transaction completion from marking the inode dirty while it is being
cleaned up on it's way out of the system.
SGI-PV: 952967
SGI-Modid: xfs-linux-melb:xfs-kern:26040a
Signed-off-by: David Chinner <dgc@sgi.com>
Signed-off-by: Nathan Scott <nathans@sgi.com>
the range spanned by modifications to the in-core extent map. Add
XFS_BUNMAPI() and XFS_SWAP_EXTENTS() macros that call xfs_bunmapi() and
xfs_swap_extents() via the ioops vector. Change all calls that may modify
the in-core extent map for the data fork to go through the ioops vector.
This allows a cache of extent map data to be kept in sync.
SGI-PV: 947615
SGI-Modid: xfs-linux-melb:xfs-kern:209226a
Signed-off-by: Olaf Weber <olaf@sgi.com>
Signed-off-by: Nathan Scott <nathans@sgi.com>
that have been unlinked, we may need to execute transactions during
reclaim. By the time the transaction has hit the disk, the linux inode and
xfs vnode may already have been freed so we can't reference them safely.
Use the known xfs inode state to determine if it is safe to reference the
vnode and linux inode during the unpin operation.
SGI-PV: 946321
SGI-Modid: xfs-linux-melb:xfs-kern:25687a
Signed-off-by: David Chinner <dgc@sgi.com>
Signed-off-by: Nathan Scott <nathans@sgi.com>
of xfs_itruncate_start().
SGI-PV: 947420
SGI-Modid: xfs-linux-melb:xfs-kern:25527a
Signed-off-by: David Chinner <dgc@sgi.com>
Signed-off-by: Nathan Scott <nathans@sgi.com>
conversion and concurrent truncate operations. Use vn_iowait to wait for
the completion of any pending DIOs. Since the truncate requires exclusive
IOLOCK, so this blocks any further DIO operations since DIO write also
needs exclusive IOBLOCK. This serves as a barrier and prevent any
potential starvation.
SGI-PV: 947420
SGI-Modid: xfs-linux-melb:xfs-kern:208088a
Signed-off-by: Yingping Lu <yingping@sgi.com>
Signed-off-by: Nathan Scott <nathans@sgi.com>
the trace.
SGI-PV: 948300
SGI-Modid: xfs-linux-melb:xfs-kern:208069a
Signed-off-by: Yingping Lu <yingping@sgi.com>
Signed-off-by: Nathan Scott <nathans@sgi.com>
xfs_bmap_search_multi_extents() wrapper function that I introduced in mod
xfs-linux:xfs-kern:207393a. The function was added as a wrapper around
xfs_bmap_do_search_extents() to avoid breaking the top-of-tree CXFS
interface. The idea of the function was basically to extract the target
extent buffer (if muli- level extent allocation mode), then call
xfs_bmap_do_search_extents() with either a pointer to the first extent in
the target buffer or a pointer to the first extent in the file, depending
on which extent mode was being used. However, in addition to locating the
target extent record for block bno, xfs_bmap_do_search_extents() also sets
four parameters needed by the caller: *lastx, *eofp, *gotp, *prevp.
Passing only the target extent buffer to xfs_bmap_do_search_extents()
causes *eofp to be set incorrectly if the extent is at the end of the
target list but there are actually more extents in the next er_extbuf.
Likewise, if the extent is the first one in the buffer but NOT the first
in the file, *prevp is incorrectly set to NULL. Adding the needed
functionality to xfs_bmap_search_multi_extents() to re-set any incorrectly
set fields is redundant and makes the call to xfs_bmap_do_search_extents()
not make much sense when multi-level extent allocation mode is being used.
This mod basically extracts the two functional components from
xfs_bmap_do_search_extents(), with the intent of obsoleting/removing
xfs_bmap_do_search_extents() after the CXFS mult-level in-core extent
changes are checked in. The two components are: 1) The binary search to
locate the target extent record, and 2) Setting the four parameters needed
by the caller (*lastx, *eofp, *gotp, *prevp). Component 1: I created a
new function in xfs_inode.c called xfs_iext_bno_to_ext(), which executes
the binary search to find the target extent record.
xfs_bmap_search_multi_extents() has been modified to call
xfs_iext_bno_to_ext() rather than xfs_bmap_do_search_extents(). Component
2: The parameter setting functionality has been added to
xfs_bmap_search_multi_extents(), eliminating the need for
xfs_bmap_do_search_extents(). These changes make the removal of
xfs_bmap_do_search_extents() trival once the CXFS changes are in place.
They also allow us to maintain the current XFS interface, using the new
search function introduced in mod xfs-linux:xfs-kern:207393a.
SGI-PV: 928864
SGI-Modid: xfs-linux-melb:xfs-kern:207866a
Signed-off-by: Mandy Kirkconnell <alkirkco@sgi.com>
Signed-off-by: Nathan Scott <nathans@sgi.com>
functionality, building upon the new layout introduced in mod
xfs-linux:xfs-kern:207390a. The new multi-level extent allocations are
only required for heavily fragmented files, so the old-style linear extent
list is used on files until the extents reach a pre-determined size of 4k.
4k buffers are used because this is the system page size on Linux i386 and
systems with larger page sizes don't seem to gain much, if anything, by
using their native page size as the extent buffer size. Also, using 4k
extent buffers everywhere provides a consistent interface for CXFS across
different platforms. The 4k extent buffers are managed by an indirection
array (xfs_ext_irec_t) which is basically just a pointer array with a bit
of extra information to keep track of the number of extents in each buffer
as well as the extent offset of each buffer. Major changes include: -
Add multi-level in-core file extent functionality to the xfs_iext_
subroutines introduced in mod: xfs-linux:xfs-kern:207390a - Introduce 13
new subroutines which add functionality for multi-level in-core file
extents: xfs_iext_add_indirect_multi()
xfs_iext_remove_indirect() xfs_iext_realloc_indirect()
xfs_iext_indirect_to_direct() xfs_iext_bno_to_irec()
xfs_iext_idx_to_irec() xfs_iext_irec_init()
xfs_iext_irec_new() xfs_iext_irec_remove()
xfs_iext_irec_compact() xfs_iext_irec_compact_pages()
xfs_iext_irec_compact_full() xfs_iext_irec_update_extoffs()
SGI-PV: 928864
SGI-Modid: xfs-linux-melb:xfs-kern:207393a
Signed-off-by: Mandy Kirkconnell <alkirkco@sgi.com>
Signed-off-by: Nathan Scott <nathans@sgi.com>
code to prepare for an upcoming mod which will introduce multi-level
in-core extent allocations. Although the in-core extent management is
using a new code path in this mod, the functionality remains the same.
Major changes include: - Introduce 10 new subroutines which re-orgainze
the existing code but do NOT change functionality:
xfs_iext_get_ext() xfs_iext_insert() xfs_iext_add()
xfs_iext_remove() xfs_iext_remove_inline()
xfs_iext_remove_direct() xfs_iext_realloc_direct()
xfs_iext_direct_to_inline() xfs_iext_inline_to_direct()
xfs_iext_destroy() - Remove 2 subroutines (functionality moved to new
subroutines above): xfs_iext_realloc() -replaced by xfs_iext_add()
and xfs_iext_remove() xfs_bmap_insert_exlist() - replaced by
xfs_iext_insert() xfs_bmap_delete_exlist() - replaced by
xfs_iext_remove() - Replace all hard-coded (indexed) extent assignments
with a call to xfs_iext_get_ext() - Replace all extent record pointer
arithmetic (ep++, ep--, base + lastx,..) with calls to
xfs_iext_get_ext() - Update comments to remove the idea of a single
"extent list" and introduce "extent record" terminology instead
SGI-PV: 928864
SGI-Modid: xfs-linux-melb:xfs-kern:207390a
Signed-off-by: Mandy Kirkconnell <alkirkco@sgi.com>
Signed-off-by: Nathan Scott <nathans@sgi.com>
updates and only sync back to the xfs inode when nessecary
SGI-PV: 946679
SGI-Modid: xfs-linux-melb:xfs-kern:203362a
Signed-off-by: Christoph Hellwig <hch@sgi.com>
Signed-off-by: Nathan Scott <nathans@sgi.com>
well. Also provides a mechanism for inheriting this property from the
parent directory for new files.
SGI-PV: 945264
SGI-Modid: xfs-linux-melb:xfs-kern:24367a
Signed-off-by: Nathan Scott <nathans@sgi.com>
Initial git repository build. I'm not bothering with the full history,
even though we have it. We can create a separate "historical" git
archive of that later if we want to, and in the meantime it's about
3.2GB when imported into git - space that would just make the early
git days unnecessarily complicated, when we don't have a lot of good
infrastructure for it.
Let it rip!