansion.
KEYS: Consolidate the concept of an 'index key' for key access
KEYS: Introduce a search context structure
KEYS: Search for auth-key by name rather than target key ID
Add a generic associative array implementation.
KEYS: Expand the capacity of a keyring
Several of the patches are providing an expansion of the capacity of a
keyring. Currently, the maximum size of a keyring payload is one page.
Subtract a small header and then divide up into pointers, that only gives
you ~500 pointers on an x86_64 box. However, since the NFS idmapper uses
a keyring to store ID mapping data, that has proven to be insufficient to
the cause.
Whatever data structure I use to handle the keyring payload, it can only
store pointers to keys, not the keys themselves because several keyrings
may point to a single key. This precludes inserting, say, and rb_node
struct into the key struct for this purpose.
I could make an rbtree of records such that each record has an rb_node
and a key pointer, but that would use four words of space per key stored
in the keyring. It would, however, be able to use much existing code.
I selected instead a non-rebalancing radix-tree type approach as that
could have a better space-used/key-pointer ratio. I could have used the
radix tree implementation that we already have and insert keys into it by
their serial numbers, but that means any sort of search must iterate over
the whole radix tree. Further, its nodes are a bit on the capacious side
for what I want - especially given that key serial numbers are randomly
allocated, thus leaving a lot of empty space in the tree.
So what I have is an associative array that internally is a radix-tree
with 16 pointers per node where the index key is constructed from the key
type pointer and the key description. This means that an exact lookup by
type+description is very fast as this tells us how to navigate directly to
the target key.
I made the data structure general in lib/assoc_array.c as far as it is
concerned, its index key is just a sequence of bits that leads to a
pointer. It's possible that someone else will be able to make use of it
also. FS-Cache might, for example.
(2) Mark keys as 'trusted' and keyrings as 'trusted only'.
KEYS: verify a certificate is signed by a 'trusted' key
KEYS: Make the system 'trusted' keyring viewable by userspace
KEYS: Add a 'trusted' flag and a 'trusted only' flag
KEYS: Separate the kernel signature checking keyring from module signing
These patches allow keys carrying asymmetric public keys to be marked as
being 'trusted' and allow keyrings to be marked as only permitting the
addition or linkage of trusted keys.
Keys loaded from hardware during kernel boot or compiled into the kernel
during build are marked as being trusted automatically. New keys can be
loaded at runtime with add_key(). They are checked against the system
keyring contents and if their signatures can be validated with keys that
are already marked trusted, then they are marked trusted also and can
thus be added into the master keyring.
Patches from Mimi Zohar make this usable with the IMA keyrings also.
(3) Remove the date checks on the key used to validate a module signature.
X.509: Remove certificate date checks
It's not reasonable to reject a signature just because the key that it was
generated with is no longer valid datewise - especially if the kernel
hasn't yet managed to set the system clock when the first module is
loaded - so just remove those checks.
(4) Make it simpler to deal with additional X.509 being loaded into the kernel.
KEYS: Load *.x509 files into kernel keyring
KEYS: Have make canonicalise the paths of the X.509 certs better to deduplicate
The builder of the kernel now just places files with the extension ".x509"
into the kernel source or build trees and they're concatenated by the
kernel build and stuffed into the appropriate section.
(5) Add support for userspace kerberos to use keyrings.
KEYS: Add per-user_namespace registers for persistent per-UID kerberos caches
KEYS: Implement a big key type that can save to tmpfs
Fedora went to, by default, storing kerberos tickets and tokens in tmpfs.
We looked at storing it in keyrings instead as that confers certain
advantages such as tickets being automatically deleted after a certain
amount of time and the ability for the kernel to get at these tokens more
easily.
To make this work, two things were needed:
(a) A way for the tickets to persist beyond the lifetime of all a user's
sessions so that cron-driven processes can still use them.
The problem is that a user's session keyrings are deleted when the
session that spawned them logs out and the user's user keyring is
deleted when the UID is deleted (typically when the last log out
happens), so neither of these places is suitable.
I've added a system keyring into which a 'persistent' keyring is
created for each UID on request. Each time a user requests their
persistent keyring, the expiry time on it is set anew. If the user
doesn't ask for it for, say, three days, the keyring is automatically
expired and garbage collected using the existing gc. All the kerberos
tokens it held are then also gc'd.
(b) A key type that can hold really big tickets (up to 1MB in size).
The problem is that Active Directory can return huge tickets with lots
of auxiliary data attached. We don't, however, want to eat up huge
tracts of unswappable kernel space for this, so if the ticket is
greater than a certain size, we create a swappable shmem file and dump
the contents in there and just live with the fact we then have an
inode and a dentry overhead. If the ticket is smaller than that, we
slap it in a kmalloc()'d buffer"
* 'for-linus2' of git://git.kernel.org/pub/scm/linux/kernel/git/jmorris/linux-security: (121 commits)
KEYS: Fix keyring content gc scanner
KEYS: Fix error handling in big_key instantiation
KEYS: Fix UID check in keyctl_get_persistent()
KEYS: The RSA public key algorithm needs to select MPILIB
ima: define '_ima' as a builtin 'trusted' keyring
ima: extend the measurement list to include the file signature
kernel/system_certificate.S: use real contents instead of macro GLOBAL()
KEYS: fix error return code in big_key_instantiate()
KEYS: Fix keyring quota misaccounting on key replacement and unlink
KEYS: Fix a race between negating a key and reading the error set
KEYS: Make BIG_KEYS boolean
apparmor: remove the "task" arg from may_change_ptraced_domain()
apparmor: remove parent task info from audit logging
apparmor: remove tsk field from the apparmor_audit_struct
apparmor: fix capability to not use the current task, during reporting
Smack: Ptrace access check mode
ima: provide hash algo info in the xattr
ima: enable support for larger default filedata hash algorithms
ima: define kernel parameter 'ima_template=' to change configured default
ima: add Kconfig default measurement list template
...
Pull audit updates from Eric Paris:
"Nothing amazing. Formatting, small bug fixes, couple of fixes where
we didn't get records due to some old VFS changes, and a change to how
we collect execve info..."
Fixed conflict in fs/exec.c as per Eric and linux-next.
* git://git.infradead.org/users/eparis/audit: (28 commits)
audit: fix type of sessionid in audit_set_loginuid()
audit: call audit_bprm() only once to add AUDIT_EXECVE information
audit: move audit_aux_data_execve contents into audit_context union
audit: remove unused envc member of audit_aux_data_execve
audit: Kill the unused struct audit_aux_data_capset
audit: do not reject all AUDIT_INODE filter types
audit: suppress stock memalloc failure warnings since already managed
audit: log the audit_names record type
audit: add child record before the create to handle case where create fails
audit: use given values in tty_audit enable api
audit: use nlmsg_len() to get message payload length
audit: use memset instead of trying to initialize field by field
audit: fix info leak in AUDIT_GET requests
audit: update AUDIT_INODE filter rule to comparator function
audit: audit feature to set loginuid immutable
audit: audit feature to only allow unsetting the loginuid
audit: allow unsetting the loginuid (with priv)
audit: remove CONFIG_AUDIT_LOGINUID_IMMUTABLE
audit: loginuid functions coding style
selinux: apply selinux checks on new audit message types
...
Pull vfs bits and pieces from Al Viro:
"Assorted bits that got missed in the first pull request + fixes for a
couple of coredump regressions"
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs:
fold try_to_ascend() into the sole remaining caller
dcache.c: get rid of pointless macros
take read_seqbegin_or_lock() and friends to seqlock.h
consolidate simple ->d_delete() instances
gfs2: endianness misannotations
dump_emit(): use __kernel_write(), not vfs_write()
dump_align(): fix the dumb braino
- ACPI-based device hotplug fixes for issues introduced recently and
a fix for an older error code path bug in the ACPI PCI host bridge
driver.
- Fix for recently broken OMAP cpufreq build from Viresh Kumar.
- Fix for a recent hibernation regression related to s2disk.
- Fix for a locking-related regression in the ACPI EC driver from
Puneet Kumar.
- System suspend error code path fix related to runtime PM and
runtime PM documentation update from Ulf Hansson.
- cpufreq's conservative governor fix from Xiaoguang Chen.
- New processor IDs for intel_idle and turbostat and removal of
an obsolete Kconfig option from Len Brown.
- New device IDs for the ACPI LPSS (Low-Power Subsystem) driver and
ACPI-based PCI hotplug (ACPIPHP) cleanup from Mika Westerberg.
- Removal of several ACPI video DMI blacklist entries that are not
necessary any more from Aaron Lu.
- Rework of the ACPI companion representation in struct device and
code cleanup related to that change from Rafael J Wysocki,
Lan Tianyu and Jarkko Nikula.
- Fixes for assigning names to ACPI-enumerated I2C and SPI devices
from Jarkko Nikula.
/
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2.0.19 (GNU/Linux)
iQIcBAABCAAGBQJSjLYNAAoJEILEb/54YlRxkEQP/1pmFWNwSsxLtTHd+PEs0Xbo
QccqvjQrnw/c8GcmK4eZrz6/xyuepmmjy9kfRKj2ENZniy0NEsSFqkTdSO3vYlva
8HKWUj7MV3evhFERXAF6Tu0b4Enx4jOP7VMtmYxJo3qrSnKRUcUzc6DGv/ACsUT1
Nkj0Lhdsg053Z+YzIXrl50w0tCDEMhVmWlMHBtYgr+dMNVnkfPBGkqMblMkKCXT2
w/yHvauZlxQHtI+8bVqTuGgNN0CPzdlpFGiuUF+5mDf6dRX8zlSn56Ia+Wyw1k9X
dQp4jYQOgPRo03rNKqQPDiPxUdc7T0RAHRvDB51Ncweuh5PfZGguQe71p6/LKY2W
i6zblZ0f/vc13hTiMrP+qzKcwZvgPB5DH7SfnHr61JKV7GNFCdYAqoceS5hYMzR9
d2Fd+txgm763IHWewXfDS/G2cU492R5qr4jpmUIACBQKWDZcqmSRDwRj83t56Ltb
jgFBMbg4vZxG7IARhind74xsALxdhsgmFjPmx+0qPWjYxcU8otQZpXbgGNI9iOuW
pxIQv5WPQW0tTmwO4HSuVCOwDPLPz5R0jkev7SvSj3Ek3TeD7He4LmnK055CATiC
puq+6dp1FISPOPJYk+0DI61qN/CB/qNwRp8LU3ctZwudPVhznIE9FFQ3iN1FdBg2
X8VDcT9t7VvVuxSBjgkj
=QMp+
-----END PGP SIGNATURE-----
Merge tag 'pm+acpi-2-3.13-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm
Pull more ACPI and power management updates from Rafael Wysocki:
- ACPI-based device hotplug fixes for issues introduced recently and a
fix for an older error code path bug in the ACPI PCI host bridge
driver
- Fix for recently broken OMAP cpufreq build from Viresh Kumar
- Fix for a recent hibernation regression related to s2disk
- Fix for a locking-related regression in the ACPI EC driver from
Puneet Kumar
- System suspend error code path fix related to runtime PM and runtime
PM documentation update from Ulf Hansson
- cpufreq's conservative governor fix from Xiaoguang Chen
- New processor IDs for intel_idle and turbostat and removal of an
obsolete Kconfig option from Len Brown
- New device IDs for the ACPI LPSS (Low-Power Subsystem) driver and
ACPI-based PCI hotplug (ACPIPHP) cleanup from Mika Westerberg
- Removal of several ACPI video DMI blacklist entries that are not
necessary any more from Aaron Lu
- Rework of the ACPI companion representation in struct device and code
cleanup related to that change from Rafael J Wysocki, Lan Tianyu and
Jarkko Nikula
- Fixes for assigning names to ACPI-enumerated I2C and SPI devices from
Jarkko Nikula
* tag 'pm+acpi-2-3.13-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm: (24 commits)
PCI / hotplug / ACPI: Drop unused acpiphp_debug declaration
ACPI / scan: Set flags.match_driver in acpi_bus_scan_fixed()
ACPI / PCI root: Clear driver_data before failing enumeration
ACPI / hotplug: Fix PCI host bridge hot removal
ACPI / hotplug: Fix acpi_bus_get_device() return value check
cpufreq: governor: Remove fossil comment in the cpufreq_governor_dbs()
ACPI / video: clean up DMI table for initial black screen problem
ACPI / EC: Ensure lock is acquired before accessing ec struct members
PM / Hibernate: Do not crash kernel in free_basic_memory_bitmaps()
ACPI / AC: Remove struct acpi_device pointer from struct acpi_ac
spi: Use stable dev_name for ACPI enumerated SPI slaves
i2c: Use stable dev_name for ACPI enumerated I2C slaves
ACPI: Provide acpi_dev_name accessor for struct acpi_device device name
ACPI / bind: Use (put|get)_device() on ACPI device objects too
ACPI: Eliminate the DEVICE_ACPI_HANDLE() macro
ACPI / driver core: Store an ACPI device pointer in struct acpi_dev_node
cpufreq: OMAP: Fix compilation error 'r & ret undeclared'
PM / Runtime: Fix error path for prepare
PM / Runtime: Update documentation around probe|remove|suspend
cpufreq: conservative: set requested_freq to policy max when it is over policy max
...
Pull networking fixes from David Miller:
"Mostly these are fixes for fallout due to merge window changes, as
well as cures for problems that have been with us for a much longer
period of time"
1) Johannes Berg noticed two major deficiencies in our genetlink
registration. Some genetlink protocols we passing in constant
counts for their ops array rather than something like
ARRAY_SIZE(ops) or similar. Also, some genetlink protocols were
using fixed IDs for their multicast groups.
We have to retain these fixed IDs to keep existing userland tools
working, but reserve them so that other multicast groups used by
other protocols can not possibly conflict.
In dealing with these two problems, we actually now use less state
management for genetlink operations and multicast groups.
2) When configuring interface hardware timestamping, fix several
drivers that simply do not validate that the hwtstamp_config value
is one the driver actually supports. From Ben Hutchings.
3) Invalid memory references in mwifiex driver, from Amitkumar Karwar.
4) In dev_forward_skb(), set the skb->protocol in the right order
relative to skb_scrub_packet(). From Alexei Starovoitov.
5) Bridge erroneously fails to use the proper wrapper functions to make
calls to netdev_ops->ndo_vlan_rx_{add,kill}_vid. Fix from Toshiaki
Makita.
6) When detaching a bridge port, make sure to flush all VLAN IDs to
prevent them from leaking, also from Toshiaki Makita.
7) Put in a compromise for TCP Small Queues so that deep queued devices
that delay TX reclaim non-trivially don't have such a performance
decrease. One particularly problematic area is 802.11 AMPDU in
wireless. From Eric Dumazet.
8) Fix crashes in tcp_fastopen_cache_get(), we can see NULL socket dsts
here. Fix from Eric Dumzaet, reported by Dave Jones.
9) Fix use after free in ipv6 SIT driver, from Willem de Bruijn.
10) When computing mergeable buffer sizes, virtio-net fails to take the
virtio-net header into account. From Michael Dalton.
11) Fix seqlock deadlock in ip4_datagram_connect() wrt. statistic
bumping, this one has been with us for a while. From Eric Dumazet.
12) Fix NULL deref in the new TIPC fragmentation handling, from Erik
Hugne.
13) 6lowpan bit used for traffic classification was wrong, from Jukka
Rissanen.
14) macvlan has the same issue as normal vlans did wrt. propagating LRO
disabling down to the real device, fix it the same way. From Michal
Kubecek.
15) CPSW driver needs to soft reset all slaves during suspend, from
Daniel Mack.
16) Fix small frame pacing in FQ packet scheduler, from Eric Dumazet.
17) The xen-netfront RX buffer refill timer isn't properly scheduled on
partial RX allocation success, from Ma JieYue.
18) When ipv6 ping protocol support was added, the AF_INET6 protocol
initialization cleanup path on failure was borked a little. Fix
from Vlad Yasevich.
19) If a socket disconnects during a read/recvmsg/recvfrom/etc that
blocks we can do the wrong thing with the msg_name we write back to
userspace. From Hannes Frederic Sowa. There is another fix in the
works from Hannes which will prevent future problems of this nature.
20) Fix route leak in VTI tunnel transmit, from Fan Du.
* git://git.kernel.org/pub/scm/linux/kernel/git/davem/net: (106 commits)
genetlink: make multicast groups const, prevent abuse
genetlink: pass family to functions using groups
genetlink: add and use genl_set_err()
genetlink: remove family pointer from genl_multicast_group
genetlink: remove genl_unregister_mc_group()
hsr: don't call genl_unregister_mc_group()
quota/genetlink: use proper genetlink multicast APIs
drop_monitor/genetlink: use proper genetlink multicast APIs
genetlink: only pass array to genl_register_family_with_ops()
tcp: don't update snd_nxt, when a socket is switched from repair mode
atm: idt77252: fix dev refcnt leak
xfrm: Release dst if this dst is improper for vti tunnel
netlink: fix documentation typo in netlink_set_err()
be2net: Delete secondary unicast MAC addresses during be_close
be2net: Fix unconditional enabling of Rx interface options
net, virtio_net: replace the magic value
ping: prevent NULL pointer dereference on write to msg_name
bnx2x: Prevent "timeout waiting for state X"
bnx2x: prevent CFC attention
bnx2x: Prevent panic during DMAE timeout
...
<linux/spinlock.h> has heavy dependencies on other header files.
It triggers circular dependencies in generated headers on IA64, at
least:
CC kernel/bounds.s
In file included from /home/space/kas/git/public/linux/arch/ia64/include/asm/thread_info.h:9:0,
from include/linux/thread_info.h:54,
from include/asm-generic/preempt.h:4,
from arch/ia64/include/generated/asm/preempt.h:1,
from include/linux/preempt.h:18,
from include/linux/spinlock.h:50,
from kernel/bounds.c:14:
/home/space/kas/git/public/linux/arch/ia64/include/asm/asm-offsets.h:1:35: fatal error: generated/asm-offsets.h: No such file or directory
compilation terminated.
Let's replace <linux/spinlock.h> with <linux/spinlock_types.h>, it's
enough to find out size of spinlock_t.
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Reported-and-Tested-by: Tony Luck <tony.luck@intel.com>
Signed-off-by: Tony Luck <tony.luck@intel.com>
As suggested by David Miller, make genl_register_family_with_ops()
a macro and pass only the array, evaluating ARRAY_SIZE() in the
macro, this is a little safer.
The openvswitch has some indirection, assing ops/n_ops directly in
that code. This might ultimately just assign the pointers in the
family initializations, saving the struct genl_family_and_ops and
code (once mcast groups are handled differently.)
Signed-off-by: Johannes Berg <johannes.berg@intel.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Pull irq cleanups from Ingo Molnar:
"This is a multi-arch cleanup series from Thomas Gleixner, which we
kept to near the end of the merge window, to not interfere with
architecture updates.
This series (motivated by the -rt kernel) unifies more aspects of IRQ
handling and generalizes PREEMPT_ACTIVE"
* 'irq-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
preempt: Make PREEMPT_ACTIVE generic
sparc: Use preempt_schedule_irq
ia64: Use preempt_schedule_irq
m32r: Use preempt_schedule_irq
hardirq: Make hardirq bits generic
m68k: Simplify low level interrupt handling code
genirq: Prevent spurious detection for unconditionally polled interrupts
Commit 37dc6b50ce ("sched: Remove unnecessary iteration over sched
domains to update nr_busy_cpus") forgot to clear 'sd_busy' under some
conditions leading to a possible NULL deref in set_cpu_sd_state_idle().
Reported-by: Anton Blanchard <anton@samba.org>
Cc: Preeti U Murthy <preeti@linux.vnet.ibm.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/20131118113701.GF3866@twins.programming.kicks-ass.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>