This check is necessary to avoid race between dequeue and allocation,
which can cause a free hugepage to be dequeued twice and get kernel unstable.
Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Signed-off-by: Wu Fengguang <fengguang.wu@intel.com>
Acked-by: Mel Gorman <mel@csn.ul.ie>
Reviewed-by: Christoph Lameter <cl@linux.com>
Signed-off-by: Andi Kleen <ak@linux.intel.com>
This patch extends page migration code to support hugepage migration.
One of the potential users of this feature is soft offlining which
is triggered by memory corrected errors (added by the next patch.)
Todo:
- there are other users of page migration such as memory policy,
memory hotplug and memocy compaction.
They are not ready for hugepage support for now.
ChangeLog since v4:
- define migrate_huge_pages()
- remove changes on isolation/putback_lru_page()
ChangeLog since v2:
- refactor isolate/putback_lru_page() to handle hugepage
- add comment about race on unmap_and_move_huge_page()
ChangeLog since v1:
- divide migration code path for hugepage
- define routine checking migration swap entry for hugetlb
- replace "goto" with "if/else" in remove_migration_pte()
Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Signed-off-by: Jun'ichi Nomura <j-nomura@ce.jp.nec.com>
Acked-by: Mel Gorman <mel@csn.ul.ie>
Signed-off-by: Andi Kleen <ak@linux.intel.com>
This patch modifies hugepage copy functions to have only destination
and source hugepages as arguments for later use.
The old ones are renamed from copy_{gigantic,huge}_page() to
copy_user_{gigantic,huge}_page().
This naming convention is consistent with that between copy_highpage()
and copy_user_highpage().
ChangeLog since v4:
- add blank line between local declaration and code
- remove unnecessary might_sleep()
ChangeLog since v2:
- change copy_huge_page() from macro to inline dummy function
to avoid compile warning when !CONFIG_HUGETLB_PAGE.
Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Acked-by: Mel Gorman <mel@csn.ul.ie>
Reviewed-by: Christoph Lameter <cl@linux.com>
Signed-off-by: Andi Kleen <ak@linux.intel.com>
We can't use existing hugepage allocation functions to allocate hugepage
for page migration, because page migration can happen asynchronously with
the running processes and page migration users should call the allocation
function with physical addresses (not virtual addresses) as arguments.
ChangeLog since v3:
- unify alloc_buddy_huge_page() and alloc_buddy_huge_page_node()
ChangeLog since v2:
- remove unnecessary get/put_mems_allowed() (thanks to David Rientjes)
ChangeLog since v1:
- add comment on top of alloc_huge_page_no_vma()
Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Acked-by: Mel Gorman <mel@csn.ul.ie>
Signed-off-by: Jun'ichi Nomura <j-nomura@ce.jp.nec.com>
Reviewed-by: Christoph Lameter <cl@linux.com>
Signed-off-by: Andi Kleen <ak@linux.intel.com>
Since the PageHWPoison() check is for avoiding hwpoisoned page remained
in pagecache mapping to the process, it should be done in "found in pagecache"
branch, not in the common path.
Otherwise, metadata corruption occurs if memory failure happens between
alloc_huge_page() and lock_page() because page fault fails with metadata
changes remained (such as refcount, mapcount, etc.)
This patch moves the check to "found in pagecache" branch and fix the problem.
ChangeLog since v2:
- remove retry check in "new allocation" path.
- make description more detailed
- change patch name from "HWPOISON, hugetlb: move PG_HWPoison bit check"
Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Signed-off-by: Jun'ichi Nomura <j-nomura@ce.jp.nec.com>
Acked-by: Mel Gorman <mel@csn.ul.ie>
Reviewed-by: Wu Fengguang <fengguang.wu@intel.com>
Reviewed-by: Christoph Lameter <cl@linux.com>
Signed-off-by: Andi Kleen <ak@linux.intel.com>
The "if (!trylock_page)" block in the avoidcopy path of hugetlb_cow()
looks confusing and is buggy. Originally this trylock_page() was
intended to make sure that old_page is locked even when old_page !=
pagecache_page, because then only pagecache_page is locked.
This patch fixes it by moving page locking into hugetlb_fault().
Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Acked-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Obviously, setting anon_vma for COWed hugepage should be done
by hugepage_add_new_anon_rmap() to scan vmas faster.
This patch fixes it.
Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Acked-by: Andrea Arcangeli <aarcange@redhat.com>
Reviewed-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This patch fixes possible deadlock in hugepage lock_page()
by adding missing unlock_page().
libhugetlbfs test will hit this bug when the next patch in this
patchset ("hugetlb, HWPOISON: move PG_HWPoison bit check") is applied.
Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Signed-off-by: Jun'ichi Nomura <j-nomura@ce.jp.nec.com>
Acked-by: Fengguang Wu <fengguang.wu@intel.com>
Signed-off-by: Andi Kleen <ak@linux.intel.com>
This patch enables hwpoison injection through debug/hwpoison interfaces,
with which we can test memory error handling for free or reserved
hugepages (which cannot be tested by madvise() injector).
[AK: Export PageHuge too for the injection module]
Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Fengguang Wu <fengguang.wu@intel.com>
Signed-off-by: Andi Kleen <ak@linux.intel.com>
This patch enables to block access to hwpoisoned hugepage and
also enables to block unmapping for it.
Dependency:
"HWPOISON, hugetlb: enable error handling path for hugepage"
Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Fengguang Wu <fengguang.wu@intel.com>
Acked-by: Mel Gorman <mel@csn.ul.ie>
Signed-off-by: Andi Kleen <ak@linux.intel.com>
If error hugepage is not in-use, we can fully recovery from error
by dequeuing it from freelist, so return RECOVERY.
Otherwise whether or not we can recovery depends on user processes,
so return DELAYED.
Dependency:
"HWPOISON, hugetlb: enable error handling path for hugepage"
Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Fengguang Wu <fengguang.wu@intel.com>
Signed-off-by: Andi Kleen <ak@linux.intel.com>
This patch adds reverse mapping feature for hugepage by introducing
mapcount for shared/private-mapped hugepage and anon_vma for
private-mapped hugepage.
While hugepage is not currently swappable, reverse mapping can be useful
for memory error handler.
Without this patch, memory error handler cannot identify processes
using the bad hugepage nor unmap it from them. That is:
- for shared hugepage:
we can collect processes using a hugepage through pagecache,
but can not unmap the hugepage because of the lack of mapcount.
- for privately mapped hugepage:
we can neither collect processes nor unmap the hugepage.
This patch solves these problems.
This patch include the bug fix given by commit 23be7468e8, so reverts it.
Dependency:
"hugetlb: move definition of is_vm_hugetlb_page() to hugepage_inline.h"
ChangeLog since May 24.
- create hugetlb_inline.h and move is_vm_hugetlb_index() in it.
- move functions setting up anon_vma for hugepage into mm/rmap.c.
ChangeLog since May 13.
- rebased to 2.6.34
- fix logic error (in case that private mapping and shared mapping coexist)
- move is_vm_hugetlb_page() into include/linux/mm.h to use this function
from linear_page_index()
- define and use linear_hugepage_index() instead of compound_order()
- use page_move_anon_rmap() in hugetlb_cow()
- copy exclusive switch of __set_page_anon_rmap() into hugepage counterpart.
- revert commit 24be7468 completely
Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Larry Woodman <lwoodman@redhat.com>
Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
Acked-by: Fengguang Wu <fengguang.wu@intel.com>
Acked-by: Mel Gorman <mel@csn.ul.ie>
Signed-off-by: Andi Kleen <ak@linux.intel.com>
When a copy-on-write occurs, we take one of two paths in handle_mm_fault:
through handle_pte_fault for normal pages, or through hugetlb_fault for
huge pages.
In the normal page case, we eventually get to do_wp_page and call mmu
notifiers via ptep_clear_flush_notify. There is no callout to the mmmu
notifiers in the huge page case. This patch fixes that.
Signed-off-by: Doug Doan <dougd@cray.com>
Acked-by: Mel Gorman <mel@csn.ul.ie>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Before applying this patch, cpuset updates task->mems_allowed and
mempolicy by setting all new bits in the nodemask first, and clearing all
old unallowed bits later. But in the way, the allocator may find that
there is no node to alloc memory.
The reason is that cpuset rebinds the task's mempolicy, it cleans the
nodes which the allocater can alloc pages on, for example:
(mpol: mempolicy)
task1 task1's mpol task2
alloc page 1
alloc on node0? NO 1
1 change mems from 1 to 0
1 rebind task1's mpol
0-1 set new bits
0 clear disallowed bits
alloc on node1? NO 0
...
can't alloc page
goto oom
This patch fixes this problem by expanding the nodes range first(set newly
allowed bits) and shrink it lazily(clear newly disallowed bits). So we
use a variable to tell the write-side task that read-side task is reading
nodemask, and the write-side task clears newly disallowed nodes after
read-side task ends the current memory allocation.
[akpm@linux-foundation.org: fix spello]
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Nick Piggin <npiggin@suse.de>
Cc: Paul Menage <menage@google.com>
Cc: Lee Schermerhorn <lee.schermerhorn@hp.com>
Cc: Hugh Dickins <hugh.dickins@tiscali.co.uk>
Cc: Ravikiran Thirumalai <kiran@scalex86.org>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Christoph Lameter <cl@linux-foundation.org>
Cc: Andi Kleen <andi@firstfloor.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Ordinarily, application using hugetlbfs will create mappings with
reserves. For shared mappings, these pages are reserved before mmap()
returns success and for private mappings, the caller process is guaranteed
and a child process that cannot get the pages gets killed with sigbus.
An application that uses MAP_NORESERVE gets no reservations and mmap()
will always succeed at the risk the page will not be available at fault
time. This might be used for example on very large sparse mappings where
the developer is confident the necessary huge pages exist to satisfy all
faults even though the whole mapping cannot be backed by huge pages.
Unfortunately, if an allocation does fail, VM_FAULT_OOM is returned to the
fault handler which proceeds to trigger the OOM-killer. This is
unhelpful.
Even without hugetlbfs mounted, a user using mmap() can trivially trigger
the OOM-killer because VM_FAULT_OOM is returned (will provide example
program if desired - it's a whopping 24 lines long). It could be
considered a DOS available to an unprivileged user.
This patch alters hugetlbfs to kill a process that uses MAP_NORESERVE
where huge pages were not available with SIGBUS instead of triggering the
OOM killer.
This change affects hugetlb_cow() as well. I feel there is a failure case
in there, but I didn't create one. It would need a fairly specific target
in terms of the faulting application and the hugepage pool size. The
hugetlb_no_page() path is much easier to hit but both might as well be
closed.
Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Cc: Lee Schermerhorn <lee.schermerhorn@hp.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: <stable@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
If a futex key happens to be located within a huge page mapped
MAP_PRIVATE, get_futex_key() can go into an infinite loop waiting for a
page->mapping that will never exist.
See https://bugzilla.redhat.com/show_bug.cgi?id=552257 for more details
about the problem.
This patch makes page->mapping a poisoned value that includes
PAGE_MAPPING_ANON mapped MAP_PRIVATE. This is enough for futex to
continue but because of PAGE_MAPPING_ANON, the poisoned value is not
dereferenced or used by futex. No other part of the VM should be
dereferencing the page->mapping of a hugetlbfs page as its page cache is
not on the LRU.
This patch fixes the problem with the test case described in the bugzilla.
[akpm@linux-foundation.org: mel cant spel]
Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Acked-by: Darren Hart <darren@dvhart.com>
Cc: <stable@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
percpu.h is included by sched.h and module.h and thus ends up being
included when building most .c files. percpu.h includes slab.h which
in turn includes gfp.h making everything defined by the two files
universally available and complicating inclusion dependencies.
percpu.h -> slab.h dependency is about to be removed. Prepare for
this change by updating users of gfp and slab facilities include those
headers directly instead of assuming availability. As this conversion
needs to touch large number of source files, the following script is
used as the basis of conversion.
http://userweb.kernel.org/~tj/misc/slabh-sweep.py
The script does the followings.
* Scan files for gfp and slab usages and update includes such that
only the necessary includes are there. ie. if only gfp is used,
gfp.h, if slab is used, slab.h.
* When the script inserts a new include, it looks at the include
blocks and try to put the new include such that its order conforms
to its surrounding. It's put in the include block which contains
core kernel includes, in the same order that the rest are ordered -
alphabetical, Christmas tree, rev-Xmas-tree or at the end if there
doesn't seem to be any matching order.
* If the script can't find a place to put a new include (mostly
because the file doesn't have fitting include block), it prints out
an error message indicating which .h file needs to be added to the
file.
The conversion was done in the following steps.
1. The initial automatic conversion of all .c files updated slightly
over 4000 files, deleting around 700 includes and adding ~480 gfp.h
and ~3000 slab.h inclusions. The script emitted errors for ~400
files.
2. Each error was manually checked. Some didn't need the inclusion,
some needed manual addition while adding it to implementation .h or
embedding .c file was more appropriate for others. This step added
inclusions to around 150 files.
3. The script was run again and the output was compared to the edits
from #2 to make sure no file was left behind.
4. Several build tests were done and a couple of problems were fixed.
e.g. lib/decompress_*.c used malloc/free() wrappers around slab
APIs requiring slab.h to be added manually.
5. The script was run on all .h files but without automatically
editing them as sprinkling gfp.h and slab.h inclusions around .h
files could easily lead to inclusion dependency hell. Most gfp.h
inclusion directives were ignored as stuff from gfp.h was usually
wildly available and often used in preprocessor macros. Each
slab.h inclusion directive was examined and added manually as
necessary.
6. percpu.h was updated not to include slab.h.
7. Build test were done on the following configurations and failures
were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my
distributed build env didn't work with gcov compiles) and a few
more options had to be turned off depending on archs to make things
build (like ipr on powerpc/64 which failed due to missing writeq).
* x86 and x86_64 UP and SMP allmodconfig and a custom test config.
* powerpc and powerpc64 SMP allmodconfig
* sparc and sparc64 SMP allmodconfig
* ia64 SMP allmodconfig
* s390 SMP allmodconfig
* alpha SMP allmodconfig
* um on x86_64 SMP allmodconfig
8. percpu.h modifications were reverted so that it could be applied as
a separate patch and serve as bisection point.
Given the fact that I had only a couple of failures from tests on step
6, I'm fairly confident about the coverage of this conversion patch.
If there is a breakage, it's likely to be something in one of the arch
headers which should be easily discoverable easily on most builds of
the specific arch.
Signed-off-by: Tejun Heo <tj@kernel.org>
Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
On VIVT ARM, when we have multiple shared mappings of the same file
in the same MM, we need to ensure that we have coherency across all
copies. We do this via make_coherent() by making the pages
uncacheable.
This used to work fine, until we allowed highmem with highpte - we
now have a page table which is mapped as required, and is not available
for modification via update_mmu_cache().
Ralf Beache suggested getting rid of the PTE value passed to
update_mmu_cache():
On MIPS update_mmu_cache() calls __update_tlb() which walks pagetables
to construct a pointer to the pte again. Passing a pte_t * is much
more elegant. Maybe we might even replace the pte argument with the
pte_t?
Ben Herrenschmidt would also like the pte pointer for PowerPC:
Passing the ptep in there is exactly what I want. I want that
-instead- of the PTE value, because I have issue on some ppc cases,
for I$/D$ coherency, where set_pte_at() may decide to mask out the
_PAGE_EXEC.
So, pass in the mapped page table pointer into update_mmu_cache(), and
remove the PTE value, updating all implementations and call sites to
suit.
Includes a fix from Stephen Rothwell:
sparc: fix fallout from update_mmu_cache API change
Signed-off-by: Stephen Rothwell <sfr@canb.auug.org.au>
Acked-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
hugetlb_sysfs_add_hstate is called by hugetlb_register_node directly
during init and also indirectly via sysfs after init.
This patch removes the __init tag from hugetlb_sysfs_add_hstate.
Signed-off-by: Jeff Mahoney <jeffm@suse.com>
Cc: Lee Schermerhorn <lee.schermerhorn@hp.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
sz is in bytes, MAX_ORDER_NR_PAGES is in pages.
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Acked-by: David Gibson <dwg@au1.ibm.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: David Rientjes <rientjes@google.com>
Cc: Lee Schermerhorn <lee.schermerhorn@hp.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
If a user asks for a hugepage pool resize but specified a large number,
the machine can begin trashing. In response, they might hit ctrl-c but
signals are ignored and the pool resize continues until it fails an
allocation. This can take a considerable amount of time so this patch
aborts a pool resize if a signal is pending.
Suggested by Dave Hansen.
Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Cc: Dave Hansen <dave@linux.vnet.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When the owner of a mapping fails COW because a child process is holding a
reference, the children VMAs are walked and the page is unmapped. The
i_mmap_lock is taken for the unmapping of the page but not the walking of
the prio_tree. In theory, that tree could be changing if the lock is not
held. This patch takes the i_mmap_lock properly for the duration of the
prio_tree walk.
[hugh.dickins@tiscali.co.uk: Spotted the problem in the first place]
Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Acked-by: Hugh Dickins <hugh.dickins@tiscali.co.uk>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
hugetlb_fault() takes the mm->page_table_lock spinlock then calls
hugetlb_cow(). If the alloc_huge_page() in hugetlb_cow() fails due to an
insufficient huge page pool it calls unmap_ref_private() with the
mm->page_table_lock held. unmap_ref_private() then calls
unmap_hugepage_range() which tries to acquire the mm->page_table_lock.
[<ffffffff810928c3>] print_circular_bug_tail+0x80/0x9f
[<ffffffff8109280b>] ? check_noncircular+0xb0/0xe8
[<ffffffff810935e0>] __lock_acquire+0x956/0xc0e
[<ffffffff81093986>] lock_acquire+0xee/0x12e
[<ffffffff8111a7a6>] ? unmap_hugepage_range+0x3e/0x84
[<ffffffff8111a7a6>] ? unmap_hugepage_range+0x3e/0x84
[<ffffffff814c348d>] _spin_lock+0x40/0x89
[<ffffffff8111a7a6>] ? unmap_hugepage_range+0x3e/0x84
[<ffffffff8111afee>] ? alloc_huge_page+0x218/0x318
[<ffffffff8111a7a6>] unmap_hugepage_range+0x3e/0x84
[<ffffffff8111b2d0>] hugetlb_cow+0x1e2/0x3f4
[<ffffffff8111b935>] ? hugetlb_fault+0x453/0x4f6
[<ffffffff8111b962>] hugetlb_fault+0x480/0x4f6
[<ffffffff8111baee>] follow_hugetlb_page+0x116/0x2d9
[<ffffffff814c31a7>] ? _spin_unlock_irq+0x3a/0x5c
[<ffffffff81107b4d>] __get_user_pages+0x2a3/0x427
[<ffffffff81107d0f>] get_user_pages+0x3e/0x54
[<ffffffff81040b8b>] get_user_pages_fast+0x170/0x1b5
[<ffffffff81160352>] dio_get_page+0x64/0x14a
[<ffffffff8116112a>] __blockdev_direct_IO+0x4b7/0xb31
[<ffffffff8115ef91>] blkdev_direct_IO+0x58/0x6e
[<ffffffff8115e0a4>] ? blkdev_get_blocks+0x0/0xb8
[<ffffffff810ed2c5>] generic_file_aio_read+0xdd/0x528
[<ffffffff81219da3>] ? avc_has_perm+0x66/0x8c
[<ffffffff81132842>] do_sync_read+0xf5/0x146
[<ffffffff8107da00>] ? autoremove_wake_function+0x0/0x5a
[<ffffffff81211857>] ? security_file_permission+0x24/0x3a
[<ffffffff81132fd8>] vfs_read+0xb5/0x126
[<ffffffff81133f6b>] ? fget_light+0x5e/0xf8
[<ffffffff81133131>] sys_read+0x54/0x8c
[<ffffffff81011e42>] system_call_fastpath+0x16/0x1b
This can be fixed by dropping the mm->page_table_lock around the call to
unmap_ref_private() if alloc_huge_page() fails, its dropped right below in
the normal path anyway. However, earlier in the that function, it's also
possible to call into the page allocator with the same spinlock held.
What this patch does is drop the spinlock before the page allocator is
potentially entered. The check for page allocation failure can be made
without the page_table_lock as well as the copy of the huge page. Even if
the PTE changed while the spinlock was held, the consequence is that a
huge page is copied unnecessarily. This resolves both the double taking
of the lock and sleeping with the spinlock held.
[mel@csn.ul.ie: Cover also the case where process can sleep with spinlock]
Signed-off-by: Larry Woodman <lwooman@redhat.com>
Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Acked-by: Adam Litke <agl@us.ibm.com>
Cc: Andy Whitcroft <apw@shadowen.org>
Cc: Lee Schermerhorn <lee.schermerhorn@hp.com>
Cc: Hugh Dickins <hugh.dickins@tiscali.co.uk>
Cc: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Objects passed to NODEMASK_ALLOC() are relatively small in size and are
backed by slab caches that are not of large order, traditionally never
greater than PAGE_ALLOC_COSTLY_ORDER.
Thus, using GFP_KERNEL for these allocations on large machines when
CONFIG_NODES_SHIFT > 8 will cause the page allocator to loop endlessly in
the allocation attempt, each time invoking both direct reclaim or the oom
killer.
This is of particular interest when using NODEMASK_ALLOC() from a
mempolicy context (either directly in mm/mempolicy.c or the mempolicy
constrained hugetlb allocations) since the oom killer always kills current
when allocations are constrained by mempolicies. So for all present use
cases in the kernel, current would end up being oom killed when direct
reclaim fails. That would allow the NODEMASK_ALLOC() to succeed but
current would have sacrificed itself upon returning.
This patch adds gfp flags to NODEMASK_ALLOC() to pass to kmalloc() on
CONFIG_NODES_SHIFT > 8; this parameter is a nop on other configurations.
All current use cases either directly from hugetlb code or indirectly via
NODEMASK_SCRATCH() union __GFP_NORETRY to avoid direct reclaim and the oom
killer when the slab allocator needs to allocate additional pages.
The side-effect of this change is that all current use cases of either
NODEMASK_ALLOC() or NODEMASK_SCRATCH() need appropriate -ENOMEM handling
when the allocation fails (never for CONFIG_NODES_SHIFT <= 8). All
current use cases were audited and do have appropriate error handling at
this time.
Signed-off-by: David Rientjes <rientjes@google.com>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Lee Schermerhorn <lee.schermerhorn@hp.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Randy Dunlap <randy.dunlap@oracle.com>
Cc: Nishanth Aravamudan <nacc@us.ibm.com>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Adam Litke <agl@us.ibm.com>
Cc: Andy Whitcroft <apw@canonical.com>
Cc: Eric Whitney <eric.whitney@hp.com>
Cc: Christoph Lameter <cl@linux-foundation.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Register per node hstate sysfs attributes only for nodes with memory.
Global replacement of 'all online nodes" with "all nodes with memory" in
mm/hugetlb.c. Suggested by David Rientjes.
A subsequent patch will handle adding/removing of per node hstate sysfs
attributes when nodes transition to/from memoryless state via memory
hotplug.
NOTE: this patch has not been tested with memoryless nodes.
Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com>
Reviewed-by: Andi Kleen <andi@firstfloor.org>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Randy Dunlap <randy.dunlap@oracle.com>
Cc: Nishanth Aravamudan <nacc@us.ibm.com>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Adam Litke <agl@us.ibm.com>
Cc: Andy Whitcroft <apw@canonical.com>
Cc: Eric Whitney <eric.whitney@hp.com>
Cc: Christoph Lameter <cl@linux-foundation.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This patch derives a "nodes_allowed" node mask from the numa mempolicy of
the task modifying the number of persistent huge pages to control the
allocation, freeing and adjusting of surplus huge pages when the pool page
count is modified via the new sysctl or sysfs attribute
"nr_hugepages_mempolicy". The nodes_allowed mask is derived as follows:
* For "default" [NULL] task mempolicy, a NULL nodemask_t pointer
is produced. This will cause the hugetlb subsystem to use
node_online_map as the "nodes_allowed". This preserves the
behavior before this patch.
* For "preferred" mempolicy, including explicit local allocation,
a nodemask with the single preferred node will be produced.
"local" policy will NOT track any internode migrations of the
task adjusting nr_hugepages.
* For "bind" and "interleave" policy, the mempolicy's nodemask
will be used.
* Other than to inform the construction of the nodes_allowed node
mask, the actual mempolicy mode is ignored. That is, all modes
behave like interleave over the resulting nodes_allowed mask
with no "fallback".
See the updated documentation [next patch] for more information
about the implications of this patch.
Examples:
Starting with:
Node 0 HugePages_Total: 0
Node 1 HugePages_Total: 0
Node 2 HugePages_Total: 0
Node 3 HugePages_Total: 0
Default behavior [with or without this patch] balances persistent
hugepage allocation across nodes [with sufficient contiguous memory]:
sysctl vm.nr_hugepages[_mempolicy]=32
yields:
Node 0 HugePages_Total: 8
Node 1 HugePages_Total: 8
Node 2 HugePages_Total: 8
Node 3 HugePages_Total: 8
Of course, we only have nr_hugepages_mempolicy with the patch,
but with default mempolicy, nr_hugepages_mempolicy behaves the
same as nr_hugepages.
Applying mempolicy--e.g., with numactl [using '-m' a.k.a.
'--membind' because it allows multiple nodes to be specified
and it's easy to type]--we can allocate huge pages on
individual nodes or sets of nodes. So, starting from the
condition above, with 8 huge pages per node, add 8 more to
node 2 using:
numactl -m 2 sysctl vm.nr_hugepages_mempolicy=40
This yields:
Node 0 HugePages_Total: 8
Node 1 HugePages_Total: 8
Node 2 HugePages_Total: 16
Node 3 HugePages_Total: 8
The incremental 8 huge pages were restricted to node 2 by the
specified mempolicy.
Similarly, we can use mempolicy to free persistent huge pages
from specified nodes:
numactl -m 0,1 sysctl vm.nr_hugepages_mempolicy=32
yields:
Node 0 HugePages_Total: 4
Node 1 HugePages_Total: 4
Node 2 HugePages_Total: 16
Node 3 HugePages_Total: 8
The 8 huge pages freed were balanced over nodes 0 and 1.
[rientjes@google.com: accomodate reworked NODEMASK_ALLOC]
Signed-off-by: David Rientjes <rientjes@google.com>
Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com>
Acked-by: Mel Gorman <mel@csn.ul.ie>
Reviewed-by: Andi Kleen <andi@firstfloor.org>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Randy Dunlap <randy.dunlap@oracle.com>
Cc: Nishanth Aravamudan <nacc@us.ibm.com>
Cc: Adam Litke <agl@us.ibm.com>
Cc: Andy Whitcroft <apw@canonical.com>
Cc: Eric Whitney <eric.whitney@hp.com>
Cc: Christoph Lameter <cl@linux-foundation.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
In preparation for constraining huge page allocation and freeing by the
controlling task's numa mempolicy, add a "nodes_allowed" nodemask pointer
to the allocate, free and surplus adjustment functions. For now, pass
NULL to indicate default behavior--i.e., use node_online_map. A
subsqeuent patch will derive a non-default mask from the controlling
task's numa mempolicy.
Note that this method of updating the global hstate nr_hugepages under the
constraint of a nodemask simplifies keeping the global state
consistent--especially the number of persistent and surplus pages relative
to reservations and overcommit limits. There are undoubtedly other ways
to do this, but this works for both interfaces: mempolicy and per node
attributes.
[rientjes@google.com: fix HIGHMEM compile error]
Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com>
Reviewed-by: Mel Gorman <mel@csn.ul.ie>
Acked-by: David Rientjes <rientjes@google.com>
Reviewed-by: Andi Kleen <andi@firstfloor.org>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Randy Dunlap <randy.dunlap@oracle.com>
Cc: Nishanth Aravamudan <nacc@us.ibm.com>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: Adam Litke <agl@us.ibm.com>
Cc: Andy Whitcroft <apw@canonical.com>
Cc: Eric Whitney <eric.whitney@hp.com>
Cc: Christoph Lameter <cl@linux-foundation.org>
Signed-off-by: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Modify the hstate_next_node* functions to allow them to be called to
obtain the "start_nid". Then, whereas prior to this patch we
unconditionally called hstate_next_node_to_{alloc|free}(), whether or not
we successfully allocated/freed a huge page on the node, now we only call
these functions on failure to alloc/free to advance to next allowed node.
Factor out the next_node_allowed() function to handle wrap at end of
node_online_map. In this version, the allowed nodes include all of the
online nodes.
Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com>
Reviewed-by: Mel Gorman <mel@csn.ul.ie>
Acked-by: David Rientjes <rientjes@google.com>
Reviewed-by: Andi Kleen <andi@firstfloor.org>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Randy Dunlap <randy.dunlap@oracle.com>
Cc: Nishanth Aravamudan <nacc@us.ibm.com>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: Adam Litke <agl@us.ibm.com>
Cc: Andy Whitcroft <apw@canonical.com>
Cc: Eric Whitney <eric.whitney@hp.com>
Cc: Christoph Lameter <cl@linux-foundation.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mark struct vm_area_struct::vm_ops as const
* mark vm_ops in AGP code
But leave TTM code alone, something is fishy there with global vm_ops
being used.
Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
It's unused.
It isn't needed -- read or write flag is already passed and sysctl
shouldn't care about the rest.
It _was_ used in two places at arch/frv for some reason.
Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com>
Cc: David Howells <dhowells@redhat.com>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: James Morris <jmorris@namei.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
follow_hugetlb_page() shouldn't be guessing about the coredump case
either: pass the foll_flags down to it, instead of just the write bit.
Remove that obscure huge_zeropage_ok() test. The decision is easy,
though unlike the non-huge case - here vm_ops->fault is always set.
But we know that a fault would serve up zeroes, unless there's
already a hugetlbfs pagecache page to back the range.
(Alternatively, since hugetlb pages aren't swapped out under pressure,
you could save more dump space by arguing that a page not yet faulted
into this process cannot be relevant to the dump; but that would be
more surprising.)
Signed-off-by: Hugh Dickins <hugh.dickins@tiscali.co.uk>
Acked-by: Rik van Riel <riel@redhat.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Nick Piggin <npiggin@suse.de>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Minchan Kim <minchan.kim@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
I noticed that alloc_bootmem_huge_page() will only advance to the next
node on failure to allocate a huge page, potentially filling nodes with
huge-pages. I asked about this on linux-mm and linux-numa, cc'ing the
usual huge page suspects.
Mel Gorman responded:
I strongly suspect that the same node being used until allocation
failure instead of round-robin is an oversight and not deliberate
at all. It appears to be a side-effect of a fix made way back in
commit 63b4613c3f ["hugetlb: fix
hugepage allocation with memoryless nodes"]. Prior to that patch
it looked like allocations would always round-robin even when
allocation was successful.
This patch--factored out of my "hugetlb mempolicy" series--moves the
advance of the hstate next node from which to allocate up before the test
for success of the attempted allocation.
Note that alloc_bootmem_huge_page() is only used for order > MAX_ORDER
huge pages.
I'll post a separate patch for mainline/stable, as the above mentioned
"balance freeing" series renamed the next node to alloc function.
Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com>
Reviewed-by: Mel Gorman <mel@csn.ul.ie>
Reviewed-by: Andy Whitcroft <apw@canonical.com>
Reviewed-by: Andi Kleen <andi@firstfloor.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Use the [modified] free_pool_huge_page() function to return unused
surplus pages. This will help keep huge pages balanced across nodes
between freeing of unused surplus pages and freeing of persistent huge
pages [from set_max_huge_pages] by using the same node id "cursor". It
also eliminates some code duplication.
Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Nishanth Aravamudan <nacc@us.ibm.com>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Adam Litke <agl@us.ibm.com>
Cc: Andy Whitcroft <apw@canonical.com>
Cc: Eric Whitney <eric.whitney@hp.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Free huges pages from nodes in round robin fashion in an attempt to keep
[persistent a.k.a static] hugepages balanced across nodes
New function free_pool_huge_page() is modeled on and performs roughly the
inverse of alloc_fresh_huge_page(). Replaces dequeue_huge_page() which
now has no callers, so this patch removes it.
Helper function hstate_next_node_to_free() uses new hstate member
next_to_free_nid to distribute "frees" across all nodes with huge pages.
Acked-by: David Rientjes <rientjes@google.com>
Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com>
Acked-by: Mel Gorman <mel@csn.ul.ie>
Cc: Nishanth Aravamudan <nacc@us.ibm.com>
Cc: Adam Litke <agl@us.ibm.com>
Cc: Andy Whitcroft <apw@canonical.com>
Cc: Eric Whitney <eric.whitney@hp.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
As reported in Red Hat bz #509671, i_blocks for files on hugetlbfs get
accounting wrong when doing something like:
$ > foo
$ date > foo
date: write error: Invalid argument
$ /usr/bin/stat foo
File: `foo'
Size: 0 Blocks: 18446744073709547520 IO Block: 2097152 regular
...
This is because hugetlb_unreserve_pages() is unconditionally removing
blocks_per_huge_page(h) on each call rather than using the freed amount.
If there were 0 blocks, it goes negative, resulting in the above.
This is a regression from commit a551643895
("hugetlb: modular state for hugetlb page size")
which did:
- inode->i_blocks -= BLOCKS_PER_HUGEPAGE * freed;
+ inode->i_blocks -= blocks_per_huge_page(h);
so just put back the freed multiplier, and it's all happy again.
Signed-off-by: Eric Sandeen <sandeen@redhat.com>
Acked-by: Andi Kleen <andi@firstfloor.org>
Cc: William Lee Irwin III <wli@holomorphy.com>
Cc: <stable@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
handle_mm_fault() is now passing fault flags rather than write_access
down to hugetlb_fault(), so better recognize that in hugetlb_fault(),
and in hugetlb_no_page().
Signed-off-by: Hugh Dickins <hugh.dickins@tiscali.co.uk>
Acked-by: Wu Fengguang <fengguang.wu@intel.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
num_online_nodes() is called in a number of places but most often by the
page allocator when deciding whether the zonelist needs to be filtered
based on cpusets or the zonelist cache. This is actually a heavy function
and touches a number of cache lines.
This patch stores the number of online nodes at boot time and updates the
value when nodes get onlined and offlined. The value is then used in a
number of important paths in place of num_online_nodes().
[rientjes@google.com: do not override definition of node_set_online() with macro]
Signed-off-by: Christoph Lameter <cl@linux-foundation.org>
Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Pekka Enberg <penberg@cs.helsinki.fi>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Nick Piggin <nickpiggin@yahoo.com.au>
Cc: Dave Hansen <dave@linux.vnet.ibm.com>
Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
Signed-off-by: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Callers of alloc_pages_node() can optionally specify -1 as a node to mean
"allocate from the current node". However, a number of the callers in
fast paths know for a fact their node is valid. To avoid a comparison and
branch, this patch adds alloc_pages_exact_node() that only checks the nid
with VM_BUG_ON(). Callers that know their node is valid are then
converted.
Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Reviewed-by: Christoph Lameter <cl@linux-foundation.org>
Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Reviewed-by: Pekka Enberg <penberg@cs.helsinki.fi>
Acked-by: Paul Mundt <lethal@linux-sh.org> [for the SLOB NUMA bits]
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Nick Piggin <nickpiggin@yahoo.com.au>
Cc: Dave Hansen <dave@linux.vnet.ibm.com>
Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Addresses http://bugzilla.kernel.org/show_bug.cgi?id=13302
hugetlbfs reserves huge pages but does not fault them at mmap() time to
ensure that future faults succeed. The reservation behaviour differs
depending on whether the mapping was mapped MAP_SHARED or MAP_PRIVATE.
For MAP_SHARED mappings, hugepages are reserved when mmap() is first
called and are tracked based on information associated with the inode.
Other processes mapping MAP_SHARED use the same reservation. MAP_PRIVATE
track the reservations based on the VMA created as part of the mmap()
operation. Each process mapping MAP_PRIVATE must make its own
reservation.
hugetlbfs currently checks if a VMA is MAP_SHARED with the VM_SHARED flag
and not VM_MAYSHARE. For file-backed mappings, such as hugetlbfs,
VM_SHARED is set only if the mapping is MAP_SHARED and the file was opened
read-write. If a shared memory mapping was mapped shared-read-write for
populating of data and mapped shared-read-only by other processes, then
hugetlbfs would account for the mapping as if it was MAP_PRIVATE. This
causes processes to fail to map the file MAP_SHARED even though it should
succeed as the reservation is there.
This patch alters mm/hugetlb.c and replaces VM_SHARED with VM_MAYSHARE
when the intent of the code was to check whether the VMA was mapped
MAP_SHARED or MAP_PRIVATE.
Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Cc: Hugh Dickins <hugh.dickins@tiscali.co.uk>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: <stable@kernel.org>
Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: <starlight@binnacle.cx>
Cc: Eric B Munson <ebmunson@us.ibm.com>
Cc: Adam Litke <agl@us.ibm.com>
Cc: Andy Whitcroft <apw@canonical.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
chg is unsigned, so it cannot be less than 0.
Also, since region_chg returns long, let vma_needs_reservation() forward
this to alloc_huge_page(). Store it as long as well. all callers cast it
to long anyway.
Signed-off-by: Roel Kluin <roel.kluin@gmail.com>
Cc: Andy Whitcroft <apw@shadowen.org>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Adam Litke <agl@us.ibm.com>
Cc: Johannes Weiner <hannes@saeurebad.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Commit 5a6fe12595 brought hugetlbfs more
in line with the core VM by obeying VM_NORESERVE and not reserving
hugepages for both shared and private mappings when [SHM|MAP]_NORESERVE
are specified. However, it is still taking filesystem quota
unconditionally.
At fault time, if there are no reserves and attempt is made to allocate
the page and account for filesystem quota. If either fail, the fault
fails. The impact is that quota is getting accounted for twice. This
patch partially reverts 5a6fe12595. To
help prevent this mistake happening again, it improves the documentation
of hugetlb_reserve_pages()
Reported-by: Andy Whitcroft <apw@canonical.com>
Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Acked-by: Andy Whitcroft <apw@canonical.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When overcommit is disabled, the core VM accounts for pages used by anonymous
shared, private mappings and special mappings. It keeps track of VMAs that
should be accounted for with VM_ACCOUNT and VMAs that never had a reserve
with VM_NORESERVE.
Overcommit for hugetlbfs is much riskier than overcommit for base pages
due to contiguity requirements. It avoids overcommiting on both shared and
private mappings using reservation counters that are checked and updated
during mmap(). This ensures (within limits) that hugepages exist in the
future when faults occurs or it is too easy to applications to be SIGKILLed.
As hugetlbfs makes its own reservations of a different unit to the base page
size, VM_ACCOUNT should never be set. Even if the units were correct, we would
double account for the usage in the core VM and hugetlbfs. VM_NORESERVE may
be set because an application can request no reserves be made for hugetlbfs
at the risk of getting killed later.
With commit fc8744adc8, VM_NORESERVE and
VM_ACCOUNT are getting unconditionally set for hugetlbfs-backed mappings. This
breaks the accounting for both the core VM and hugetlbfs, can trigger an
OOM storm when hugepage pools are too small lockups and corrupted counters
otherwise are used. This patch brings hugetlbfs more in line with how the
core VM treats VM_NORESERVE but prevents VM_ACCOUNT being set.
Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
At this point we already know that 'addr' is not NULL so get rid of
redundant 'if'. Probably gcc eliminate it by optimization pass.
[akpm@linux-foundation.org: use __weak, too]
Signed-off-by: Cyrill Gorcunov <gorcunov@openvz.org>
Reviewed-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>