Based on <draft-ietf-ipv6-deprecate-rh0-00.txt>.
Signed-off-by: YOSHIFUJI Hideaki <yoshfuji@linux-ipv6.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
This patch makes MIPv6 loadable module named "mip6".
Here is a modprobe.conf(5) example to load it automatically
when user application uses XFRM state for MIPv6:
alias xfrm-type-10-43 mip6
alias xfrm-type-10-60 mip6
Some MIPv6 feature is not included by this modular, however,
it should not be affected to other features like either IPsec
or IPv6 with and without the patch.
We may discuss XFRM, MH (RAW socket) and ancillary data/sockopt
separately for future work.
Loadable features:
* MH receiving check (to send ICMP error back)
* RO header parsing and building (i.e. RH2 and HAO in DSTOPTS)
* XFRM policy/state database handling for RO
These are NOT covered as loadable:
* Home Address flags and its rule on source address selection
* XFRM sub policy (depends on its own kernel option)
* XFRM functions to receive RO as IPv6 extension header
* MH sending/receiving through raw socket if user application
opens it (since raw socket allows to do so)
* RH2 sending as ancillary data
* RH2 operation with setsockopt(2)
Signed-off-by: Masahide NAKAMURA <nakam@linux-ipv6.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
The current IPSEC rule resolution behavior we have does not work for a
lot of people, even though technically it's an improvement from the
-EAGAIN buisness we had before.
Right now we'll block until the key manager resolves the route. That
works for simple cases, but many folks would rather packets get
silently dropped until the key manager resolves the IPSEC rules.
We can't tell these folks to "set the socket non-blocking" because
they don't have control over the non-block setting of things like the
sockets used to resolve DNS deep inside of the resolver libraries in
libc.
With that in mind I coded up the patch below with some help from
Herbert Xu which provides packet-drop behavior during larval state
resolution, controllable via sysctl and off by default.
This lays the framework to either:
1) Make this default at some point or...
2) Move this logic into xfrm{4,6}_policy.c and implement the
ARP-like resolution queue we've all been dreaming of.
The idea would be to queue packets to the policy, then
once the larval state is resolved by the key manager we
re-resolve the route and push the packets out. The
packets would timeout if the rule didn't get resolved
in a certain amount of time.
Signed-off-by: David S. Miller <davem@davemloft.net>
Spring cleaning time...
There seems to be a lot of places in the network code that have
extra bogus semicolons after conditionals. Most commonly is a
bogus semicolon after: switch() { }
Signed-off-by: Stephen Hemminger <shemminger@linux-foundation.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
So that it is also an offset from skb->head, reduces its size from 8 to 4 bytes
on 64bit architectures, allowing us to combine the 4 bytes hole left by the
layer headers conversion, reducing struct sk_buff size to 256 bytes, i.e. 4
64byte cachelines, and since the sk_buff slab cache is SLAB_HWCACHE_ALIGN...
:-)
Many calculations that previously required that skb->{transport,network,
mac}_header be first converted to a pointer now can be done directly, being
meaningful as offsets or pointers.
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
These are a bit more subtle, they are of this type:
- skb->h.raw = payload;
__skb_pull(skb, payload - skb->data);
+ skb_reset_transport_header(skb);
__skb_pull results in:
skb->data = skb->data + payload - skb->data;
skb->data = payload;
So after __skb_pull we have skb->data pointing to payload and we can
just call skb_reset_transport_header(skb), that will do:
skb->h.raw = payload;
The others are similar, allowing us to get rid of some more cases where a
pointer was being attributed to the layer headers.
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
For consistency with all the other skb->h.raw accessors.
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Now the skb->nh union has just one member, .raw, i.e. it is just like the
skb->mac union, strange, no? I'm just leaving it like that till the transport
layer is done with, when we'll rename skb->mac.raw to skb->mac_header (or
->mac_header_offset?), ditto for ->{h,nh}.
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
For the places where we need a pointer to the network header, it is still legal
to touch skb->nh.raw directly if just adding to, subtracting from or setting it
to another layer header.
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Now related to this form:
skb->nh.ipv6h = (struct ipv6hdr *)skb_put(skb, length);
That, as the others, is done when skb->tail is still equal to skb->data, making
the conversion to skb_reset_network_header possible.
Also one more case equivalent to skb->nh.raw = skb->data, of this form:
iph = (struct ipv6hdr *)skb->data;
<SNIP>
skb->nh.ipv6h = iph;
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
After Al Viro (finally) succeeded in removing the sched.h #include in module.h
recently, it makes sense again to remove other superfluous sched.h includes.
There are quite a lot of files which include it but don't actually need
anything defined in there. Presumably these includes were once needed for
macros that used to live in sched.h, but moved to other header files in the
course of cleaning it up.
To ease the pain, this time I did not fiddle with any header files and only
removed #includes from .c-files, which tend to cause less trouble.
Compile tested against 2.6.20-rc2 and 2.6.20-rc2-mm2 (with offsets) on alpha,
arm, i386, ia64, mips, powerpc, and x86_64 with allnoconfig, defconfig,
allmodconfig, and allyesconfig as well as a few randconfigs on x86_64 and all
configs in arch/arm/configs on arm. I also checked that no new warnings were
introduced by the patch (actually, some warnings are removed that were emitted
by unnecessarily included header files).
Signed-off-by: Tim Schmielau <tim@physik3.uni-rostock.de>
Acked-by: Russell King <rmk+kernel@arm.linux.org.uk>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Do this even for non-blocking sockets. This avoids the silly -EAGAIN
that applications can see now, even for non-blocking sockets in some
cases (f.e. connect()).
With help from Venkat Tekkirala.
Signed-off-by: David S. Miller <davem@davemloft.net>
Add socket option and ancillary data interface of routing header type
2. Mobile IPv6 application will use this to send binding
acknowledgement with the header without relation of confirmed route
optimization (binding).
Based on MIPL2 kernel patch.
Signed-off-by: Masahide NAKAMURA <nakam@linux-ipv6.org>
Signed-off-by: YOSHIFUJI Hideaki <yoshfuji@linux-ipv6.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
Based on MIPL2 kernel patch.
Signed-off-by: YOSHIFUJI Hideaki <yoshfuji@linux-ipv6.org>
Signed-off-by: Ville Nuorvala <vnuorval@tcs.hut.fi>
Signed-off-by: David S. Miller <davem@davemloft.net>
This labels the flows that could utilize IPSec xfrms at the points the
flows are defined so that IPSec policy and SAs at the right label can
be used.
The following protos are currently not handled, but they should
continue to be able to use single-labeled IPSec like they currently
do.
ipmr
ip_gre
ipip
igmp
sit
sctp
ip6_tunnel (IPv6 over IPv6 tunnel device)
decnet
Signed-off-by: Venkat Yekkirala <vyekkirala@TrustedCS.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
This patch should add support for -1 as "default" IPv6 traffic class,
as specified in IETF RFC3542 §6.5. Within the kernel, it seems tclass
< 0 is already handled, but setsockopt, getsockopt and recvmsg calls
won't accept it from userland.
Signed-off-by: Remi Denis-Courmont <rdenis@simphalempin.com>
Acked-by: YOSHIFUJI Hideaki <yoshfuji@linux-ipv6.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
net: Use <linux/capability.h> where capable() is used.
Signed-off-by: Randy Dunlap <rdunlap@xenotime.net>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Based on patch from David L Stevens <dlstevens@us.ibm.com>
Signed-off-by: David L Stevens <dlstevens@us.ibm.com>
Signed-off-by: YOSHIFUJI Hideaki <yoshfuji@linux-ipv6.org>
Support several new socket options / ancillary data:
IPV6_RECVPKTINFO, IPV6_PKTINFO,
IPV6_RECVHOPOPTS, IPV6_HOPOPTS,
IPV6_RECVDSTOPTS, IPV6_DSTOPTS, IPV6_RTHDRDSTOPTS,
IPV6_RECVRTHDR, IPV6_RTHDR,
IPV6_RECVHOPOPTS, IPV6_HOPOPTS
Old semantics are preserved as IPV6_2292xxxx so that
we can maintain backward compatibility.
Signed-off-by: YOSHIFUJI Hideaki <yoshfuji@linux-ipv6.org>
Lots of places just needs the states, not even linux/tcp.h, where this
enum was, needs it.
This speeds up development of the refactorings as less sources are
rebuilt when things get moved from net/tcp.h.
Signed-off-by: Arnaldo Carvalho de Melo <acme@ghostprotocols.net>
Signed-off-by: David S. Miller <davem@davemloft.net>
In light of my recent patch to net/ipv4/udp.c that replaced the
spin_lock_irq calls on the receive queue lock with spin_lock_bh,
here is a similar patch for all other occurences of spin_lock_irq
on receive/error queue locks in IPv4 and IPv6.
In these stacks, we know that they can only be entered from user
or softirq context. Therefore it's safe to disable BH only.
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Signed-off-by: David S. Miller <davem@davemloft.net>
Initial git repository build. I'm not bothering with the full history,
even though we have it. We can create a separate "historical" git
archive of that later if we want to, and in the meantime it's about
3.2GB when imported into git - space that would just make the early
git days unnecessarily complicated, when we don't have a lot of good
infrastructure for it.
Let it rip!