Pull timer fix from Ingo Molnar:
"One more timekeeping fix for v3.6"
* 'timers-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
time: Fix timeekeping_get_ns overflow on 32bit systems
Daniel Lezcano reported seeing multi-second stalls from
keyboard input on his T61 laptop when NOHZ and CPU_IDLE
were enabled on a 32bit kernel.
He bisected the problem down to commit
1e75fa8be9 ("time: Condense timekeeper.xtime into xtime_sec").
After reproducing this issue, I narrowed the problem down
to the fact that timekeeping_get_ns() returns a 64bit
nsec value that hasn't been accumulated. In some cases
this value was being then stored in timespec.tv_nsec
(which is a long).
On 32bit systems, with idle times larger then 4 seconds
(or less, depending on the value of xtime_nsec), the
returned nsec value would overflow 32bits. This limited
kept time from increasing, causing timers to not expire.
The fix is to make sure we don't directly store the
result of timekeeping_get_ns() into a tv_nsec field,
instead using a 64bit nsec value which can then be
added into the timespec via timespec_add_ns().
Reported-and-bisected-by: Daniel Lezcano <daniel.lezcano@linaro.org>
Tested-by: Daniel Lezcano <daniel.lezcano@linaro.org>
Signed-off-by: John Stultz <john.stultz@linaro.org>
Acked-by: Prarit Bhargava <prarit@redhat.com>
Cc: Richard Cochran <richardcochran@gmail.com>
Link: http://lkml.kernel.org/r/1347405963-35715-1-git-send-email-john.stultz@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Azat Khuzhin reported high loadavg in Linux v3.6
After checking the upstream scheduler code, I found Peter's commit:
5167e8d541 sched/nohz: Rewrite and fix load-avg computation -- again
not fully applied, missing the call to calc_load_exit_idle().
After that idle exit in sampling window will always be calculated
to non-idle, and the load will be higher than normal.
This patch adds the missing call to calc_load_exit_idle().
Signed-off-by: Charles Wang <muming.wq@taobao.com>
Cc: stable@kernel.org
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/1345449754-27130-1-git-send-email-muming.wq@gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Andreas Bombe reported that the added ktime_t overflow checking added to
timespec_valid in commit 4e8b14526c ("time: Improve sanity checking of
timekeeping inputs") was causing problems with X.org because it caused
timeouts larger then KTIME_T to be invalid.
Previously, these large timeouts would be clamped to KTIME_MAX and would
never expire, which is valid.
This patch splits the ktime_t overflow checking into a new
timespec_valid_strict function, and converts the timekeeping codes
internal checking to use this more strict function.
Reported-and-tested-by: Andreas Bombe <aeb@debian.org>
Cc: Zhouping Liu <zliu@redhat.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Prarit Bhargava <prarit@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: stable@vger.kernel.org
Signed-off-by: John Stultz <john.stultz@linaro.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
If update_wall_time() is called and the current offset isn't large
enough to accumulate, avoid re-calling timekeeping_adjust which may
change the clock freq and can cause 1ns inconsistencies with
CLOCK_REALTIME_COARSE/CLOCK_MONOTONIC_COARSE.
Signed-off-by: John Stultz <john.stultz@linaro.org>
Cc: Prarit Bhargava <prarit@redhat.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: stable@vger.kernel.org
Link: http://lkml.kernel.org/r/1345595449-34965-5-git-send-email-john.stultz@linaro.org
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Andreas Schwab noticed that the 1 << tk->shift could overflow if the
shift value was greater than 30, since 1 would be a 32bit long on
32bit architectures. This issue was introduced by 1e75fa8be (time:
Condense timekeeper.xtime into xtime_sec)
Use 1ULL instead to ensure we don't overflow on the shift.
Reported-by: Andreas Schwab <schwab@linux-m68k.org>
Signed-off-by: John Stultz <john.stultz@linaro.org>
Cc: Prarit Bhargava <prarit@redhat.com>
Cc: Ingo Molnar <mingo@kernel.org>
Link: http://lkml.kernel.org/r/1345595449-34965-4-git-send-email-john.stultz@linaro.org
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
arch_gettimeoffset returns a u32 value which when shifted by tk->shift
can overflow. This issue was introduced with 1e75fa8be (time: Condense
timekeeper.xtime into xtime_sec)
Cast it to u64 first.
Signed-off-by: Andreas Schwab <schwab@linux-m68k.org>
Signed-off-by: John Stultz <john.stultz@linaro.org>
Cc: Prarit Bhargava <prarit@redhat.com>
Cc: Ingo Molnar <mingo@kernel.org>
Link: http://lkml.kernel.org/r/1345595449-34965-3-git-send-email-john.stultz@linaro.org
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Andreas noticed problems with resume on specific hardware after commit
1e75fa8b (time: Condense timekeeper.xtime into xtime_sec) combined
with commit b44d50dca (time: Fix casting issue in tk_set_xtime and
tk_xtime_add)
After some digging I realized we aren't normalizing the timekeeper
after the add. Add the missing normalize call.
Reported-by: Andreas Schwab <schwab@linux-m68k.org>
Tested-by: Andreas Schwab <schwab@linux-m68k.org>
Signed-off-by: John Stultz <john.stultz@linaro.org>
Cc: Prarit Bhargava <prarit@redhat.com>
Cc: Ingo Molnar <mingo@kernel.org>
Link: http://lkml.kernel.org/r/1345595449-34965-2-git-send-email-john.stultz@linaro.org
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Unexpected behavior could occur if the time is set to a value large
enough to overflow a 64bit ktime_t (which is something larger then the
year 2262).
Also unexpected behavior could occur if large negative offsets are
injected via adjtimex.
So this patch improves the sanity check timekeeping inputs by
improving the timespec_valid() check, and then makes better use of
timespec_valid() to make sure we don't set the time to an invalid
negative value or one that overflows ktime_t.
Note: This does not protect from setting the time close to overflowing
ktime_t and then letting natural accumulation cause the overflow.
Reported-by: CAI Qian <caiqian@redhat.com>
Reported-by: Sasha Levin <levinsasha928@gmail.com>
Signed-off-by: John Stultz <john.stultz@linaro.org>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Prarit Bhargava <prarit@redhat.com>
Cc: Zhouping Liu <zliu@redhat.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: stable@vger.kernel.org
Link: http://lkml.kernel.org/r/1344454580-17031-1-git-send-email-john.stultz@linaro.org
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tetsuo Handa reported that sporadically the system clock starts
counting up too quickly which is enough to confuse the hangcheck
timer to print a bogus stall warning.
Commit 2a8c0883 "time: Move xtime_nsec adjustment underflow handling
timekeeping_adjust" overlooked this exit path:
} else
return;
which should really be a proper exit sequence, fixing the bug as a
side effect.
Also make the flow more readable by properly balancing curly
braces.
Reported-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> wrote:
Tested-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> wrote:
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Cc: john.stultz@linaro.org
Cc: a.p.zijlstra@chello.nl
Cc: richardcochran@gmail.com
Cc: prarit@redhat.com
Link: http://lkml.kernel.org/r/20120804192114.GA28347@gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Ingo noted that the numerous timekeeper.value references made
the timekeeping code ugly and caused many long lines that
had to be broken up. He recommended replacing timekeeper.value
references with tk->value.
This patch provides a local tk value for all top level time
functions and sets it to &timekeeper. Then all timekeeper
access is done via a tk pointer.
Signed-off-by: John Stultz <john.stultz@linaro.org>
Cc: Prarit Bhargava <prarit@redhat.com>
Link: http://lkml.kernel.org/r/1343414893-45779-6-git-send-email-john.stultz@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
For performance reasons, we maintain ktime_t based duplicates of
wall_to_monotonic (offs_real) and total_sleep_time (offs_boot).
Since large problems could occur (such as the resume regression
on 3.5-rc7, or the leapsecond hrtimer issue) if these value
pairs were to be inconsistently updated, this patch this cleans
up how we modify these value pairs to ensure we are always
consistent.
As a side-effect this is also more efficient as we only
caulculate the duplicate values when they are changed,
rather then every update_wall_time call.
This also provides WARN_ONs to detect if future changes break
the invariants.
Signed-off-by: John Stultz <john.stultz@linaro.org>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Richard Cochran <richardcochran@gmail.com>
Cc: Prarit Bhargava <prarit@redhat.com>
Link: http://lkml.kernel.org/r/1343414893-45779-5-git-send-email-john.stultz@linaro.org
[ Cleaned up minor style issues. ]
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Ingo noted that ACTHZ is a confusing name, and requested it
be renamed, so this patch renames ACTHZ to SHIFTED_HZ to
better describe it.
Signed-off-by: John Stultz <john.stultz@linaro.org>
Cc: Prarit Bhargava <prarit@redhat.com>
Link: http://lkml.kernel.org/r/1343414893-45779-3-git-send-email-john.stultz@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
commit 1e75fa8b (time: Condense timekeeper.xtime into xtime_sec)
introduced helper functions which apply a timespec to the core
internal timekeeper data. The internal storage type is u64. The
timespec tv_nsec value must be shifted before set or added to the
internal value. tv_nsec is a long, which is 32bit on a 32bit system,
so without casting tv_nsec to u64 we lose the bits which are shifted
over the 32bit boundary.
Add the proper typecasts.
Reported-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Tested-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Signed-off-by: John Stultz <john.stultz@linaro.org>
Acked-by: Prarit Bhargava <prarit@redhat.com>
Link: http://lkml.kernel.org/r/1343074957-16541-1-git-send-email-john.stultz@linaro.org
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Pull timer core changes from Ingo Molnar:
"Continued cleanups of the core time and NTP code, plus more nohz work
preparing for tick-less userspace execution."
* 'timers-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
time: Rework timekeeping functions to take timekeeper ptr as argument
time: Move xtime_nsec adjustment underflow handling timekeeping_adjust
time: Move arch_gettimeoffset() usage into timekeeping_get_ns()
time: Refactor accumulation of nsecs to secs
time: Condense timekeeper.xtime into xtime_sec
time: Explicitly use u32 instead of int for shift values
time: Whitespace cleanups per Ingo%27s requests
nohz: Move next idle expiry time record into idle logic area
nohz: Move ts->idle_calls incrementation into strict idle logic
nohz: Rename ts->idle_tick to ts->last_tick
nohz: Make nohz API agnostic against idle ticks cputime accounting
nohz: Separate idle sleeping time accounting from nohz logic
timers: Improve get_next_timer_interrupt()
timers: Add accounting of non deferrable timers
timers: Consolidate base->next_timer update
timers: Create detach_if_pending() and use it
Pull RCU changes from Ingo Molnar:
"Quoting from Paul, the major features of this series are:
1. Preventing latency spikes of more than 200 microseconds for
kernels built with NR_CPUS=4096, which is reportedly becoming the
default for some distros. This is a first step, as it does not
help with systems that actually -have- 4096 CPUs (work on this case
is in progress, but is not yet ready for mainline).
This category also includes improving concurrency of rcu_barrier(),
placed here due to conflicts. Posted to LKML at:
https://lkml.org/lkml/2012/6/22/381
Note that patches 18-22 of that series have been defered to 3.7, as
they have not yet proven themselves to be mainline-ready (and yes,
these are the ones intended to get rid of RCU's latency spikes for
systems that actually have 4096 CPUs).
2. Updates to documentation and rcutorture fixes, the latter category
including improvements to rcu_barrier() testing. Posted to LKML at
http://lkml.indiana.edu/hypermail/linux/kernel/1206.1/04094.html.
3. Miscellaneous fixes posted to LKML at:
https://lkml.org/lkml/2012/6/22/500
with the exception of the last commit, which was posted here:
http://www.gossamer-threads.com/lists/linux/kernel/1561830
4. RCU_FAST_NO_HZ fixes and improvements. Posted to LKML at:
http://lkml.indiana.edu/hypermail/linux/kernel/1206.1/00006.htmlhttp://www.gossamer-threads.com/lists/linux/kernel/1561833
The first four patches of the first series went into 3.5 to fix a
regression.
5. Code-style fixes. These were posted to LKML at
http://lkml.indiana.edu/hypermail/linux/kernel/1205.2/01180.htmlhttp://lkml.indiana.edu/hypermail/linux/kernel/1205.2/01181.html"
* 'core-rcu-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (48 commits)
rcu: Fix broken strings in RCU's source code.
rcu: Fix code-style issues involving "else"
rcu: Introduce check for callback list/count mismatch
rcu: Make RCU_FAST_NO_HZ respect nohz= boot parameter
rcu: Fix qlen_lazy breakage
rcu: Round FAST_NO_HZ lazy timeout to nearest second
rcu: The rcu_needs_cpu() function is not a quiescent state
rcu: Dump only the current CPU's buffers for idle-entry/exit warnings
rcu: Add check for CPUs going offline with callbacks queued
rcu: Disable preemption in rcu_blocking_is_gp()
rcu: Prevent uninitialized string in RCU CPU stall info
rcu: Fix rcu_is_cpu_idle() #ifdef in TINY_RCU
rcu: Split RCU core processing out of __call_rcu()
rcu: Prevent __call_rcu() from invoking RCU core on offline CPUs
rcu: Make __call_rcu() handle invocation from idle
rcu: Remove function versions of __kfree_rcu and __is_kfree_rcu_offset
rcu: Consolidate tree/tiny __rcu_read_{,un}lock() implementations
rcu: Remove return value from rcu_assign_pointer()
key: Remove extraneous parentheses from rcu_assign_keypointer()
rcu: Remove return value from RCU_INIT_POINTER()
...
One more time/ntp fix pulled from Ingo Molnar.
* 'timers-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
ntp: Fix STA_INS/DEL clearing bug
The leap second rework unearthed another issue of inconsistent data.
On timekeeping_resume() the timekeeper data is updated, but nothing
calls timekeeping_update(), so now the update code in the timer
interrupt sees stale values.
This has been the case before those changes, but then the timer
interrupt was using stale data as well so this went unnoticed for quite
some time.
Add the missing update call, so all the data is consistent everywhere.
Reported-by: Andreas Schwab <schwab@linux-m68k.org>
Reported-and-tested-by: "Rafael J. Wysocki" <rjw@sisk.pl>
Reported-and-tested-by: Martin Steigerwald <Martin@lichtvoll.de>
Cc: LKML <linux-kernel@vger.kernel.org>
Cc: Linux PM list <linux-pm@vger.kernel.org>
Cc: John Stultz <johnstul@us.ibm.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>,
Cc: Prarit Bhargava <prarit@redhat.com>
Cc: stable@vger.kernel.org
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: John Stultz <johnstul@us.ibm.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
As part of cleaning up the timekeeping code, this patch converts
a number of internal functions to takei a timekeeper ptr as an
argument, so that the internal functions don't access the global
timekeeper structure directly. This allows for further optimizations
to reduce lock hold time later.
This patch has been updated to include more consistent usage of the
timekeeper value, by making sure it is always passed as a argument
to non top-level functions.
Signed-off-by: John Stultz <john.stultz@linaro.org>
Reviewed-by: Ingo Molnar <mingo@kernel.org>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Richard Cochran <richardcochran@gmail.com>
Cc: Prarit Bhargava <prarit@redhat.com>
Link: http://lkml.kernel.org/r/1342156917-25092-9-git-send-email-john.stultz@linaro.org
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
When we make adjustments speeding up the clock, its possible
for xtime_nsec to underflow. We already handle this properly,
but we do so from update_wall_time() instead of the more logical
timekeeping_adjust(), where the possible underflow actually
occurs.
Thus, move the correction logic to the timekeeping_adjust, which
is the function that causes the issue. Making update_wall_time()
more readable.
Signed-off-by: John Stultz <johnstul@us.ibm.com>
Reviewed-by: Ingo Molnar <mingo@kernel.org>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Richard Cochran <richardcochran@gmail.com>
Cc: Prarit Bhargava <prarit@redhat.com>
Link: http://lkml.kernel.org/r/1342156917-25092-8-git-send-email-john.stultz@linaro.org
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Since we call arch_gettimeoffset() in all the accessor
functions, move arch_gettimeoffset() calls into
timekeeping_get_ns() and timekeeping_get_ns_raw() to simplify
the code.
This also makes the code easier to maintain as we don't have to
worry about forgetting the arch_gettimeoffset() as has happened
in the past.
Signed-off-by: John Stultz <johnstul@us.ibm.com>
Reviewed-by: Ingo Molnar <mingo@kernel.org>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Richard Cochran <richardcochran@gmail.com>
Cc: Prarit Bhargava <prarit@redhat.com>
Link: http://lkml.kernel.org/r/1342156917-25092-7-git-send-email-john.stultz@linaro.org
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
We do the exact same logic moving nsecs to secs in the
timekeeper in multiple places, so condense this into a
single function.
Signed-off-by: John Stultz <john.stultz@linaro.org>
Reviewed-by: Ingo Molnar <mingo@kernel.org>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Richard Cochran <richardcochran@gmail.com>
Cc: Prarit Bhargava <prarit@redhat.com>
Link: http://lkml.kernel.org/r/1342156917-25092-6-git-send-email-john.stultz@linaro.org
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
The timekeeper struct has a xtime_nsec, which keeps the
sub-nanosecond remainder. This ends up being somewhat
duplicative of the timekeeper.xtime.tv_nsec value, and we
have to do extra work to keep them apart, copying the full
nsec portion out and back in over and over.
This patch simplifies some of the logic by taking the timekeeper
xtime value and splitting it into timekeeper.xtime_sec and
reuses the timekeeper.xtime_nsec for the sub-second portion
(stored in higher res shifted nanoseconds).
This simplifies some of the accumulation logic. And will
allow for more accurate timekeeping once the vsyscall code
is updated to use the shifted nanosecond remainder.
Signed-off-by: John Stultz <john.stultz@linaro.org>
Reviewed-by: Ingo Molnar <mingo@kernel.org>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Richard Cochran <richardcochran@gmail.com>
Cc: Prarit Bhargava <prarit@redhat.com>
Link: http://lkml.kernel.org/r/1342156917-25092-5-git-send-email-john.stultz@linaro.org
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Ingo noted that using a u32 instead of int for shift values
would be better to make sure the compiler doesn't unnecessarily
use complex signed arithmetic.
Signed-off-by: John Stultz <john.stultz@linaro.org>
Reviewed-by: Ingo Molnar <mingo@kernel.org>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Richard Cochran <richardcochran@gmail.com>
Cc: Prarit Bhargava <prarit@redhat.com>
Link: http://lkml.kernel.org/r/1342156917-25092-4-git-send-email-john.stultz@linaro.org
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Ingo noted a number of places where there is inconsistent
use of whitespace. This patch tries to address the main
culprits.
Signed-off-by: John Stultz <john.stultz@linaro.org>
Reviewed-by: Ingo Molnar <mingo@kernel.org>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Richard Cochran <richardcochran@gmail.com>
Cc: Prarit Bhargava <prarit@redhat.com>
Link: http://lkml.kernel.org/r/1342156917-25092-3-git-send-email-john.stultz@linaro.org
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reason: Update to upstream changes to avoid further conflicts.
Fixup a trivial merge conflict in kernel/time/tick-sched.c
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
In commit 6b43ae8a61, I
introduced a bug that kept the STA_INS or STA_DEL bit
from being cleared from time_status via adjtimex()
without forcing STA_PLL first.
Usually once the STA_INS is set, it isn't cleared
until the leap second is applied, so its unlikely this
affected anyone. However during testing I noticed it
took some effort to cancel a leap second once STA_INS
was set.
Signed-off-by: John Stultz <johnstul@us.ibm.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Richard Cochran <richardcochran@gmail.com>
Cc: Prarit Bhargava <prarit@redhat.com>
CC: stable@vger.kernel.org # 3.4
Link: http://lkml.kernel.org/r/1342156917-25092-2-git-send-email-john.stultz@linaro.org
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Pull RCU, perf, and scheduler fixes from Ingo Molnar.
The RCU fix is a revert for an optimization that could cause deadlocks.
One of the scheduler commits (164c33c6ad "sched: Fix fork() error path
to not crash") is correct but not complete (some architectures like Tile
are not covered yet) - the resulting additional fixes are still WIP and
Ingo did not want to delay these pending fixes. See this thread on
lkml:
[PATCH] fork: fix error handling in dup_task()
The perf fixes are just trivial oneliners.
* 'core-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
Revert "rcu: Move PREEMPT_RCU preemption to switch_to() invocation"
* 'perf-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
perf kvm: Fix segfault with report and mixed guestmount use
perf kvm: Fix regression with guest machine creation
perf script: Fix format regression due to libtraceevent merge
ring-buffer: Fix accounting of entries when removing pages
ring-buffer: Fix crash due to uninitialized new_pages list head
* 'sched-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
MAINTAINERS/sched: Update scheduler file pattern
sched/nohz: Rewrite and fix load-avg computation -- again
sched: Fix fork() error path to not crash
To finally fix the infamous leap second issue and other race windows
caused by functions which change the offsets between the various time
bases (CLOCK_MONOTONIC, CLOCK_REALTIME and CLOCK_BOOTTIME) we need a
function which atomically gets the current monotonic time and updates
the offsets of CLOCK_REALTIME and CLOCK_BOOTTIME with minimalistic
overhead. The previous patch which provides ktime_t offsets allows us
to make this function almost as cheap as ktime_get() which is going to
be replaced in hrtimer_interrupt().
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Acked-by: Prarit Bhargava <prarit@redhat.com>
Cc: stable@vger.kernel.org
Signed-off-by: John Stultz <johnstul@us.ibm.com>
Link: http://lkml.kernel.org/r/1341960205-56738-7-git-send-email-johnstul@us.ibm.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
We need to update the hrtimer clock offsets from the hrtimer interrupt
context. To avoid conversions from timespec to ktime_t maintain a
ktime_t based representation of those offsets in the timekeeper. This
puts the conversion overhead into the code which updates the
underlying offsets and provides fast accessible values in the hrtimer
interrupt.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: John Stultz <johnstul@us.ibm.com>
Reviewed-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Acked-by: Prarit Bhargava <prarit@redhat.com>
Cc: stable@vger.kernel.org
Link: http://lkml.kernel.org/r/1341960205-56738-4-git-send-email-johnstul@us.ibm.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
The timekeeping code misses an update of the hrtimer subsystem after a
leap second happened. Due to that timers based on CLOCK_REALTIME are
either expiring a second early or late depending on whether a leap
second has been inserted or deleted until an operation is initiated
which causes that update. Unless the update happens by some other
means this discrepancy between the timekeeping and the hrtimer data
stays forever and timers are expired either early or late.
The reported immediate workaround - $ data -s "`date`" - is causing a
call to clock_was_set() which updates the hrtimer data structures.
See: http://www.sheeri.com/content/mysql-and-leap-second-high-cpu-and-fix
Add the missing clock_was_set() call to update_wall_time() in case of
a leap second event. The actual update is deferred to softirq context
as the necessary smp function call cannot be invoked from hard
interrupt context.
Signed-off-by: John Stultz <johnstul@us.ibm.com>
Reported-by: Jan Engelhardt <jengelh@inai.de>
Reviewed-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Acked-by: Prarit Bhargava <prarit@redhat.com>
Cc: stable@vger.kernel.org
Link: http://lkml.kernel.org/r/1341960205-56738-3-git-send-email-johnstul@us.ibm.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Thanks to Charles Wang for spotting the defects in the current code:
- If we go idle during the sample window -- after sampling, we get a
negative bias because we can negate our own sample.
- If we wake up during the sample window we get a positive bias
because we push the sample to a known active period.
So rewrite the entire nohz load-avg muck once again, now adding
copious documentation to the code.
Reported-and-tested-by: Doug Smythies <dsmythies@telus.net>
Reported-and-tested-by: Charles Wang <muming.wq@gmail.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: stable@kernel.org
Link: http://lkml.kernel.org/r/1340373782.18025.74.camel@twins
[ minor edits ]
Signed-off-by: Ingo Molnar <mingo@kernel.org>
If the nohz= boot parameter disables nohz, then RCU_FAST_NO_HZ needs to
also disable itself. This commit therefore checks for tick_nohz_enabled
being zero, disabling rcu_prepare_for_idle() if so. This commit assumes
that tick_nohz_enabled can change at runtime: If this is not the case,
then a simpler approach suffices.
Signed-off-by: Paul E. McKenney <paul.mckenney@linaro.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Pull core updates (RCU and locking) from Ingo Molnar:
"Most of the diffstat comes from the RCU slow boot regression fixes,
but there's also a debuggability improvements/fixes."
* 'core-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
memblock: Document memblock_is_region_{memory,reserved}()
rcu: Precompute RCU_FAST_NO_HZ timer offsets
rcu: Move RCU_FAST_NO_HZ per-CPU variables to rcu_dynticks structure
rcu: Update RCU_FAST_NO_HZ tracing for lazy callbacks
rcu: RCU_FAST_NO_HZ detection of callback adoption
spinlock: Indicate that a lockup is only suspected
kdump: Execute kmsg_dump(KMSG_DUMP_PANIC) after smp_send_stop()
panic: Make panic_on_oops configurable
The next idle expiry time record and idle sleeps tracking are
statistics that only concern idle.
Since we want the nohz APIs to become usable further idle
context, let's pull up the handling of these statistics to the
callers in idle.
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Alessio Igor Bogani <abogani@kernel.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Avi Kivity <avi@redhat.com>
Cc: Chris Metcalf <cmetcalf@tilera.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Daniel Lezcano <daniel.lezcano@linaro.org>
Cc: Geoff Levand <geoff@infradead.org>
Cc: Gilad Ben Yossef <gilad@benyossef.com>
Cc: Hakan Akkan <hakanakkan@gmail.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Kevin Hilman <khilman@ti.com>
Cc: Max Krasnyansky <maxk@qualcomm.com>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephen Hemminger <shemminger@vyatta.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Sven-Thorsten Dietrich <thebigcorporation@gmail.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Since we want to prepare for making the nohz API to work further
the idle case, we need to pull ts->idle_calls incrementation up to
the callers in idle.
To perform this, we split tick_nohz_stop_sched_tick() in two parts:
a first one that checks if we can really stop the tick for idle,
and another that actually stops it. Then from the callers in idle,
we check if we can stop the tick and only then we increment idle_calls
and finally relay to the nohz API that won't care about these details
anymore.
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Alessio Igor Bogani <abogani@kernel.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Avi Kivity <avi@redhat.com>
Cc: Chris Metcalf <cmetcalf@tilera.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Daniel Lezcano <daniel.lezcano@linaro.org>
Cc: Geoff Levand <geoff@infradead.org>
Cc: Gilad Ben Yossef <gilad@benyossef.com>
Cc: Hakan Akkan <hakanakkan@gmail.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Kevin Hilman <khilman@ti.com>
Cc: Max Krasnyansky <maxk@qualcomm.com>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephen Hemminger <shemminger@vyatta.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Sven-Thorsten Dietrich <thebigcorporation@gmail.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Now that idle and nohz logics are going to be independant each others,
ts->idle_tick becomes too much a biased name to describe the field that
saves the last scheduled tick on top of which we re-calculate the next
tick to schedule when the timer is restarted.
We want to reuse this even to stop the tick outside idle cases. So let's
rename it to some more generic name: ts->last_tick.
This changes a bit the timer list stat export so we need to increase its
version.
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Alessio Igor Bogani <abogani@kernel.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Avi Kivity <avi@redhat.com>
Cc: Chris Metcalf <cmetcalf@tilera.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Daniel Lezcano <daniel.lezcano@linaro.org>
Cc: Geoff Levand <geoff@infradead.org>
Cc: Gilad Ben Yossef <gilad@benyossef.com>
Cc: Hakan Akkan <hakanakkan@gmail.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Kevin Hilman <khilman@ti.com>
Cc: Max Krasnyansky <maxk@qualcomm.com>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephen Hemminger <shemminger@vyatta.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Sven-Thorsten Dietrich <thebigcorporation@gmail.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
When the timer tick fires, it accounts the new jiffy as either part
of system, user or idle time. This is how we record the cputime
statistics.
But when the tick is stopped from the idle task, we still need
to record the number of jiffies spent tickless until we restart
the tick and fall back to traditional tick-based cputime accounting.
To do this, we take a snapshot of jiffies when the tick is stopped
and compute the difference against the new value of jiffies when
the tick is restarted. Then we account this whole difference to
the idle cputime.
However we are preparing to be able to stop the tick from other places
than idle. So this idle time accounting needs to be performed from
the callers of nohz APIs, not from the nohz APIs themselves because
we now want them to be agnostic against places that stop/restart tick.
Therefore, we pull the tickless idle time accounting out of generic
nohz helpers up to idle entry/exit callers.
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Alessio Igor Bogani <abogani@kernel.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Avi Kivity <avi@redhat.com>
Cc: Chris Metcalf <cmetcalf@tilera.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Daniel Lezcano <daniel.lezcano@linaro.org>
Cc: Geoff Levand <geoff@infradead.org>
Cc: Gilad Ben Yossef <gilad@benyossef.com>
Cc: Hakan Akkan <hakanakkan@gmail.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Kevin Hilman <khilman@ti.com>
Cc: Max Krasnyansky <maxk@qualcomm.com>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephen Hemminger <shemminger@vyatta.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Sven-Thorsten Dietrich <thebigcorporation@gmail.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
As we plan to be able to stop the tick outside the idle task, we
need to prepare for separating nohz logic from idle. As a start,
this pulls the idle sleeping time accounting out of the tick
stop/restart API to the callers on idle entry/exit.
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Alessio Igor Bogani <abogani@kernel.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Avi Kivity <avi@redhat.com>
Cc: Chris Metcalf <cmetcalf@tilera.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Daniel Lezcano <daniel.lezcano@linaro.org>
Cc: Geoff Levand <geoff@infradead.org>
Cc: Gilad Ben Yossef <gilad@benyossef.com>
Cc: Hakan Akkan <hakanakkan@gmail.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Kevin Hilman <khilman@ti.com>
Cc: Max Krasnyansky <maxk@qualcomm.com>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephen Hemminger <shemminger@vyatta.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Sven-Thorsten Dietrich <thebigcorporation@gmail.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Merge RCU fixes from Paul E. McKenney:
" This series has four patches, the major point of which is to eliminate
some slowdowns (including boot-time slowdowns) resulting from some
RCU_FAST_NO_HZ changes. The issue with the changes is that posting timers
from the idle loop has no effect if the CPU has entered dyntick-idle
mode because the CPU has already computed its wakeup time, and posting
a timer does not cause it to be recomputed. The short-term fix is for
RCU to precompute the timeout value so that the CPU's calculation is
correct. "
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Pull leap second timer fix from Thomas Gleixner.
* 'timers-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
timekeeping: Fix CLOCK_MONOTONIC inconsistency during leapsecond
When a CPU is entering dyntick-idle mode, tick_nohz_stop_sched_tick()
calls rcu_needs_cpu() see if RCU needs that CPU, and, if not, computes the
next wakeup time based on the timer wheels. Only later, when actually
entering the idle loop, rcu_prepare_for_idle() will be invoked. In some
cases, rcu_prepare_for_idle() will post timers to wake the CPU back up.
But all for naught: The next wakeup time for the CPU has already been
computed, and posting a timer afterwards does not force that wakeup
time to be recomputed. This means that rcu_prepare_for_idle()'s have
no effect.
This is not a problem on a busy system because something else will wake
up the CPU soon enough. However, on lightly loaded systems, the CPU
might stay asleep for a considerable length of time. If that CPU has
a callback that the rest of the system is waiting on, the system might
run very slowly or (in theory) even hang.
This commit avoids this problem by having rcu_needs_cpu() give
tick_nohz_stop_sched_tick() an estimate of when RCU will need the CPU
to wake back up, which tick_nohz_stop_sched_tick() takes into account
when programming the CPU's wakeup time. An alternative approach is
for rcu_prepare_for_idle() to use hrtimers instead of normal timers,
but timers are much more efficient than are hrtimers for frequently
and repeatedly posting and cancelling a given timer, which is exactly
what RCU_FAST_NO_HZ does.
Reported-by: Pascal Chapperon <pascal.chapperon@wanadoo.fr>
Reported-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Signed-off-by: Paul E. McKenney <paul.mckenney@linaro.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Tested-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Tested-by: Pascal Chapperon <pascal.chapperon@wanadoo.fr>
Pull scheduler fixes from Ingo Molnar.
* 'sched-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
sched: Remove NULL assignment of dattr_cur
sched: Remove the last NULL entry from sched_feat_names
sched: Make sched_feat_names const
sched/rt: Fix SCHED_RR across cgroups
sched: Move nr_cpus_allowed out of 'struct sched_rt_entity'
sched: Make sure to not re-read variables after validation
sched: Fix SD_OVERLAP
sched: Don't try allocating memory from offline nodes
sched/nohz: Fix rq->cpu_load calculations some more
sched/x86: Use cpu_llc_shared_mask(cpu) for coregroup_mask
Commit 6b43ae8a61 (ntp: Fix leap-second hrtimer livelock) broke the
leapsecond update of CLOCK_MONOTONIC. The missing leapsecond update to
wall_to_monotonic causes discontinuities in CLOCK_MONOTONIC.
Adjust wall_to_monotonic when NTP inserted a leapsecond.
Reported-by: Richard Cochran <richardcochran@gmail.com>
Signed-off-by: John Stultz <john.stultz@linaro.org>
Tested-by: Richard Cochran <richardcochran@gmail.com>
Cc: stable@kernel.org
Link: http://lkml.kernel.org/r/1338400497-12420-1-git-send-email-john.stultz@linaro.org
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Follow up on commit 556061b00 ("sched/nohz: Fix rq->cpu_load[]
calculations") since while that fixed the busy case it regressed the
mostly idle case.
Add a callback from the nohz exit to also age the rq->cpu_load[]
array. This closes the hole where either there was no nohz load
balance pass during the nohz, or there was a 'significant' amount of
idle time between the last nohz balance and the nohz exit.
So we'll update unconditionally from the tick to not insert any
accidental 0 load periods while busy, and we try and catch up from
nohz idle balance and nohz exit. Both these are still prone to missing
a jiffy, but that has always been the case.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: pjt@google.com
Cc: Venkatesh Pallipadi <venki@google.com>
Link: http://lkml.kernel.org/n/tip-kt0trz0apodbf84ucjfdbr1a@git.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>