Some interrupt entry points are currently defined in i8259.c They probably
belong in a header. Right now, their only user is init_IRQ, justifying
their declaration in-file. But when virtualization comes in, we may be
interested in using that functions in late initializations.
Signed-off-by: Glauber de Oliveira Costa <gcosta@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Andi Kleen <ak@suse.de>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The problem: After moving an interrupt when is it safe to teardown
the data structures for receiving the interrupt at the old location?
With a normal pci device it is possible to issue a read to a device
to flush all posted writes. This does not work for the oldest ioapics
because they are on a 3-wire apic bus which is a completely different
data path. For some more modern ioapics when everything is using
front side bus delivery you can flush interrupts by simply issuing a
read to the ioapic. For other modern ioapics emperical testing has
shown that this does not work.
So it appears the only reliable way to know the last of the irqs from an
ioapic have been received from before the ioapic was reprogrammed is to
received the first irq from the ioapic from after it was reprogrammed.
Once we know the last irq message has been received from an ioapic
into a local apic we then need to know that irq message has been
processed through the local apics.
Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
For the ISA irqs we reserve 16 vectors. This patch adds constants for
those vectors and modifies the code to use them. Making the code a
little clearer and making it possible to move these vectors in the future.
Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Unlike x86, x86_64 already passes arguments in registers. The use of
regparm attribute makes no difference in produced code, and the use of
fastcall just bloats the code.
Signed-off-by: Glauber de Oliveira Costa <gcosta@redhat.com>
Signed-off-by: Andi Kleen <ak@suse.de>
Cc: Andi Kleen <ak@suse.de>
Signed-off-by: Andrew Morton <akpm@osdl.org>
When I generalized __assign_irq_vector I failed to pay attention
to what happens when you access a per cpu data structure for
a cpu that is not online. It is an undefined case making any
code that does it have undefined behavior as well.
The code still needs to be able to allocate a vector across cpus
that are not online to properly handle combinations like lowest
priority interrupt delivery and cpu_hotplug. Not that we can do
that today but the infrastructure shouldn't prevent it.
So this patch updates the places where we touch per cpu data
to only touch online cpus, it makes cpu vector allocation
an atomic operation with respect to cpu hotplug, and it updates
the cpu start code to properly initialize vector_irq so we
don't have inconsistencies.
Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
Signed-off-by: Andi Kleen <ak@suse.de>
Which vector an irq is assigned to now varies dynamically and is
not needed outside of io_apic.c. So remove the possibility
of accessing the information outside of io_apic.c and remove
the silly macro that makes looking for users of irq_vector
difficult.
The fact this compiles ensures there aren't any more pieces
of the old CONFIG_PCI_MSI weirdness that I failed to remove.
Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
This refactors the irq handling code to make the vectors a per cpu resource so
the same vector number can be simultaneously used on multiple cpus for
different irqs.
This should make systems that were hitting limits on the total number of irqs
much more livable.
[akpm@osdl.org: build fix]
[akpm@osdl.org: __target_IO_APIC_irq is unneeded on UP]
Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Rajesh Shah <rajesh.shah@intel.com>
Cc: Andi Kleen <ak@muc.de>
Cc: "Protasevich, Natalie" <Natalie.Protasevich@UNISYS.com>
Cc: "Luck, Tony" <tony.luck@intel.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
This is a small pessimization but it paves the way for making this information
per cpu. Which allows the the maximum number of IRQS to become NR_CPUS*224.
Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Rajesh Shah <rajesh.shah@intel.com>
Cc: Andi Kleen <ak@muc.de>
Cc: "Protasevich, Natalie" <Natalie.Protasevich@UNISYS.com>
Cc: "Luck, Tony" <tony.luck@intel.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
This patch removes the change in behavior of the irq allocation code when
CONFIG_PCI_MSI is defined. Removing all instances of the assumption that irq
== vector.
create_irq is rewritten to first allocate a free irq and then to assign that
irq a vector.
assign_irq_vector is made static and the AUTO_ASSIGN case which allocates an
vector not bound to an irq is removed.
The ioapic vector methods are removed, and everything now works with irqs.
The definition of NR_IRQS no longer depends on CONFIG_PCI_MSI
Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Rajesh Shah <rajesh.shah@intel.com>
Cc: Andi Kleen <ak@muc.de>
Cc: "Protasevich, Natalie" <Natalie.Protasevich@UNISYS.com>
Cc: "Luck, Tony" <tony.luck@intel.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
This patch converts all the x86_64 PIC controllers layers to the new and
simpler irq-chip interrupt handling layer.
[mingo@elte.hu: The patch also enables the fasteoi handler for x86_64]
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Roland Dreier <rolandd@cisco.com>
Cc: Andi Kleen <ak@suse.de>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Add ->retrigger() irq op to consolidate hw_irq_resend() implementations.
(Most architectures had it defined to NOP anyway.)
NOTE: ia64 needs testing. i386 and x86_64 tested.
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Remove the limit of 256 interrupt vectors by changing the value stored in
orig_{e,r}ax to be the complemented interrupt vector. The orig_{e,r}ax
needs to be < 0 to allow the signal code to distinguish between return from
interrupt and return from syscall. With this change applied, NR_IRQS can
be > 256.
Xen extends the IRQ numbering space to include room for dynamically
allocated virtual interrupts (in the range 256-511), which requires a more
permissive interface to do_IRQ.
Signed-off-by: Ian Pratt <ian.pratt@xensource.com>
Signed-off-by: Christian Limpach <Christian.Limpach@cl.cam.ac.uk>
Signed-off-by: Chris Wright <chrisw@sous-sol.org>
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Cc: "Protasevich, Natalie" <Natalie.Protasevich@UNISYS.com>
Cc: Andi Kleen <ak@muc.de>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Early development of x86-64 Linux was in CVS, but that hasn't been
the case for a long time now. Remove the obsolete $Id$s.
Signed-off-by: Andi Kleen <ak@suse.de>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
It was set as an NMI, but the NMI bit always forces an interrupt
to end up at vector 2. So it was never used. Remove.
Signed-off-by: Andi Kleen <ak@suse.de>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
It looks like the new scalable TLB flush code for x86_64 is claiming
one more IRQ vector than it actually uses.
Signed-off-by: Jason Uhlenkott <jasonuhl@sgi.com>
Signed-off-by: Andi Kleen <ak@suse.de>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
MC4_MISC - DRAM Errors Threshold Register realized under AMD K8 Rev F.
This register is used to count correctable and uncorrectable ECC errors that occur during DRAM read operations.
The user may interface through sysfs files in order to change the threshold configuration.
bank%d/error_count - reads current error count, write to clear.
bank%d/interrupt_enable - set/clear interrupt enable.
bank%d/threshold_limit - read/write the threshold limit.
APIC vector 0xF9 in hw_irq.h.
5 software defined bank ids in mce.h.
new apic.c function to setup threshold apic lvt.
defaults to interrupt off, count enabled, and threshold limit max.
sysfs interface created on /sys/devices/system/threshold.
AK: added some ifdefs to make it compile on UP
Signed-off-by: Jacob Shin <jacob.shin@amd.com>
Signed-off-by: Andi Kleen <ak@suse.de>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Instead of using a global spinlock to protect the state
of the remote TLB flush use a lock and state for each sending CPU.
To tell the receiver where to look for the state use 8 different
call vectors. Each CPU uses a specific vector to trigger flushes on other
CPUs. Depending on the received vector the target CPUs look into
the right per cpu variable for the flush data.
When the system has more than 8 CPUs they are hashed to the 8 available
vectors. The limited global vector space forces us to this right now.
In future when interrupts are split into per CPU domains this could be
fixed, at the cost of needing more IPIs in flat mode.
Also some minor cleanup in the smp flush code and remove some outdated
debug code.
Requires patch to move cpu_possible_map setup earlier.
Signed-off-by: Andi Kleen <ak@suse.de>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Initial git repository build. I'm not bothering with the full history,
even though we have it. We can create a separate "historical" git
archive of that later if we want to, and in the meantime it's about
3.2GB when imported into git - space that would just make the early
git days unnecessarily complicated, when we don't have a lot of good
infrastructure for it.
Let it rip!