Commit Graph

756 Commits

Author SHA1 Message Date
Linus Torvalds
e34bac726d Merge branch 'akpm' (patches from Andrew)
Merge updates from Andrew Morton:

 - various misc bits

 - most of MM (quite a lot of MM material is awaiting the merge of
   linux-next dependencies)

 - kasan

 - printk updates

 - procfs updates

 - MAINTAINERS

 - /lib updates

 - checkpatch updates

* emailed patches from Andrew Morton <akpm@linux-foundation.org>: (123 commits)
  init: reduce rootwait polling interval time to 5ms
  binfmt_elf: use vmalloc() for allocation of vma_filesz
  checkpatch: don't emit unified-diff error for rename-only patches
  checkpatch: don't check c99 types like uint8_t under tools
  checkpatch: avoid multiple line dereferences
  checkpatch: don't check .pl files, improve absolute path commit log test
  scripts/checkpatch.pl: fix spelling
  checkpatch: don't try to get maintained status when --no-tree is given
  lib/ida: document locking requirements a bit better
  lib/rbtree.c: fix typo in comment of ____rb_erase_color
  lib/Kconfig.debug: make CONFIG_STRICT_DEVMEM depend on CONFIG_DEVMEM
  MAINTAINERS: add drm and drm/i915 irc channels
  MAINTAINERS: add "C:" for URI for chat where developers hang out
  MAINTAINERS: add drm and drm/i915 bug filing info
  MAINTAINERS: add "B:" for URI where to file bugs
  get_maintainer: look for arbitrary letter prefixes in sections
  printk: add Kconfig option to set default console loglevel
  printk/sound: handle more message headers
  printk/btrfs: handle more message headers
  printk/kdb: handle more message headers
  ...
2016-12-12 20:50:02 -08:00
Linus Torvalds
e71c3978d6 Merge branch 'smp-hotplug-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull smp hotplug updates from Thomas Gleixner:
 "This is the final round of converting the notifier mess to the state
  machine. The removal of the notifiers and the related infrastructure
  will happen around rc1, as there are conversions outstanding in other
  trees.

  The whole exercise removed about 2000 lines of code in total and in
  course of the conversion several dozen bugs got fixed. The new
  mechanism allows to test almost every hotplug step standalone, so
  usage sites can exercise all transitions extensively.

  There is more room for improvement, like integrating all the
  pointlessly different architecture mechanisms of synchronizing,
  setting cpus online etc into the core code"

* 'smp-hotplug-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (60 commits)
  tracing/rb: Init the CPU mask on allocation
  soc/fsl/qbman: Convert to hotplug state machine
  soc/fsl/qbman: Convert to hotplug state machine
  zram: Convert to hotplug state machine
  KVM/PPC/Book3S HV: Convert to hotplug state machine
  arm64/cpuinfo: Convert to hotplug state machine
  arm64/cpuinfo: Make hotplug notifier symmetric
  mm/compaction: Convert to hotplug state machine
  iommu/vt-d: Convert to hotplug state machine
  mm/zswap: Convert pool to hotplug state machine
  mm/zswap: Convert dst-mem to hotplug state machine
  mm/zsmalloc: Convert to hotplug state machine
  mm/vmstat: Convert to hotplug state machine
  mm/vmstat: Avoid on each online CPU loops
  mm/vmstat: Drop get_online_cpus() from init_cpu_node_state/vmstat_cpu_dead()
  tracing/rb: Convert to hotplug state machine
  oprofile/nmi timer: Convert to hotplug state machine
  net/iucv: Use explicit clean up labels in iucv_init()
  x86/pci/amd-bus: Convert to hotplug state machine
  x86/oprofile/nmi: Convert to hotplug state machine
  ...
2016-12-12 19:25:04 -08:00
Shaohua Li
5f33a0803b mm/vmscan.c: set correct defer count for shrinker
Our system uses significantly more slab memory with memcg enabled with
the latest kernel.  With 3.10 kernel, slab uses 2G memory, while with
4.6 kernel, 6G memory is used.  The shrinker has problem.  Let's see we
have two memcg for one shrinker.  In do_shrink_slab:

1. Check cg1.  nr_deferred = 0, assume total_scan = 700.  batch size
   is 1024, then no memory is freed.  nr_deferred = 700

2. Check cg2.  nr_deferred = 700.  Assume freeable = 20, then
   total_scan = 10 or 40.  Let's assume it's 10.  No memory is freed.
   nr_deferred = 10.

The deferred share of cg1 is lost in this case.  kswapd will free no
memory even run above steps again and again.

The fix makes sure one memcg's deferred share isn't lost.

Link: http://lkml.kernel.org/r/2414be961b5d25892060315fbb56bb19d81d0c07.1476227351.git.shli@fb.com
Signed-off-by: Shaohua Li <shli@fb.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Vladimir Davydov <vdavydov@parallels.com>
Cc: <stable@vger.kernel.org>	[4.0+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-12-12 18:55:07 -08:00
Michal Hocko
bd041733c9 mm, vmscan: add cond_resched() into shrink_node_memcg()
Boris Zhmurov has reported RCU stalls during the kswapd reclaim:

  INFO: rcu_sched detected stalls on CPUs/tasks:
   23-...: (22 ticks this GP) idle=92f/140000000000000/0 softirq=2638404/2638404 fqs=23
   (detected by 4, t=6389 jiffies, g=786259, c=786258, q=42115)
  Task dump for CPU 23:
  kswapd1         R  running task        0   148      2 0x00000008
  Call Trace:
    shrink_node+0xd2/0x2f0
    kswapd+0x2cb/0x6a0
    mem_cgroup_shrink_node+0x160/0x160
    kthread+0xbd/0xe0
    __switch_to+0x1fa/0x5c0
    ret_from_fork+0x1f/0x40
    kthread_create_on_node+0x180/0x180

a closer code inspection has shown that we might indeed miss all the
scheduling points in the reclaim path if no pages can be isolated from
the LRU list.  This is a pathological case but other reports from Donald
Buczek have shown that we might indeed hit such a path:

        clusterd-989   [009] .... 118023.654491: mm_vmscan_direct_reclaim_end: nr_reclaimed=193
         kswapd1-86    [001] dN.. 118023.987475: mm_vmscan_lru_isolate: isolate_mode=0 classzone=0 order=0 nr_requested=32 nr_scanned=4239830 nr_taken=0 file=1
         kswapd1-86    [001] dN.. 118024.320968: mm_vmscan_lru_isolate: isolate_mode=0 classzone=0 order=0 nr_requested=32 nr_scanned=4239844 nr_taken=0 file=1
         kswapd1-86    [001] dN.. 118024.654375: mm_vmscan_lru_isolate: isolate_mode=0 classzone=0 order=0 nr_requested=32 nr_scanned=4239858 nr_taken=0 file=1
         kswapd1-86    [001] dN.. 118024.987036: mm_vmscan_lru_isolate: isolate_mode=0 classzone=0 order=0 nr_requested=32 nr_scanned=4239872 nr_taken=0 file=1
         kswapd1-86    [001] dN.. 118025.319651: mm_vmscan_lru_isolate: isolate_mode=0 classzone=0 order=0 nr_requested=32 nr_scanned=4239886 nr_taken=0 file=1
         kswapd1-86    [001] dN.. 118025.652248: mm_vmscan_lru_isolate: isolate_mode=0 classzone=0 order=0 nr_requested=32 nr_scanned=4239900 nr_taken=0 file=1
         kswapd1-86    [001] dN.. 118025.984870: mm_vmscan_lru_isolate: isolate_mode=0 classzone=0 order=0 nr_requested=32 nr_scanned=4239914 nr_taken=0 file=1
  [...]
         kswapd1-86    [001] dN.. 118084.274403: mm_vmscan_lru_isolate: isolate_mode=0 classzone=0 order=0 nr_requested=32 nr_scanned=4241133 nr_taken=0 file=1

this is minute long snapshot which didn't take a single page from the
LRU.  It is not entirely clear why only 1303 pages have been scanned
during that time (maybe there was a heavy IRQ activity interfering).

In any case it looks like we can really hit long periods without
scheduling on non preemptive kernels so an explicit cond_resched() in
shrink_node_memcg which is independent on the reclaim operation is due.

Link: http://lkml.kernel.org/r/20161202095841.16648-1-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Reported-by: Boris Zhmurov <bb@kernelpanic.ru>
Tested-by: Boris Zhmurov <bb@kernelpanic.ru>
Reported-by: Donald Buczek <buczek@molgen.mpg.de>
Reported-by: "Christopher S. Aker" <caker@theshore.net>
Reported-by: Paul Menzel <pmenzel@molgen.mpg.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-12-02 18:48:03 -08:00
Sebastian Andrzej Siewior
517bbed906 mm/vmscan: Convert to hotplug state machine
Install the callbacks via the state machine.

Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-mm@kvack.org
Cc: rt@linutronix.de
Link: http://lkml.kernel.org/r/20161103145021.28528-8-bigeasy@linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2016-11-09 23:45:27 +01:00
Johannes Weiner
89a2848381 mm: memcontrol: do not recurse in direct reclaim
On 4.0, we saw a stack corruption from a page fault entering direct
memory cgroup reclaim, calling into btrfs_releasepage(), which then
tried to allocate an extent and recursed back into a kmem charge ad
nauseam:

  [...]
  btrfs_releasepage+0x2c/0x30
  try_to_release_page+0x32/0x50
  shrink_page_list+0x6da/0x7a0
  shrink_inactive_list+0x1e5/0x510
  shrink_lruvec+0x605/0x7f0
  shrink_zone+0xee/0x320
  do_try_to_free_pages+0x174/0x440
  try_to_free_mem_cgroup_pages+0xa7/0x130
  try_charge+0x17b/0x830
  memcg_charge_kmem+0x40/0x80
  new_slab+0x2d9/0x5a0
  __slab_alloc+0x2fd/0x44f
  kmem_cache_alloc+0x193/0x1e0
  alloc_extent_state+0x21/0xc0
  __clear_extent_bit+0x2b5/0x400
  try_release_extent_mapping+0x1a3/0x220
  __btrfs_releasepage+0x31/0x70
  btrfs_releasepage+0x2c/0x30
  try_to_release_page+0x32/0x50
  shrink_page_list+0x6da/0x7a0
  shrink_inactive_list+0x1e5/0x510
  shrink_lruvec+0x605/0x7f0
  shrink_zone+0xee/0x320
  do_try_to_free_pages+0x174/0x440
  try_to_free_mem_cgroup_pages+0xa7/0x130
  try_charge+0x17b/0x830
  mem_cgroup_try_charge+0x65/0x1c0
  handle_mm_fault+0x117f/0x1510
  __do_page_fault+0x177/0x420
  do_page_fault+0xc/0x10
  page_fault+0x22/0x30

On later kernels, kmem charging is opt-in rather than opt-out, and that
particular kmem allocation in btrfs_releasepage() is no longer being
charged and won't recurse and overrun the stack anymore.

But it's not impossible for an accounted allocation to happen from the
memcg direct reclaim context, and we needed to reproduce this crash many
times before we even got a useful stack trace out of it.

Like other direct reclaimers, mark tasks in memcg reclaim PF_MEMALLOC to
avoid recursing into any other form of direct reclaim.  Then let
recursive charges from PF_MEMALLOC contexts bypass the cgroup limit.

Link: http://lkml.kernel.org/r/20161025141050.GA13019@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-10-27 18:43:43 -07:00
Aneesh Kumar K.V
c9634cf012 mm: use zonelist name instead of using hardcoded index
Use the existing enums instead of hardcoded index when looking at the
zonelist.  This makes it more readable.  No functionality change by this
patch.

Link: http://lkml.kernel.org/r/1472227078-24852-1-git-send-email-aneesh.kumar@linux.vnet.ibm.com
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Reviewed-by: Anshuman Khandual <khandual@linux.vnet.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-10-07 18:46:28 -07:00
Michal Hocko
bf48438354 mm, vmscan: get rid of throttle_vm_writeout
throttle_vm_writeout() was introduced back in 2005 to fix OOMs caused by
excessive pageout activity during the reclaim.  Too many pages could be
put under writeback therefore LRUs would be full of unreclaimable pages
until the IO completes and in turn the OOM killer could be invoked.

There have been some important changes introduced since then in the
reclaim path though.  Writers are throttled by balance_dirty_pages when
initiating the buffered IO and later during the memory pressure, the
direct reclaim is throttled by wait_iff_congested if the node is
considered congested by dirty pages on LRUs and the underlying bdi is
congested by the queued IO.  The kswapd is throttled as well if it
encounters pages marked for immediate reclaim or under writeback which
signals that that there are too many pages under writeback already.
Finally should_reclaim_retry does congestion_wait if the reclaim cannot
make any progress and there are too many dirty/writeback pages.

Another important aspect is that we do not issue any IO from the direct
reclaim context anymore.  In a heavy parallel load this could queue a
lot of IO which would be very scattered and thus unefficient which would
just make the problem worse.

This three mechanisms should throttle and keep the amount of IO in a
steady state even under heavy IO and memory pressure so yet another
throttling point doesn't really seem helpful.  Quite contrary, Mikulas
Patocka has reported that swap backed by dm-crypt doesn't work properly
because the swapout IO cannot make sufficient progress as the writeout
path depends on dm_crypt worker which has to allocate memory to perform
the encryption.  In order to guarantee a forward progress it relies on
the mempool allocator.  mempool_alloc(), however, prefers to use the
underlying (usually page) allocator before it grabs objects from the
pool.  Such an allocation can dive into the memory reclaim and
consequently to throttle_vm_writeout.  If there are too many dirty or
pages under writeback it will get throttled even though it is in fact a
flusher to clear pending pages.

  kworker/u4:0    D ffff88003df7f438 10488     6      2	0x00000000
  Workqueue: kcryptd kcryptd_crypt [dm_crypt]
  Call Trace:
    schedule+0x3c/0x90
    schedule_timeout+0x1d8/0x360
    io_schedule_timeout+0xa4/0x110
    congestion_wait+0x86/0x1f0
    throttle_vm_writeout+0x44/0xd0
    shrink_zone_memcg+0x613/0x720
    shrink_zone+0xe0/0x300
    do_try_to_free_pages+0x1ad/0x450
    try_to_free_pages+0xef/0x300
    __alloc_pages_nodemask+0x879/0x1210
    alloc_pages_current+0xa1/0x1f0
    new_slab+0x2d7/0x6a0
    ___slab_alloc+0x3fb/0x5c0
    __slab_alloc+0x51/0x90
    kmem_cache_alloc+0x27b/0x310
    mempool_alloc_slab+0x1d/0x30
    mempool_alloc+0x91/0x230
    bio_alloc_bioset+0xbd/0x260
    kcryptd_crypt+0x114/0x3b0 [dm_crypt]

Let's just drop throttle_vm_writeout altogether.  It is not very much
helpful anymore.

I have tried to test a potential writeback IO runaway similar to the one
described in the original patch which has introduced that [1].  Small
virtual machine (512MB RAM, 4 CPUs, 2G of swap space and disk image on a
rather slow NFS in a sync mode on the host) with 8 parallel writers each
writing 1G worth of data.  As soon as the pagecache fills up and the
direct reclaim hits then I start anon memory consumer in a loop
(allocating 300M and exiting after populating it) in the background to
make the memory pressure even stronger as well as to disrupt the steady
state for the IO.  The direct reclaim is throttled because of the
congestion as well as kswapd hitting congestion_wait due to nr_immediate
but throttle_vm_writeout doesn't ever trigger the sleep throughout the
test.  Dirty+writeback are close to nr_dirty_threshold with some
fluctuations caused by the anon consumer.

[1] https://www2.kernel.org/pub/linux/kernel/people/akpm/patches/2.6/2.6.9-rc1/2.6.9-rc1-mm3/broken-out/vm-pageout-throttling.patch
Link: http://lkml.kernel.org/r/1471171473-21418-1-git-send-email-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Reported-by: Mikulas Patocka <mpatocka@redhat.com>
Cc: Marcelo Tosatti <mtosatti@redhat.com>
Cc: NeilBrown <neilb@suse.com>
Cc: Ondrej Kozina <okozina@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-10-07 18:46:27 -07:00
Vlastimil Babka
fdd4c6149a mm, vmscan: make compaction_ready() more accurate and readable
The compaction_ready() is used during direct reclaim for costly order
allocations to skip reclaim for zones where compaction should be
attempted instead.  It's combining the standard compaction_suitable()
check with its own watermark check based on high watermark with extra
gap, and the result is confusing at best.

This patch attempts to better structure and document the checks
involved.  First, compaction_suitable() can determine that the
allocation should either succeed already, or that compaction doesn't
have enough free pages to proceed.  The third possibility is that
compaction has enough free pages, but we still decide to reclaim first -
unless we are already above the high watermark with gap.  This does not
mean that the reclaim will actually reach this watermark during single
attempt, this is rather an over-reclaim protection.  So document the
code as such.  The check for compaction_deferred() is removed
completely, as it in fact had no proper role here.

The result after this patch is mainly a less confusing code.  We also
skip some over-reclaim in cases where the allocation should already
succed.

Link: http://lkml.kernel.org/r/20160810091226.6709-12-vbabka@suse.cz
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Tested-by: Lorenzo Stoakes <lstoakes@gmail.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-10-07 18:46:27 -07:00
Vlastimil Babka
9861a62c33 mm, compaction: create compact_gap wrapper
Compaction uses a watermark gap of (2UL << order) pages at various
places and it's not immediately obvious why.  Abstract it through a
compact_gap() wrapper to create a single place with a thorough
explanation.

[vbabka@suse.cz: clarify the comment of compact_gap()]
 Link: http://lkml.kernel.org/r/7b6aed1f-fdf8-2063-9ff4-bbe4de712d37@suse.cz
Link: http://lkml.kernel.org/r/20160810091226.6709-9-vbabka@suse.cz
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Tested-by: Lorenzo Stoakes <lstoakes@gmail.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-10-07 18:46:27 -07:00
Vlastimil Babka
cf378319d3 mm, compaction: rename COMPACT_PARTIAL to COMPACT_SUCCESS
COMPACT_PARTIAL has historically meant that compaction returned after
doing some work without fully compacting a zone.  It however didn't
distinguish if compaction terminated because it succeeded in creating
the requested high-order page.  This has changed recently and now we
only return COMPACT_PARTIAL when compaction thinks it succeeded, or the
high-order watermark check in compaction_suitable() passes and no
compaction needs to be done.

So at this point we can make the return value clearer by renaming it to
COMPACT_SUCCESS.  The next patch will remove some redundant tests for
success where compaction just returned COMPACT_SUCCESS.

Link: http://lkml.kernel.org/r/20160810091226.6709-4-vbabka@suse.cz
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Tested-by: Lorenzo Stoakes <lstoakes@gmail.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-10-07 18:46:27 -07:00
Hugh Dickins
b385d21f27 mm: delete unnecessary and unsafe init_tlb_ubc()
init_tlb_ubc() looked unnecessary to me: tlb_ubc is statically
initialized with zeroes in the init_task, and copied from parent to
child while it is quiescent in arch_dup_task_struct(); so I went to
delete it.

But inserted temporary debug WARN_ONs in place of init_tlb_ubc() to
check that it was always empty at that point, and found them firing:
because memcg reclaim can recurse into global reclaim (when allocating
biosets for swapout in my case), and arrive back at the init_tlb_ubc()
in shrink_node_memcg().

Resetting tlb_ubc.flush_required at that point is wrong: if the upper
level needs a deferred TLB flush, but the lower level turns out not to,
we miss a TLB flush.  But fortunately, that's the only part of the
protocol that does not nest: with the initialization removed, cpumask
collects bits from upper and lower levels, and flushes TLB when needed.

Fixes: 72b252aed5 ("mm: send one IPI per CPU to TLB flush all entries after unmapping pages")
Signed-off-by: Hugh Dickins <hughd@google.com>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Cc: stable@vger.kernel.org # 4.3+
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-09-24 11:20:01 -07:00
Mel Gorman
6aa303defb mm, vmscan: only allocate and reclaim from zones with pages managed by the buddy allocator
Firmware Assisted Dump (FA_DUMP) on ppc64 reserves substantial amounts
of memory when booting a secondary kernel.  Srikar Dronamraju reported
that multiple nodes may have no memory managed by the buddy allocator
but still return true for populated_zone().

Commit 1d82de618d ("mm, vmscan: make kswapd reclaim in terms of
nodes") was reported to cause kswapd to spin at 100% CPU usage when
fadump was enabled.  The old code happened to deal with the situation of
a populated node with zero free pages by co-incidence but the current
code tries to reclaim populated zones without realising that is
impossible.

We cannot just convert populated_zone() as many existing users really
need to check for present_pages.  This patch introduces a managed_zone()
helper and uses it in the few cases where it is critical that the check
is made for managed pages -- zonelist construction and page reclaim.

Link: http://lkml.kernel.org/r/20160831195104.GB8119@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Reported-by: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Tested-by: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-09-01 17:52:01 -07:00
Vladimir Davydov
b5afba2974 mm: vmscan: fix memcg-aware shrinkers not called on global reclaim
We must call shrink_slab() for each memory cgroup on both global and
memcg reclaim in shrink_node_memcg().  Commit d71df22b55099 accidentally
changed that so that now shrink_slab() is only called with memcg != NULL
on memcg reclaim.  As a result, memcg-aware shrinkers (including
dentry/inode) are never invoked on global reclaim.  Fix that.

Fixes: b2e18757f2 ("mm, vmscan: begin reclaiming pages on a per-node basis")
Link: http://lkml.kernel.org/r/1470056590-7177-1-git-send-email-vdavydov@virtuozzo.com
Signed-off-by: Vladimir Davydov <vdavydov@virtuozzo.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Rik van Riel <riel@surriel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-08-02 17:31:41 -04:00
Minchan Kim
91dcade47a mm: bail out in shrink_inactive_list()
With node-lru, if there are enough reclaimable pages in highmem but
nothing in lowmem, VM can try to shrink inactive list although the
requested zone is lowmem.

The problem is that if the inactive list is full of highmem pages then a
direct reclaimer searching for a lowmem page waste CPU scanning
uselessly.  It just burns out CPU.  Even, many direct reclaimers are
stalled by too_many_isolated if lots of parallel reclaimer are going on
although there are no reclaimable memory in inactive list.

I tried the experiment 4 times in 32bit 2G 8 CPU KVM machine to get
elapsed time.

	hackbench 500 process 2

 = Old =

  1st: 289s 2nd: 310s 3rd: 112s 4th: 272s

 = Now =

  1st: 31s  2nd: 132s 3rd: 162s 4th: 50s.

[akpm@linux-foundation.org: fixes per Mel]
Link: http://lkml.kernel.org/r/1469433119-1543-1-git-send-email-minchan@kernel.org
Signed-off-by: Minchan Kim <minchan@kernel.org>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-28 16:07:41 -07:00
Mel Gorman
d7f05528ee mm, vmscan: account for skipped pages as a partial scan
Page reclaim determines whether a pgdat is unreclaimable by examining
how many pages have been scanned since a page was freed and comparing
that to the LRU sizes.  Skipped pages are not reclaim candidates but
contribute to scanned.  This can prematurely mark a pgdat as
unreclaimable and trigger an OOM kill.

This patch accounts for skipped pages as a partial scan so that an
unreclaimable pgdat will still be marked as such but by scaling the cost
of a skip, it'll avoid the pgdat being marked prematurely.

Link: http://lkml.kernel.org/r/1469110261-7365-6-git-send-email-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-28 16:07:41 -07:00
Mel Gorman
f8d1a31163 mm: consider whether to decivate based on eligible zones inactive ratio
Minchan Kim reported that with per-zone lru state it was possible to
identify that a normal zone with 8^M anonymous pages could trigger OOM
with non-atomic order-0 allocations as all pages in the zone were in the
active list.

   gfp_mask=0x26004c0(GFP_KERNEL|__GFP_REPEAT|__GFP_NOTRACK), order=0
   Call Trace:
     __alloc_pages_nodemask+0xe52/0xe60
     ? new_slab+0x39c/0x3b0
     new_slab+0x39c/0x3b0
     ___slab_alloc.constprop.87+0x6da/0x840
     ? __alloc_skb+0x3c/0x260
     ? enqueue_task_fair+0x73/0xbf0
     ? poll_select_copy_remaining+0x140/0x140
     __slab_alloc.isra.81.constprop.86+0x40/0x6d
     ? __alloc_skb+0x3c/0x260
     kmem_cache_alloc+0x22c/0x260
     ? __alloc_skb+0x3c/0x260
     __alloc_skb+0x3c/0x260
     alloc_skb_with_frags+0x4e/0x1a0
     sock_alloc_send_pskb+0x16a/0x1b0
     ? wait_for_unix_gc+0x31/0x90
     unix_stream_sendmsg+0x28d/0x340
     sock_sendmsg+0x2d/0x40
     sock_write_iter+0x6c/0xc0
     __vfs_write+0xc0/0x120
     vfs_write+0x9b/0x1a0
     ? __might_fault+0x49/0xa0
     SyS_write+0x44/0x90
     do_fast_syscall_32+0xa6/0x1e0

   Mem-Info:
   active_anon:101103 inactive_anon:102219 isolated_anon:0
    active_file:503 inactive_file:544 isolated_file:0
    unevictable:0 dirty:0 writeback:34 unstable:0
    slab_reclaimable:6298 slab_unreclaimable:74669
    mapped:863 shmem:0 pagetables:100998 bounce:0
    free:23573 free_pcp:1861 free_cma:0
   Node 0 active_anon:404412kB inactive_anon:409040kB active_file:2012kB inactive_file:2176kB unevictable:0kB isolated(anon):0kB isolated(file):0kB mapped:3452kB dirty:0kB writeback:136kB shmem:0kB writeback_tmp:0kB unstable:0kB pages_scanned:1320845 all_unreclaimable? yes
   DMA free:3296kB min:68kB low:84kB high:100kB active_anon:5540kB inactive_anon:0kB active_file:0kB inactive_file:0kB present:15992kB managed:15916kB mlocked:0kB slab_reclaimable:248kB slab_unreclaimable:2628kB kernel_stack:792kB pagetables:2316kB bounce:0kB free_pcp:0kB local_pcp:0kB free_cma:0kB
   lowmem_reserve[]: 0 809 1965 1965
   Normal free:3600kB min:3604kB low:4504kB high:5404kB active_anon:86304kB inactive_anon:0kB active_file:160kB inactive_file:376kB present:897016kB managed:858524kB mlocked:0kB slab_reclaimable:24944kB slab_unreclaimable:296048kB kernel_stack:163832kB pagetables:35892kB bounce:0kB free_pcp:3076kB local_pcp:656kB free_cma:0kB
   lowmem_reserve[]: 0 0 9247 9247
   HighMem free:86156kB min:512kB low:1796kB high:3080kB active_anon:312852kB inactive_anon:410024kB active_file:1924kB inactive_file:2012kB present:1183736kB managed:1183736kB mlocked:0kB slab_reclaimable:0kB slab_unreclaimable:0kB kernel_stack:0kB pagetables:365784kB bounce:0kB free_pcp:3868kB local_pcp:720kB free_cma:0kB
   lowmem_reserve[]: 0 0 0 0
   DMA: 8*4kB (UM) 8*8kB (UM) 4*16kB (M) 2*32kB (UM) 2*64kB (UM) 1*128kB (M) 3*256kB (UME) 2*512kB (UE) 1*1024kB (E) 0*2048kB 0*4096kB = 3296kB
   Normal: 240*4kB (UME) 160*8kB (UME) 23*16kB (ME) 3*32kB (UE) 3*64kB (UME) 2*128kB (ME) 1*256kB (U) 0*512kB 0*1024kB 0*2048kB 0*4096kB = 3408kB
   HighMem: 10942*4kB (UM) 3102*8kB (UM) 866*16kB (UM) 76*32kB (UM) 11*64kB (UM) 4*128kB (UM) 1*256kB (M) 0*512kB 0*1024kB 0*2048kB 0*4096kB = 86344kB
   Node 0 hugepages_total=0 hugepages_free=0 hugepages_surp=0 hugepages_size=2048kB
   54409 total pagecache pages
   53215 pages in swap cache
   Swap cache stats: add 300982, delete 247765, find 157978/226539
   Free swap  = 3803244kB
   Total swap = 4192252kB
   524186 pages RAM
   295934 pages HighMem/MovableOnly
   9642 pages reserved
   0 pages cma reserved

The problem is due to the active deactivation logic in
inactive_list_is_low:

	Node 0 active_anon:404412kB inactive_anon:409040kB

IOW, (inactive_anon of node * inactive_ratio > active_anon of node) due
to highmem anonymous stat so VM never deactivates normal zone's
anonymous pages.

This patch is a modified version of Minchan's original solution but
based upon it.  The problem with Minchan's patch is that any low zone
with an imbalanced list could force a rotation.

In this patch, a zone-constrained global reclaim will rotate the list if
the inactive/active ratio of all eligible zones needs to be corrected.
It is possible that higher zone pages will be initially rotated
prematurely but this is the safer choice to maintain overall LRU age.

Link: http://lkml.kernel.org/r/20160722090929.GJ10438@techsingularity.net
Signed-off-by: Minchan Kim <minchan@kernel.org>
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-28 16:07:41 -07:00
Mel Gorman
5a1c84b404 mm: remove reclaim and compaction retry approximations
If per-zone LRU accounting is available then there is no point
approximating whether reclaim and compaction should retry based on pgdat
statistics.  This is effectively a revert of "mm, vmstat: remove zone
and node double accounting by approximating retries" with the difference
that inactive/active stats are still available.  This preserves the
history of why the approximation was retried and why it had to be
reverted to handle OOM kills on 32-bit systems.

Link: http://lkml.kernel.org/r/1469110261-7365-4-git-send-email-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Minchan Kim <minchan@kernel.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-28 16:07:41 -07:00
Minchan Kim
71c799f498 mm: add per-zone lru list stat
When I did stress test with hackbench, I got OOM message frequently
which didn't ever happen in zone-lru.

  gfp_mask=0x26004c0(GFP_KERNEL|__GFP_REPEAT|__GFP_NOTRACK), order=0
  ..
  ..
   __alloc_pages_nodemask+0xe52/0xe60
   ? new_slab+0x39c/0x3b0
   new_slab+0x39c/0x3b0
   ___slab_alloc.constprop.87+0x6da/0x840
   ? __alloc_skb+0x3c/0x260
   ? _raw_spin_unlock_irq+0x27/0x60
   ? trace_hardirqs_on_caller+0xec/0x1b0
   ? finish_task_switch+0xa6/0x220
   ? poll_select_copy_remaining+0x140/0x140
   __slab_alloc.isra.81.constprop.86+0x40/0x6d
   ? __alloc_skb+0x3c/0x260
   kmem_cache_alloc+0x22c/0x260
   ? __alloc_skb+0x3c/0x260
   __alloc_skb+0x3c/0x260
   alloc_skb_with_frags+0x4e/0x1a0
   sock_alloc_send_pskb+0x16a/0x1b0
   ? wait_for_unix_gc+0x31/0x90
   ? alloc_set_pte+0x2ad/0x310
   unix_stream_sendmsg+0x28d/0x340
   sock_sendmsg+0x2d/0x40
   sock_write_iter+0x6c/0xc0
   __vfs_write+0xc0/0x120
   vfs_write+0x9b/0x1a0
   ? __might_fault+0x49/0xa0
   SyS_write+0x44/0x90
   do_fast_syscall_32+0xa6/0x1e0
   sysenter_past_esp+0x45/0x74

  Mem-Info:
  active_anon:104698 inactive_anon:105791 isolated_anon:192
   active_file:433 inactive_file:283 isolated_file:22
   unevictable:0 dirty:0 writeback:296 unstable:0
   slab_reclaimable:6389 slab_unreclaimable:78927
   mapped:474 shmem:0 pagetables:101426 bounce:0
   free:10518 free_pcp:334 free_cma:0
  Node 0 active_anon:418792kB inactive_anon:423164kB active_file:1732kB inactive_file:1132kB unevictable:0kB isolated(anon):768kB isolated(file):88kB mapped:1896kB dirty:0kB writeback:1184kB shmem:0kB writeback_tmp:0kB unstable:0kB pages_scanned:1478632 all_unreclaimable? yes
  DMA free:3304kB min:68kB low:84kB high:100kB present:15992kB managed:15916kB mlocked:0kB slab_reclaimable:0kB slab_unreclaimable:4088kB kernel_stack:0kB pagetables:2480kB bounce:0kB free_pcp:0kB local_pcp:0kB free_cma:0kB
  lowmem_reserve[]: 0 809 1965 1965
  Normal free:3436kB min:3604kB low:4504kB high:5404kB present:897016kB managed:858460kB mlocked:0kB slab_reclaimable:25556kB slab_unreclaimable:311712kB kernel_stack:164608kB pagetables:30844kB bounce:0kB free_pcp:620kB local_pcp:104kB free_cma:0kB
  lowmem_reserve[]: 0 0 9247 9247
  HighMem free:33808kB min:512kB low:1796kB high:3080kB present:1183736kB managed:1183736kB mlocked:0kB slab_reclaimable:0kB slab_unreclaimable:0kB kernel_stack:0kB pagetables:372252kB bounce:0kB free_pcp:428kB local_pcp:72kB free_cma:0kB
  lowmem_reserve[]: 0 0 0 0
  DMA: 2*4kB (UM) 2*8kB (UM) 0*16kB 1*32kB (U) 1*64kB (U) 2*128kB (UM) 1*256kB (U) 1*512kB (M) 0*1024kB 1*2048kB (U) 0*4096kB = 3192kB
  Normal: 33*4kB (MH) 79*8kB (ME) 11*16kB (M) 4*32kB (M) 2*64kB (ME) 2*128kB (EH) 7*256kB (EH) 0*512kB 0*1024kB 0*2048kB 0*4096kB = 3244kB
  HighMem: 2590*4kB (UM) 1568*8kB (UM) 491*16kB (UM) 60*32kB (UM) 6*64kB (M) 0*128kB 0*256kB 0*512kB 0*1024kB 0*2048kB 0*4096kB = 33064kB
  Node 0 hugepages_total=0 hugepages_free=0 hugepages_surp=0 hugepages_size=2048kB
  25121 total pagecache pages
  24160 pages in swap cache
  Swap cache stats: add 86371, delete 62211, find 42865/60187
  Free swap  = 4015560kB
  Total swap = 4192252kB
  524186 pages RAM
  295934 pages HighMem/MovableOnly
  9658 pages reserved
  0 pages cma reserved

The order-0 allocation for normal zone failed while there are a lot of
reclaimable memory(i.e., anonymous memory with free swap).  I wanted to
analyze the problem but it was hard because we removed per-zone lru stat
so I couldn't know how many of anonymous memory there are in normal/dma
zone.

When we investigate OOM problem, reclaimable memory count is crucial
stat to find a problem.  Without it, it's hard to parse the OOM message
so I believe we should keep it.

With per-zone lru stat,

  gfp_mask=0x26004c0(GFP_KERNEL|__GFP_REPEAT|__GFP_NOTRACK), order=0
  Mem-Info:
  active_anon:101103 inactive_anon:102219 isolated_anon:0
   active_file:503 inactive_file:544 isolated_file:0
   unevictable:0 dirty:0 writeback:34 unstable:0
   slab_reclaimable:6298 slab_unreclaimable:74669
   mapped:863 shmem:0 pagetables:100998 bounce:0
   free:23573 free_pcp:1861 free_cma:0
  Node 0 active_anon:404412kB inactive_anon:409040kB active_file:2012kB inactive_file:2176kB unevictable:0kB isolated(anon):0kB isolated(file):0kB mapped:3452kB dirty:0kB writeback:136kB shmem:0kB writeback_tmp:0kB unstable:0kB pages_scanned:1320845 all_unreclaimable? yes
  DMA free:3296kB min:68kB low:84kB high:100kB active_anon:5540kB inactive_anon:0kB active_file:0kB inactive_file:0kB present:15992kB managed:15916kB mlocked:0kB slab_reclaimable:248kB slab_unreclaimable:2628kB kernel_stack:792kB pagetables:2316kB bounce:0kB free_pcp:0kB local_pcp:0kB free_cma:0kB
  lowmem_reserve[]: 0 809 1965 1965
  Normal free:3600kB min:3604kB low:4504kB high:5404kB active_anon:86304kB inactive_anon:0kB active_file:160kB inactive_file:376kB present:897016kB managed:858524kB mlocked:0kB slab_reclaimable:24944kB slab_unreclaimable:296048kB kernel_stack:163832kB pagetables:35892kB bounce:0kB free_pcp:3076kB local_pcp:656kB free_cma:0kB
  lowmem_reserve[]: 0 0 9247 9247
  HighMem free:86156kB min:512kB low:1796kB high:3080kB active_anon:312852kB inactive_anon:410024kB active_file:1924kB inactive_file:2012kB present:1183736kB managed:1183736kB mlocked:0kB slab_reclaimable:0kB slab_unreclaimable:0kB kernel_stack:0kB pagetables:365784kB bounce:0kB free_pcp:3868kB local_pcp:720kB free_cma:0kB
  lowmem_reserve[]: 0 0 0 0
  DMA: 8*4kB (UM) 8*8kB (UM) 4*16kB (M) 2*32kB (UM) 2*64kB (UM) 1*128kB (M) 3*256kB (UME) 2*512kB (UE) 1*1024kB (E) 0*2048kB 0*4096kB = 3296kB
  Normal: 240*4kB (UME) 160*8kB (UME) 23*16kB (ME) 3*32kB (UE) 3*64kB (UME) 2*128kB (ME) 1*256kB (U) 0*512kB 0*1024kB 0*2048kB 0*4096kB = 3408kB
  HighMem: 10942*4kB (UM) 3102*8kB (UM) 866*16kB (UM) 76*32kB (UM) 11*64kB (UM) 4*128kB (UM) 1*256kB (M) 0*512kB 0*1024kB 0*2048kB 0*4096kB = 86344kB
  Node 0 hugepages_total=0 hugepages_free=0 hugepages_surp=0 hugepages_size=2048kB
  54409 total pagecache pages
  53215 pages in swap cache
  Swap cache stats: add 300982, delete 247765, find 157978/226539
  Free swap  = 3803244kB
  Total swap = 4192252kB
  524186 pages RAM
  295934 pages HighMem/MovableOnly
  9642 pages reserved
  0 pages cma reserved

With that, we can see normal zone has a 86M reclaimable memory so we can
know something goes wrong(I will fix the problem in next patch) in
reclaim.

[mgorman@techsingularity.net: rename zone LRU stats in /proc/vmstat]
 Link: http://lkml.kernel.org/r/20160725072300.GK10438@techsingularity.net
Link: http://lkml.kernel.org/r/1469110261-7365-2-git-send-email-mgorman@techsingularity.net
Signed-off-by: Minchan Kim <minchan@kernel.org>
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-28 16:07:41 -07:00
Mel Gorman
785b99febb mm, vmscan: release/reacquire lru_lock on pgdat change
With node-lru, the locking is based on the pgdat.  As Minchan pointed
out, there is an opportunity to reduce LRU lock release/acquire in
check_move_unevictable_pages by only changing lock on a pgdat change.

[mgorman@techsingularity.net: remove double initialisation]
  Link: http://lkml.kernel.org/r/20160719074835.GC10438@techsingularity.net
Link: http://lkml.kernel.org/r/1468853426-12858-3-git-send-email-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-28 16:07:41 -07:00
Mel Gorman
22fecdf5e1 mm, vmscan: remove redundant check in shrink_zones()
As pointed out by Minchan Kim, shrink_zones() checks for populated zones
in a zonelist but a zonelist can never contain unpopulated zones.  While
it's not related to the node-lru series, it can be cleaned up now.

Link: http://lkml.kernel.org/r/1468853426-12858-2-git-send-email-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Suggested-by: Minchan Kim <minchan@kernel.org>
Acked-by: Minchan Kim <minchan@kernel.org>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-28 16:07:41 -07:00
Mel Gorman
7ee36a14f0 mm, vmscan: Update all zone LRU sizes before updating memcg
Minchan Kim reported setting the following warning on a 32-bit system
although it can affect 64-bit systems.

  WARNING: CPU: 4 PID: 1322 at mm/memcontrol.c:998 mem_cgroup_update_lru_size+0x103/0x110
  mem_cgroup_update_lru_size(f44b4000, 1, -7): zid 1 lru_size 1 but empty
  Modules linked in:
  CPU: 4 PID: 1322 Comm: cp Not tainted 4.7.0-rc4-mm1+ #143
  Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS Bochs 01/01/2011
  Call Trace:
    dump_stack+0x76/0xaf
    __warn+0xea/0x110
    ? mem_cgroup_update_lru_size+0x103/0x110
    warn_slowpath_fmt+0x3b/0x40
    mem_cgroup_update_lru_size+0x103/0x110
    isolate_lru_pages.isra.61+0x2e2/0x360
    shrink_active_list+0xac/0x2a0
    ? __delay+0xe/0x10
    shrink_node_memcg+0x53c/0x7a0
    shrink_node+0xab/0x2a0
    do_try_to_free_pages+0xc6/0x390
    try_to_free_pages+0x245/0x590

LRU list contents and counts are updated separately.  Counts are updated
before pages are added to the LRU and updated after pages are removed.
The warning above is from a check in mem_cgroup_update_lru_size that
ensures that list sizes of zero are empty.

The problem is that node-lru needs to account for highmem pages if
CONFIG_HIGHMEM is set.  One impact of the implementation is that the
sizes are updated in multiple passes when pages from multiple zones were
isolated.  This happens whether HIGHMEM is set or not.  When multiple
zones are isolated, it's possible for a debugging check in memcg to be
tripped.

This patch forces all the zone counts to be updated before the memcg
function is called.

Link: http://lkml.kernel.org/r/1468588165-12461-6-git-send-email-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Tested-by: Minchan Kim <minchan@kernel.org>
Reported-by: Minchan Kim <minchan@kernel.org>
Acked-by: Minchan Kim <minchan@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-28 16:07:41 -07:00
Mel Gorman
bca6759258 mm, vmstat: remove zone and node double accounting by approximating retries
The number of LRU pages, dirty pages and writeback pages must be
accounted for on both zones and nodes because of the reclaim retry
logic, compaction retry logic and highmem calculations all depending on
per-zone stats.

Many lowmem allocations are immune from OOM kill due to a check in
__alloc_pages_may_oom for (ac->high_zoneidx < ZONE_NORMAL) since commit
03668b3ceb ("oom: avoid oom killer for lowmem allocations").  The
exception is costly high-order allocations or allocations that cannot
fail.  If the __alloc_pages_may_oom avoids OOM-kill for low-order lowmem
allocations then it would fall through to __alloc_pages_direct_compact.

This patch will blindly retry reclaim for zone-constrained allocations
in should_reclaim_retry up to MAX_RECLAIM_RETRIES.  This is not ideal
but without per-zone stats there are not many alternatives.  The impact
it that zone-constrained allocations may delay before considering the
OOM killer.

As there is no guarantee enough memory can ever be freed to satisfy
compaction, this patch avoids retrying compaction for zone-contrained
allocations.

In combination, that means that the per-node stats can be used when
deciding whether to continue reclaim using a rough approximation.  While
it is possible this will make the wrong decision on occasion, it will
not infinite loop as the number of reclaim attempts is capped by
MAX_RECLAIM_RETRIES.

The final step is calculating the number of dirtyable highmem pages.  As
those calculations only care about the global count of file pages in
highmem.  This patch uses a global counter used instead of per-zone
stats as it is sufficient.

In combination, this allows the per-zone LRU and dirty state counters to
be removed.

[mgorman@techsingularity.net: fix acct_highmem_file_pages()]
  Link: http://lkml.kernel.org/r/1468853426-12858-4-git-send-email-mgorman@techsingularity.netLink: http://lkml.kernel.org/r/1467970510-21195-35-git-send-email-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Suggested by: Michal Hocko <mhocko@kernel.org>
Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Rik van Riel <riel@surriel.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-28 16:07:41 -07:00
Mel Gorman
7cc30fcfd2 mm: vmstat: account per-zone stalls and pages skipped during reclaim
The vmstat allocstall was fairly useful in the general sense but
node-based LRUs change that.  It's important to know if a stall was for
an address-limited allocation request as this will require skipping
pages from other zones.  This patch adds pgstall_* counters to replace
allocstall.  The sum of the counters will equal the old allocstall so it
can be trivially recalculated.  A high number of address-limited
allocation requests may result in a lot of useless LRU scanning for
suitable pages.

As address-limited allocations require pages to be skipped, it's
important to know how much useless LRU scanning took place so this patch
adds pgskip* counters.  This yields the following model

1. The number of address-space limited stalls can be accounted for (pgstall)
2. The amount of useless work required to reclaim the data is accounted (pgskip)
3. The total number of scans is available from pgscan_kswapd and pgscan_direct
   so from that the ratio of useful to useless scans can be calculated.

[mgorman@techsingularity.net: s/pgstall/allocstall/]
  Link: http://lkml.kernel.org/r/1468404004-5085-3-git-send-email-mgorman@techsingularity.netLink: http://lkml.kernel.org/r/1467970510-21195-33-git-send-email-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Hillf Danton <hillf.zj@alibaba-inc.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Rik van Riel <riel@surriel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-28 16:07:41 -07:00
Mel Gorman
e5146b12e2 mm, vmscan: add classzone information to tracepoints
This is convenient when tracking down why the skip count is high because
it'll show what classzone kswapd woke up at and what zones are being
isolated.

Link: http://lkml.kernel.org/r/1467970510-21195-29-git-send-email-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Hillf Danton <hillf.zj@alibaba-inc.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Rik van Riel <riel@surriel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-28 16:07:41 -07:00
Mel Gorman
84c7a7771f mm, vmscan: Have kswapd reclaim from all zones if reclaiming and buffer_heads_over_limit
The buffer_heads_over_limit limit in kswapd is inconsistent with direct
reclaim behaviour.  It may force an an attempt to reclaim from all zones
and then not reclaim at all because higher zones were balanced than
required by the original request.

This patch will causes kswapd to consider reclaiming from all zones if
buffer_heads_over_limit.  However, if there are eligible zones for the
allocation request that woke kswapd then no reclaim will occur even if
buffer_heads_over_limit.  This avoids kswapd over-reclaiming just
because buffer_heads_over_limit.

[mgorman@techsingularity.net: fix comment about buffer_heads_over_limit]
  Link: http://lkml.kernel.org/r/1468404004-5085-2-git-send-email-mgorman@techsingularity.net
Link: http://lkml.kernel.org/r/1467970510-21195-28-git-send-email-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Cc: Hillf Danton <hillf.zj@alibaba-inc.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Rik van Riel <riel@surriel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-28 16:07:41 -07:00
Mel Gorman
d9f21d426d mm, vmscan: avoid passing in `remaining' unnecessarily to prepare_kswapd_sleep()
As pointed out by Minchan Kim, the first call to prepare_kswapd_sleep()
always passes in 0 for `remaining' and the second call can trivially
check the parameter in advance.

Suggested-by: Minchan Kim <minchan@kernel.org>
Link: http://lkml.kernel.org/r/1467970510-21195-27-git-send-email-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Rik van Riel <riel@surriel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-28 16:07:41 -07:00
Mel Gorman
4f588331bd mm, vmscan: avoid passing in classzone_idx unnecessarily to compaction_ready
The scan_control structure has enough information available for
compaction_ready() to make a decision.  The classzone_idx manipulations
in shrink_zones() are no longer necessary as the highest populated zone
is no longer used to determine if shrink_slab should be called or not.

[mgorman@techsingularity.net remove redundant check in shrink_zones()]
  Link: http://lkml.kernel.org/r/1468588165-12461-3-git-send-email-mgorman@techsingularity.net
Link: http://lkml.kernel.org/r/1467970510-21195-26-git-send-email-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Rik van Riel <riel@surriel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-28 16:07:41 -07:00
Mel Gorman
970a39a363 mm, vmscan: avoid passing in classzone_idx unnecessarily to shrink_node
shrink_node receives all information it needs about classzone_idx from
sc->reclaim_idx so remove the aliases.

Link: http://lkml.kernel.org/r/1467970510-21195-25-git-send-email-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Rik van Riel <riel@surriel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-28 16:07:41 -07:00
Mel Gorman
a5f5f91da6 mm: convert zone_reclaim to node_reclaim
As reclaim is now per-node based, convert zone_reclaim to be
node_reclaim.  It is possible that a node will be reclaimed multiple
times if it has multiple zones but this is unavoidable without caching
all nodes traversed so far.  The documentation and interface to
userspace is the same from a configuration perspective and will will be
similar in behaviour unless the node-local allocation requests were also
limited to lower zones.

Link: http://lkml.kernel.org/r/1467970510-21195-24-git-send-email-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Hillf Danton <hillf.zj@alibaba-inc.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Rik van Riel <riel@surriel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-28 16:07:41 -07:00
Mel Gorman
e1a556374a mm, vmscan: only wakeup kswapd once per node for the requested classzone
kswapd is woken when zones are below the low watermark but the wakeup
decision is not taking the classzone into account.  Now that reclaim is
node-based, it is only required to wake kswapd once per node and only if
all zones are unbalanced for the requested classzone.

Note that one node might be checked multiple times if the zonelist is
ordered by node because there is no cheap way of tracking what nodes
have already been visited.  For zone-ordering, each node should be
checked only once.

Link: http://lkml.kernel.org/r/1467970510-21195-22-git-send-email-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Hillf Danton <hillf.zj@alibaba-inc.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Rik van Riel <riel@surriel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-28 16:07:41 -07:00
Mel Gorman
c4a25635b6 mm: move vmscan writes and file write accounting to the node
As reclaim is now node-based, it follows that page write activity due to
page reclaim should also be accounted for on the node.  For consistency,
also account page writes and page dirtying on a per-node basis.

After this patch, there are a few remaining zone counters that may appear
strange but are fine.  NUMA stats are still per-zone as this is a
user-space interface that tools consume.  NR_MLOCK, NR_SLAB_*,
NR_PAGETABLE, NR_KERNEL_STACK and NR_BOUNCE are all allocations that
potentially pin low memory and cannot trivially be reclaimed on demand.
This information is still useful for debugging a page allocation failure
warning.

Link: http://lkml.kernel.org/r/1467970510-21195-21-git-send-email-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Hillf Danton <hillf.zj@alibaba-inc.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Rik van Riel <riel@surriel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-28 16:07:41 -07:00
Mel Gorman
11fb998986 mm: move most file-based accounting to the node
There are now a number of accounting oddities such as mapped file pages
being accounted for on the node while the total number of file pages are
accounted on the zone.  This can be coped with to some extent but it's
confusing so this patch moves the relevant file-based accounted.  Due to
throttling logic in the page allocator for reliable OOM detection, it is
still necessary to track dirty and writeback pages on a per-zone basis.

[mgorman@techsingularity.net: fix NR_ZONE_WRITE_PENDING accounting]
  Link: http://lkml.kernel.org/r/1468404004-5085-5-git-send-email-mgorman@techsingularity.net
Link: http://lkml.kernel.org/r/1467970510-21195-20-git-send-email-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Hillf Danton <hillf.zj@alibaba-inc.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Rik van Riel <riel@surriel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-28 16:07:41 -07:00
Mel Gorman
50658e2e04 mm: move page mapped accounting to the node
Reclaim makes decisions based on the number of pages that are mapped but
it's mixing node and zone information.  Account NR_FILE_MAPPED and
NR_ANON_PAGES pages on the node.

Link: http://lkml.kernel.org/r/1467970510-21195-18-git-send-email-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Hillf Danton <hillf.zj@alibaba-inc.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Rik van Riel <riel@surriel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-28 16:07:41 -07:00
Mel Gorman
ef8f232799 mm, memcg: move memcg limit enforcement from zones to nodes
Memcg needs adjustment after moving LRUs to the node.  Limits are
tracked per memcg but the soft-limit excess is tracked per zone.  As
global page reclaim is based on the node, it is easy to imagine a
situation where a zone soft limit is exceeded even though the memcg
limit is fine.

This patch moves the soft limit tree the node.  Technically, all the
variable names should also change but people are already familiar by the
meaning of "mz" even if "mn" would be a more appropriate name now.

Link: http://lkml.kernel.org/r/1467970510-21195-15-git-send-email-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Hillf Danton <hillf.zj@alibaba-inc.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Rik van Riel <riel@surriel.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-28 16:07:41 -07:00
Mel Gorman
a9dd0a8310 mm, vmscan: make shrink_node decisions more node-centric
Earlier patches focused on having direct reclaim and kswapd use data
that is node-centric for reclaiming but shrink_node() itself still uses
too much zone information.  This patch removes unnecessary zone-based
information with the most important decision being whether to continue
reclaim or not.  Some memcg APIs are adjusted as a result even though
memcg itself still uses some zone information.

[mgorman@techsingularity.net: optimization]
  Link: http://lkml.kernel.org/r/1468588165-12461-2-git-send-email-mgorman@techsingularity.net
Link: http://lkml.kernel.org/r/1467970510-21195-14-git-send-email-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Hillf Danton <hillf.zj@alibaba-inc.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Rik van Riel <riel@surriel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-28 16:07:41 -07:00
Mel Gorman
86c79f6b54 mm: vmscan: do not reclaim from kswapd if there is any eligible zone
kswapd scans from highest to lowest for a zone that requires balancing.
This was necessary when reclaim was per-zone to fairly age pages on
lower zones.  Now that we are reclaiming on a per-node basis, any
eligible zone can be used and pages will still be aged fairly.  This
patch avoids reclaiming excessively unless buffer_heads are over the
limit and it's necessary to reclaim from a higher zone than requested by
the waker of kswapd to relieve low memory pressure.

[hillf.zj@alibaba-inc.com: Force kswapd reclaim no more than needed]
Link: http://lkml.kernel.org/r/1466518566-30034-12-git-send-email-mgorman@techsingularity.net
Link: http://lkml.kernel.org/r/1467970510-21195-13-git-send-email-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Hillf Danton <hillf.zj@alibaba-inc.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Rik van Riel <riel@surriel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-28 16:07:41 -07:00
Mel Gorman
6256c6b499 mm, vmscan: remove duplicate logic clearing node congestion and dirty state
Reclaim may stall if there is too much dirty or congested data on a
node.  This was previously based on zone flags and the logic for
clearing the flags is in two places.  As congestion/dirty tracking is
now tracked on a per-node basis, we can remove some duplicate logic.

Link: http://lkml.kernel.org/r/1467970510-21195-12-git-send-email-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Rik van Riel <riel@surriel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-28 16:07:41 -07:00
Mel Gorman
79dafcdca3 mm, vmscan: by default have direct reclaim only shrink once per node
Direct reclaim iterates over all zones in the zonelist and shrinking
them but this is in conflict with node-based reclaim.  In the default
case, only shrink once per node.

Link: http://lkml.kernel.org/r/1467970510-21195-11-git-send-email-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Rik van Riel <riel@surriel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-28 16:07:41 -07:00
Mel Gorman
38087d9b03 mm, vmscan: simplify the logic deciding whether kswapd sleeps
kswapd goes through some complex steps trying to figure out if it should
stay awake based on the classzone_idx and the requested order.  It is
unnecessarily complex and passes in an invalid classzone_idx to
balance_pgdat().  What matters most of all is whether a larger order has
been requsted and whether kswapd successfully reclaimed at the previous
order.  This patch irons out the logic to check just that and the end
result is less headache inducing.

Link: http://lkml.kernel.org/r/1467970510-21195-10-git-send-email-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Rik van Riel <riel@surriel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-28 16:07:41 -07:00
Mel Gorman
31483b6ad2 mm, vmscan: remove balance gap
The balance gap was introduced to apply equal pressure to all zones when
reclaiming for a higher zone.  With node-based LRU, the need for the
balance gap is removed and the code is dead so remove it.

[vbabka@suse.cz: Also remove KSWAPD_ZONE_BALANCE_GAP_RATIO]
Link: http://lkml.kernel.org/r/1467970510-21195-9-git-send-email-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Hillf Danton <hillf.zj@alibaba-inc.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Rik van Riel <riel@surriel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-28 16:07:41 -07:00
Mel Gorman
1d82de618d mm, vmscan: make kswapd reclaim in terms of nodes
Patch "mm: vmscan: Begin reclaiming pages on a per-node basis" started
thinking of reclaim in terms of nodes but kswapd is still zone-centric.
This patch gets rid of many of the node-based versus zone-based
decisions.

o A node is considered balanced when any eligible lower zone is balanced.
  This eliminates one class of age-inversion problem because we avoid
  reclaiming a newer page just because it's in the wrong zone
o pgdat_balanced disappears because we now only care about one zone being
  balanced.
o Some anomalies related to writeback and congestion tracking being based on
  zones disappear.
o kswapd no longer has to take care to reclaim zones in the reverse order
  that the page allocator uses.
o Most importantly of all, reclaim from node 0 with multiple zones will
  have similar aging and reclaiming characteristics as every
  other node.

Link: http://lkml.kernel.org/r/1467970510-21195-8-git-send-email-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Rik van Riel <riel@surriel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-28 16:07:41 -07:00
Mel Gorman
f7b60926eb mm, vmscan: have kswapd only scan based on the highest requested zone
kswapd checks all eligible zones to see if they need balancing even if
it was woken for a lower zone.  This made sense when we reclaimed on a
per-zone basis because we wanted to shrink zones fairly so avoid
age-inversion problems.  Ideally this is completely unnecessary when
reclaiming on a per-node basis.  In theory, there may still be anomalies
when all requests are for lower zones and very old pages are preserved
in higher zones but this should be the exceptional case.

Link: http://lkml.kernel.org/r/1467970510-21195-7-git-send-email-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Hillf Danton <hillf.zj@alibaba-inc.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Rik van Riel <riel@surriel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-28 16:07:41 -07:00
Mel Gorman
b2e18757f2 mm, vmscan: begin reclaiming pages on a per-node basis
This patch makes reclaim decisions on a per-node basis.  A reclaimer
knows what zone is required by the allocation request and skips pages
from higher zones.  In many cases this will be ok because it's a
GFP_HIGHMEM request of some description.  On 64-bit, ZONE_DMA32 requests
will cause some problems but 32-bit devices on 64-bit platforms are
increasingly rare.  Historically it would have been a major problem on
32-bit with big Highmem:Lowmem ratios but such configurations are also
now rare and even where they exist, they are not encouraged.  If it
really becomes a problem, it'll manifest as very low reclaim
efficiencies.

Link: http://lkml.kernel.org/r/1467970510-21195-6-git-send-email-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Rik van Riel <riel@surriel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-28 16:07:41 -07:00
Mel Gorman
599d0c954f mm, vmscan: move LRU lists to node
This moves the LRU lists from the zone to the node and related data such
as counters, tracing, congestion tracking and writeback tracking.

Unfortunately, due to reclaim and compaction retry logic, it is
necessary to account for the number of LRU pages on both zone and node
logic.  Most reclaim logic is based on the node counters but the retry
logic uses the zone counters which do not distinguish inactive and
active sizes.  It would be possible to leave the LRU counters on a
per-zone basis but it's a heavier calculation across multiple cache
lines that is much more frequent than the retry checks.

Other than the LRU counters, this is mostly a mechanical patch but note
that it introduces a number of anomalies.  For example, the scans are
per-zone but using per-node counters.  We also mark a node as congested
when a zone is congested.  This causes weird problems that are fixed
later but is easier to review.

In the event that there is excessive overhead on 32-bit systems due to
the nodes being on LRU then there are two potential solutions

1. Long-term isolation of highmem pages when reclaim is lowmem

   When pages are skipped, they are immediately added back onto the LRU
   list. If lowmem reclaim persisted for long periods of time, the same
   highmem pages get continually scanned. The idea would be that lowmem
   keeps those pages on a separate list until a reclaim for highmem pages
   arrives that splices the highmem pages back onto the LRU. It potentially
   could be implemented similar to the UNEVICTABLE list.

   That would reduce the skip rate with the potential corner case is that
   highmem pages have to be scanned and reclaimed to free lowmem slab pages.

2. Linear scan lowmem pages if the initial LRU shrink fails

   This will break LRU ordering but may be preferable and faster during
   memory pressure than skipping LRU pages.

Link: http://lkml.kernel.org/r/1467970510-21195-4-git-send-email-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Rik van Riel <riel@surriel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-28 16:07:41 -07:00
Mel Gorman
a52633d8e9 mm, vmscan: move lru_lock to the node
Node-based reclaim requires node-based LRUs and locking.  This is a
preparation patch that just moves the lru_lock to the node so later
patches are easier to review.  It is a mechanical change but note this
patch makes contention worse because the LRU lock is hotter and direct
reclaim and kswapd can contend on the same lock even when reclaiming
from different zones.

Link: http://lkml.kernel.org/r/1467970510-21195-3-git-send-email-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Reviewed-by: Minchan Kim <minchan@kernel.org>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Rik van Riel <riel@surriel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-28 16:07:41 -07:00
Kirill A. Shutemov
7751b2da6b vmscan: split file huge pages before paging them out
This is preparation of vmscan for file huge pages.  We cannot write out
huge pages, so we need to split them on the way out.

Link: http://lkml.kernel.org/r/1466021202-61880-22-git-send-email-kirill.shutemov@linux.intel.com
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-26 16:19:19 -07:00
Minchan Kim
b1123ea6d3 mm: balloon: use general non-lru movable page feature
Now, VM has a feature to migrate non-lru movable pages so balloon
doesn't need custom migration hooks in migrate.c and compaction.c.

Instead, this patch implements the page->mapping->a_ops->
{isolate|migrate|putback} functions.

With that, we could remove hooks for ballooning in general migration
functions and make balloon compaction simple.

[akpm@linux-foundation.org: compaction.h requires that the includer first include node.h]
Link: http://lkml.kernel.org/r/1464736881-24886-4-git-send-email-minchan@kernel.org
Signed-off-by: Gioh Kim <gi-oh.kim@profitbricks.com>
Signed-off-by: Minchan Kim <minchan@kernel.org>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Rafael Aquini <aquini@redhat.com>
Cc: Konstantin Khlebnikov <koct9i@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-26 16:19:19 -07:00
Michal Hocko
0a0337e0d1 mm, oom: rework oom detection
__alloc_pages_slowpath has traditionally relied on the direct reclaim
and did_some_progress as an indicator that it makes sense to retry
allocation rather than declaring OOM.  shrink_zones had to rely on
zone_reclaimable if shrink_zone didn't make any progress to prevent from
a premature OOM killer invocation - the LRU might be full of dirty or
writeback pages and direct reclaim cannot clean those up.

zone_reclaimable allows to rescan the reclaimable lists several times
and restart if a page is freed.  This is really subtle behavior and it
might lead to a livelock when a single freed page keeps allocator
looping but the current task will not be able to allocate that single
page.  OOM killer would be more appropriate than looping without any
progress for unbounded amount of time.

This patch changes OOM detection logic and pulls it out from shrink_zone
which is too low to be appropriate for any high level decisions such as
OOM which is per zonelist property.  It is __alloc_pages_slowpath which
knows how many attempts have been done and what was the progress so far
therefore it is more appropriate to implement this logic.

The new heuristic is implemented in should_reclaim_retry helper called
from __alloc_pages_slowpath.  It tries to be more deterministic and
easier to follow.  It builds on an assumption that retrying makes sense
only if the currently reclaimable memory + free pages would allow the
current allocation request to succeed (as per __zone_watermark_ok) at
least for one zone in the usable zonelist.

This alone wouldn't be sufficient, though, because the writeback might
get stuck and reclaimable pages might be pinned for a really long time
or even depend on the current allocation context.  Therefore there is a
backoff mechanism implemented which reduces the reclaim target after
each reclaim round without any progress.  This means that we should
eventually converge to only NR_FREE_PAGES as the target and fail on the
wmark check and proceed to OOM.  The backoff is simple and linear with
1/16 of the reclaimable pages for each round without any progress.  We
are optimistic and reset counter for successful reclaim rounds.

Costly high order pages mostly preserve their semantic and those without
__GFP_REPEAT fail right away while those which have the flag set will
back off after the amount of reclaimable pages reaches equivalent of the
requested order.  The only difference is that if there was no progress
during the reclaim we rely on zone watermark check.  This is more
logical thing to do than previous 1<<order attempts which were a result
of zone_reclaimable faking the progress.

[vdavydov@virtuozzo.com: check classzone_idx for shrink_zone]
[hannes@cmpxchg.org: separate the heuristic into should_reclaim_retry]
[rientjes@google.com: use zone_page_state_snapshot for NR_FREE_PAGES]
[rientjes@google.com: shrink_zones doesn't need to return anything]
Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: Vladimir Davydov <vdavydov@virtuozzo.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <js1304@gmail.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-20 17:58:30 -07:00
Michal Hocko
b6459cc154 vmscan: consider classzone_idx in compaction_ready
Motivation:
As pointed out by Linus [2][3] relying on zone_reclaimable as a way to
communicate the reclaim progress is rater dubious. I tend to agree,
not only it is really obscure, it is not hard to imagine cases where a
single page freed in the loop keeps all the reclaimers looping without
getting any progress because their gfp_mask wouldn't allow to get that
page anyway (e.g. single GFP_ATOMIC alloc and free loop). This is rather
rare so it doesn't happen in the practice but the current logic which we
have is rather obscure and hard to follow a also non-deterministic.

This is an attempt to make the OOM detection more deterministic and
easier to follow because each reclaimer basically tracks its own
progress which is implemented at the page allocator layer rather spread
out between the allocator and the reclaim.  The more on the
implementation is described in the first patch.

I have tested several different scenarios but it should be clear that
testing OOM killer is quite hard to be representative.  There is usually
a tiny gap between almost OOM and full blown OOM which is often time
sensitive.  Anyway, I have tested the following 2 scenarios and I would
appreciate if there are more to test.

Testing environment: a virtual machine with 2G of RAM and 2CPUs without
any swap to make the OOM more deterministic.

1) 2 writers (each doing dd with 4M blocks to an xfs partition with 1G
   file size, removes the files and starts over again) running in
   parallel for 10s to build up a lot of dirty pages when 100 parallel
   mem_eaters (anon private populated mmap which waits until it gets
   signal) with 80M each.

   This causes an OOM flood of course and I have compared both patched
   and unpatched kernels. The test is considered finished after there
   are no OOM conditions detected. This should tell us whether there are
   any excessive kills or some of them premature (e.g. due to dirty pages):

I have performed two runs this time each after a fresh boot.

* base kernel
$ grep "Out of memory:" base-oom-run1.log | wc -l
78
$ grep "Out of memory:" base-oom-run2.log | wc -l
78

$ grep "Kill process" base-oom-run1.log | tail -n1
[   91.391203] Out of memory: Kill process 3061 (mem_eater) score 39 or sacrifice child
$ grep "Kill process" base-oom-run2.log | tail -n1
[   82.141919] Out of memory: Kill process 3086 (mem_eater) score 39 or sacrifice child

$ grep "DMA32 free:" base-oom-run1.log | sed 's@.*free:\([0-9]*\)kB.*@\1@' | calc_min_max.awk
min: 5376.00 max: 6776.00 avg: 5530.75 std: 166.50 nr: 61
$ grep "DMA32 free:" base-oom-run2.log | sed 's@.*free:\([0-9]*\)kB.*@\1@' | calc_min_max.awk
min: 5416.00 max: 5608.00 avg: 5514.15 std: 42.94 nr: 52

$ grep "DMA32.*all_unreclaimable? no" base-oom-run1.log | wc -l
1
$ grep "DMA32.*all_unreclaimable? no" base-oom-run2.log | wc -l
3

* patched kernel
$ grep "Out of memory:" patched-oom-run1.log | wc -l
78
miso@tiehlicka /mnt/share/devel/miso/kvm $ grep "Out of memory:" patched-oom-run2.log | wc -l
77

e grep "Kill process" patched-oom-run1.log | tail -n1
[  497.317732] Out of memory: Kill process 3108 (mem_eater) score 39 or sacrifice child
$ grep "Kill process" patched-oom-run2.log | tail -n1
[  316.169920] Out of memory: Kill process 3093 (mem_eater) score 39 or sacrifice child

$ grep "DMA32 free:" patched-oom-run1.log | sed 's@.*free:\([0-9]*\)kB.*@\1@' | calc_min_max.awk
min: 5420.00 max: 5808.00 avg: 5513.90 std: 60.45 nr: 78
$ grep "DMA32 free:" patched-oom-run2.log | sed 's@.*free:\([0-9]*\)kB.*@\1@' | calc_min_max.awk
min: 5380.00 max: 6384.00 avg: 5520.94 std: 136.84 nr: 77

e grep "DMA32.*all_unreclaimable? no" patched-oom-run1.log | wc -l
2
$ grep "DMA32.*all_unreclaimable? no" patched-oom-run2.log | wc -l
3

The patched kernel run noticeably longer while invoking OOM killer same
number of times. This means that the original implementation is much
more aggressive and triggers the OOM killer sooner. free pages stats
show that neither kernels went OOM too early most of the time, though. I
guess the difference is in the backoff when retries without any progress
do sleep for a while if there is memory under writeback or dirty which
is highly likely considering the parallel IO.
Both kernels have seen races where zone wasn't marked unreclaimable
and we still hit the OOM killer. This is most likely a race where
a task managed to exit between the last allocation attempt and the oom
killer invocation.

2) 2 writers again with 10s of run and then 10 mem_eaters to consume as much
   memory as possible without triggering the OOM killer. This required a lot
   of tuning but I've considered 3 consecutive runs in three different boots
   without OOM as a success.

* base kernel
size=$(awk '/MemFree/{printf "%dK", ($2/10)-(16*1024)}' /proc/meminfo)

* patched kernel
size=$(awk '/MemFree/{printf "%dK", ($2/10)-(12*1024)}' /proc/meminfo)

That means 40M more memory was usable without triggering OOM killer. The
base kernel sometimes managed to handle the same as patched but it
wasn't consistent and failed in at least on of the 3 runs. This seems
like a minor improvement.

I was testing also GPF_REPEAT costly requests (hughetlb) with fragmented
memory and under memory pressure. The results are in patch 11 where the
logic is implemented. In short I can see huge improvement there.

I am certainly interested in other usecases as well as well as any
feedback. Especially those which require higher order requests.

This patch (of 14):

While playing with the oom detection rework [1] I have noticed that my
heavy order-9 (hugetlb) load close to OOM ended up in an endless loop
where the reclaim hasn't made any progress but did_some_progress didn't
reflect that and compaction_suitable was backing off because no zone is
above low wmark + 1 << order.

It turned out that this is in fact an old standing bug in
compaction_ready which ignores the requested_highidx and did the
watermark check for 0 classzone_idx.  This succeeds for zone DMA most
of the time as the zone is mostly unused because of lowmem protection.
As a result costly high order allocatios always report a successfull
progress even when there was none.  This wasn't a problem so far
because these allocations usually fail quite early or retry only few
times with __GFP_REPEAT but this will change after later patch in this
series so make sure to not lie about the progress and propagate
requested_highidx down to compaction_ready and use it for both the
watermak check and compaction_suitable to fix this issue.

[1] http://lkml.kernel.org/r/1459855533-4600-1-git-send-email-mhocko@kernel.org
[2] https://lkml.org/lkml/2015/10/12/808
[3] https://lkml.org/lkml/2015/10/13/597

Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: David Rientjes <rientjes@google.com>
Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Cc: Joonsoo Kim <js1304@gmail.com>
Cc: Vladimir Davydov <vdavydov@virtuozzo.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-20 17:58:30 -07:00