Pull quota and udf updates from Jan Kara:
"The pull contains quota changes which complete unification of XFS and
VFS quota interfaces (so tools can use either interface to manipulate
any filesystem). There's also a patch to support project quotas in
VFS quota subsystem from Li Xi.
Finally there's a bunch of UDF fixes and cleanups and tiny cleanup in
reiserfs & ext3"
* 'for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jack/linux-fs: (21 commits)
udf: Update ctime and mtime when directory is modified
udf: return correct errno for udf_update_inode()
ext3: Remove useless condition in if statement.
vfs: Add general support to enforce project quota limits
reiserfs: fix __RASSERT format string
udf: use int for allocated blocks instead of sector_t
udf: remove redundant buffer_head.h includes
udf: remove else after return in __load_block_bitmap()
udf: remove unused variable in udf_table_free_blocks()
quota: Fix maximum quota limit settings
quota: reorder flags in quota state
quota: paranoia: check quota tree root
quota: optimize i_dquot access
quota: Hook up Q_XSETQLIM for id 0 to ->set_info
xfs: Add support for Q_SETINFO
quota: Make ->set_info use structure with neccesary info to VFS and XFS
quota: Remove ->get_xstate and ->get_xstatev callbacks
gfs2: Convert to using ->get_state callback
xfs: Convert to using ->get_state callback
quota: Wire up Q_GETXSTATE and Q_GETXSTATV calls to work with ->get_state
...
quotad periodically syncs in-memory quotas to the ondisk quota file
and sets the QDF_REFRESH flag so that a subsequent read of a synced
quota is re-read from disk.
gfs2_quota_lock() checks for this flag and sets a 'force' bit to
force re-read from disk if requested. However, there is a race
condition here. It is possible for gfs2_quota_lock() to find the
QDF_REFRESH flag unset (i.e force=0) and quotad comes in immediately
after and syncs the relevant quota and sets the QDF_REFRESH flag.
gfs2_quota_lock() resumes with force=0 and uses the stale in-memory
quota usage values that result in miscalculations.
This patch fixes this race by moving the check for the QDF_REFRESH
flag check further out into the gfs2_quota_lock() process, i.e, in
do_glock(), under the protection of the quota glock.
Signed-off-by: Abhi Das <adas@redhat.com>
Signed-off-by: Bob Peterson <rpeterso@redhat.com>
Acked-by: Steven Whitehouse <swhiteho@redhat.com>
struct gfs2_alloc_parms is passed to gfs2_quota_check() and
gfs2_inplace_reserve() with ap->target containing the number of
blocks being requested for allocation in the current operation.
We add a new field to struct gfs2_alloc_parms called 'allowed'.
gfs2_quota_check() and gfs2_inplace_reserve() return the max
blocks allowed by quota and the max blocks allowed by the chosen
rgrp respectively in 'allowed'.
A new field 'min_target', when non-zero, tells gfs2_quota_check()
and gfs2_inplace_reserve() to not return -EDQUOT/-ENOSPC when
there are atleast 'min_target' blocks allowable/available. The
assumption is that the caller is ok with just 'min_target' blocks
and will likely proceed with allocating them.
Signed-off-by: Abhi Das <adas@redhat.com>
Signed-off-by: Bob Peterson <rpeterso@redhat.com>
Acked-by: Steven Whitehouse <swhiteho@redhat.com>
Use struct gfs2_alloc_parms as an argument to gfs2_quota_check()
and gfs2_quota_lock_check() to check for quota violations while
accounting for the new blocks requested by the current operation
in ap->target.
Previously, the number of new blocks requested during an operation
were not accounted for during quota_check and would allow these
operations to exceed quota. This was not very apparent since most
operations allocated only 1 block at a time and quotas would get
violated in the next operation. i.e. quota excess would only be by
1 block or so. With fallocate, (where we allocate a bunch of blocks
at once) the quota excess is non-trivial and is addressed by this
patch.
Signed-off-by: Abhi Das <adas@redhat.com>
Signed-off-by: Bob Peterson <rpeterso@redhat.com>
Acked-by: Steven Whitehouse <swhiteho@redhat.com>
Currently, the isolate callback passed to the list_lru_walk family of
functions is supposed to just delete an item from the list upon returning
LRU_REMOVED or LRU_REMOVED_RETRY, while nr_items counter is fixed by
__list_lru_walk_one after the callback returns. Since the callback is
allowed to drop the lock after removing an item (it has to return
LRU_REMOVED_RETRY then), the nr_items can be less than the actual number
of elements on the list even if we check them under the lock. This makes
it difficult to move items from one list_lru_one to another, which is
required for per-memcg list_lru reparenting - we can't just splice the
lists, we have to move entries one by one.
This patch therefore introduces helpers that must be used by callback
functions to isolate items instead of raw list_del/list_move. These are
list_lru_isolate and list_lru_isolate_move. They not only remove the
entry from the list, but also fix the nr_items counter, making sure
nr_items always reflects the actual number of elements on the list if
checked under the appropriate lock.
Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Tejun Heo <tj@kernel.org>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Dave Chinner <david@fromorbit.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Kmem accounting of memcg is unusable now, because it lacks slab shrinker
support. That means when we hit the limit we will get ENOMEM w/o any
chance to recover. What we should do then is to call shrink_slab, which
would reclaim old inode/dentry caches from this cgroup. This is what
this patch set is intended to do.
Basically, it does two things. First, it introduces the notion of
per-memcg slab shrinker. A shrinker that wants to reclaim objects per
cgroup should mark itself as SHRINKER_MEMCG_AWARE. Then it will be
passed the memory cgroup to scan from in shrink_control->memcg. For
such shrinkers shrink_slab iterates over the whole cgroup subtree under
the target cgroup and calls the shrinker for each kmem-active memory
cgroup.
Secondly, this patch set makes the list_lru structure per-memcg. It's
done transparently to list_lru users - everything they have to do is to
tell list_lru_init that they want memcg-aware list_lru. Then the
list_lru will automatically distribute objects among per-memcg lists
basing on which cgroup the object is accounted to. This way to make FS
shrinkers (icache, dcache) memcg-aware we only need to make them use
memcg-aware list_lru, and this is what this patch set does.
As before, this patch set only enables per-memcg kmem reclaim when the
pressure goes from memory.limit, not from memory.kmem.limit. Handling
memory.kmem.limit is going to be tricky due to GFP_NOFS allocations, and
it is still unclear whether we will have this knob in the unified
hierarchy.
This patch (of 9):
NUMA aware slab shrinkers use the list_lru structure to distribute
objects coming from different NUMA nodes to different lists. Whenever
such a shrinker needs to count or scan objects from a particular node,
it issues commands like this:
count = list_lru_count_node(lru, sc->nid);
freed = list_lru_walk_node(lru, sc->nid, isolate_func,
isolate_arg, &sc->nr_to_scan);
where sc is an instance of the shrink_control structure passed to it
from vmscan.
To simplify this, let's add special list_lru functions to be used by
shrinkers, list_lru_shrink_count() and list_lru_shrink_walk(), which
consolidate the nid and nr_to_scan arguments in the shrink_control
structure.
This will also allow us to avoid patching shrinkers that use list_lru
when we make shrink_slab() per-memcg - all we will have to do is extend
the shrink_control structure to include the target memcg and make
list_lru_shrink_{count,walk} handle this appropriately.
Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Suggested-by: Dave Chinner <david@fromorbit.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Greg Thelen <gthelen@google.com>
Cc: Glauber Costa <glommer@gmail.com>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently ->get_dqblk() and ->set_dqblk() use struct fs_disk_quota which
tracks space limits and usage in 512-byte blocks. However VFS quotas
track usage in bytes (as some filesystems require that) and we need to
somehow pass this information. Upto now it wasn't a problem because we
didn't do any unit conversion (thus VFS quota routines happily stuck
number of bytes into d_bcount field of struct fd_disk_quota). Only if
you tried to use Q_XGETQUOTA or Q_XSETQLIM for VFS quotas (or Q_GETQUOTA
/ Q_SETQUOTA for XFS quotas), you got bogus results. Hardly anyone
tried this but reportedly some Samba users hit the problem in practice.
So when we want interfaces compatible we need to fix this.
We bite the bullet and define another quota structure used for passing
information from/to ->get_dqblk()/->set_dqblk. It's somewhat sad we have
to have more conversion routines in fs/quota/quota.c and another copying
of quota structure slows down getting of quota information by about 2%
but it seems cleaner than overloading e.g. units of d_bcount to bytes.
CC: stable@vger.kernel.org
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jan Kara <jack@suse.cz>
GFS2 has a transaction glock, which must be grabbed for every
transaction, whose purpose is to deal with freezing the filesystem.
Aside from this involving a large amount of locking, it is very easy to
make the current fsfreeze code hang on unfreezing.
This patch rewrites how gfs2 handles freezing the filesystem. The
transaction glock is removed. In it's place is a freeze glock, which is
cached (but not held) in a shared state by every node in the cluster
when the filesystem is mounted. This lock only needs to be grabbed on
freezing, and actions which need to be safe from freezing, like
recovery.
When a node wants to freeze the filesystem, it grabs this glock
exclusively. When the freeze glock state changes on the nodes (either
from shared to unlocked, or shared to exclusive), the filesystem does a
special log flush. gfs2_log_flush() does all the work for flushing out
the and shutting down the incore log, and then it tries to grab the
freeze glock in a shared state again. Since the filesystem is stuck in
gfs2_log_flush, no new transaction can start, and nothing can be written
to disk. Unfreezing the filesytem simply involes dropping the freeze
glock, allowing gfs2_log_flush() to grab and then release the shared
lock, so it is cached for next time.
However, in order for the unfreezing ioctl to occur, gfs2 needs to get a
shared lock on the filesystem root directory inode to check permissions.
If that glock has already been grabbed exclusively, fsfreeze will be
unable to get the shared lock and unfreeze the filesystem.
In order to allow the unfreeze, this patch makes gfs2 grab a shared lock
on the filesystem root directory during the freeze, and hold it until it
unfreezes the filesystem. The functions which need to grab a shared
lock in order to allow the unfreeze ioctl to be issued now use the lock
grabbed by the freeze code instead.
The freeze and unfreeze code take care to make sure that this shared
lock will not be dropped while another process is using it.
Signed-off-by: Benjamin Marzinski <bmarzins@redhat.com>
Signed-off-by: Steven Whitehouse <swhiteho@redhat.com>
Old values of user quota limits were being used and
could allow users to exceed their allotted quotas.
This patch refreshes the limits to the latest values
so that quotas are enforced correctly.
Resolves: rhbz#1077463
Signed-off-by: Abhi Das <adas@redhat.com>
Signed-off-by: Steven Whitehouse <swhiteho@redhat.com>
ENOSPC was being returned in slot_get inspite of successful
execution of the function. This patch fixes this return
code.
Signed-off-by: Abhi Das <adas@redhat.com>
Signed-off-by: Steven Whitehouse <swhiteho@redhat.com>
Convert a couple of uses of pr_<level> to fs_<level>
Add and use fs_emerg.
Signed-off-by: Joe Perches <joe@perches.com>
Signed-off-by: Steven Whitehouse <swhiteho@redhat.com>
Add pr_fmt, remove embedded "GFS2: " prefixes.
This now consistently emits lower case "gfs2: " for each message.
Other miscellanea around these changes:
o Add missing newlines
o Coalesce formats
o Realign arguments
Signed-off-by: Joe Perches <joe@perches.com>
Signed-off-by: Steven Whitehouse <swhiteho@redhat.com>
-All printk(KERN_foo converted to pr_foo().
-Messages updated to fit in 80 columns.
-fs_macros converted as well.
-fs_printk removed.
Signed-off-by: Fabian Frederick <fabf@skynet.be>
Signed-off-by: Steven Whitehouse <swhiteho@redhat.com>
Use kzalloc and __vmalloc __GFP_ZERO for clean sd_quota_bitmap allocation.
Signed-off-by: Fabian Frederick <fabf@skynet.be>
Signed-off-by: Steven Whitehouse <swhiteho@redhat.com>
Well I don't get the same warning locally as the kbuild
robot, but I guess this should fix the problem, anyway.
Here is the warning:
head: 2d9e72303d
commit: ee2411a8db [19/20] GFS2: Clean up quota slot allocation
config: make ARCH=powerpc allmodconfig
All error/warnings:
fs/gfs2/quota.c: In function 'gfs2_quota_init':
>> fs/gfs2/quota.c:1246:3: error: implicit declaration of function '__vmalloc' [-Werror=implicit-function-declaration]
sdp->sd_quota_bitmap = __vmalloc(bm_size, GFP_NOFS, PAGE_KERNEL);
^
>> fs/gfs2/quota.c:1246:24: warning: assignment makes pointer from integer without a cast [enabled by default]
sdp->sd_quota_bitmap = __vmalloc(bm_size, GFP_NOFS, PAGE_KERNEL);
^
fs/gfs2/quota.c: In function 'gfs2_quota_cleanup':
>> fs/gfs2/quota.c:1361:4: error: implicit declaration of function 'vfree' [-Werror=implicit-function-declaration]
vfree(sdp->sd_quota_bitmap);
Signed-off-by: Steven Whitehouse <swhiteho@redhat.com>
Gradually, the global qd_lock is being used for less and less.
After this patch it will only be used for the per super block
list whose purpose is to allow syncing of changes back to the
master quota file from the local quota changes file. Fixing
up that process to make it more efficient will be the subject
of a later patch, however this patch removes another barrier
to doing that.
Signed-off-by: Steven Whitehouse <swhiteho@redhat.com>
Cc: Abhijith Das <adas@redhat.com>
Quota slot allocation has historically used a vector of pages
and a set of homegrown find/test/set/clear bit functions. Since
the size of the bitmap is likely to be based on the default
qc file size, thats a couple of pages at most. So we ought
to be able to allocate that as a single chunk, with a vmalloc
fallback, just in case of memory fragmentation.
We are then able to use the kernel's own find/test/set/clear
bit functions, rather than rolling our own.
Signed-off-by: Steven Whitehouse <swhiteho@redhat.com>
Cc: Abhijith Das <adas@redhat.com>
While investigating a rather strange bit of code in the quota
clean up function, I spotted that the reason for its existence
was that when remounting read only, we were not stopping the
quotad thread, and thus it was possible for it to still have
a reference to some of the quotas in that case.
This patch moves the logd and quota thread start and stop into
the make_fs_rw/ro functions, so that we now stop those threads
when mounted read only.
This means that quotad will always be stopped before we call
the quota clean up function, and we can thus dispose of the
(rather hackish) code that waits for it to give up its
reference on the quotas.
Signed-off-by: Steven Whitehouse <swhiteho@redhat.com>
Cc: Abhijith Das <adas@redhat.com>
Prior to this patch, GFS2 kept all the quotas for each
super block in a single linked list. This is rather slow
when there are large numbers of quotas.
This patch introduces a hlist_bl based hash table, similar
to the one used for glocks. The initial look up of the quota
is now lockless in the case where it is already cached,
although we still have to take the per quota spinlock in
order to bump the ref count. Either way though, this is a
big improvement on what was there before.
The qd_lock and the per super block list is preserved, for
the time being. However it is intended that since this is no
longer used for its original role, it should be possible to
shrink the number of items on that list in due course and
remove the requirement to take qd_lock in qd_get.
Signed-off-by: Steven Whitehouse <swhiteho@redhat.com>
Cc: Abhijith Das <adas@redhat.com>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
There is only one place this is used, when reading in the quota
changes at mount time. It is not really required and much
simpler to just convert the fields from the on-disk structure
as required.
There should be no functional change as a result of this patch.
Signed-off-by: Steven Whitehouse <swhiteho@redhat.com>
By using the generic list_lru code, we can now separate the
per sb quota list locking from the lru locking. The lru
lock is made into the inner-most lock.
As a result of this new lock order, we may occasionally see
items on the per-sb quota list which are "dead" so that the
two places where we traverse that list are updated to take
account of that.
As a result of this patch, the gfs2 quota shrinker is now
NUMA zone aware, and we are also laying the foundations for
further improvments in due course.
Signed-off-by: Steven Whitehouse <swhiteho@redhat.com>
Signed-off-by: Abhijith Das <adas@redhat.com>
Tested-by: Abhijith Das <adas@redhat.com>
Cc: Dave Chinner <dchinner@redhat.com>
This is a straight forward rename which is in preparation for
introducing the generic list_lru infrastructure in the
following patch.
Signed-off-by: Steven Whitehouse <swhiteho@redhat.com>
Signed-off-by: Abhijith Das <adas@redhat.com>
Tested-by: Abhijith Das <adas@redhat.com>
This patch adds reflink support to the quota data cache. It
looks a bit strange because we still don't have a sensible
split in the lookup by id and the lru list. That is coming in
later patches though.
The intent here is just to swap the current ref count for
reflinks in all cases with as little as possible other change.
Signed-off-by: Steven Whitehouse <swhiteho@redhat.com>
Signed-off-by: Abhijith Das <adas@redhat.com>
Tested-by: Abhijith Das <adas@redhat.com>
Now that gfs2_quota_sync can be potentially called from multiple
threads, we should protect this bit of code, and the sync generation
number in particular in order to ensure that there are no races
when syncing quotas.
Signed-off-by: Steven Whitehouse <swhiteho@redhat.com>
Cc: Abhijith Das <adas@redhat.com>
The function qd_trylock was not a trylock despite its name and
can be inlined into gfs2_quota_unlock in order to make the
code a bit clearer. There should be no functional change as a
result of this patch.
Signed-off-by: Steven Whitehouse <swhiteho@redhat.com>
Cc: Abhijith Das <adas@redhat.com>
There should be no functional change bar the removal of a
test of the MS_READONLY flag which would never be reachable.
This merges the common code from qd_fish and qd_trylock into
a single function and calls it from both those places.
Signed-off-by: Steven Whitehouse <swhiteho@redhat.com>
Cc: Abhijith Das <adas@redhat.com>
There is no need for a paramater which relates to the internals
of quota to be exposed to users. The only possible use would be
to turn it up so large that the memory allocation fails. So lets
remove it and set it to a sensible value which ensures that we
don't ask for multipage allocations.
Currently the size of struct gfs2_holder means that the caluclated
value is identical to the previous default value, so there should
be no functional change.
Signed-off-by: Steven Whitehouse <swhiteho@redhat.com>
Cc: Abhijith Das <adas@redhat.com>
This function is only called twice, and both callers are
quota related, so lets move this function into quota.c and
make it static.
Signed-off-by: Steven Whitehouse <swhiteho@redhat.com>
This patch adds a structure to contain allocation parameters with
the intention of future expansion of this structure. The idea is
that we should be able to add more information about the allocation
in the future in order to allow the allocator to make a better job
of placing the requests on-disk.
There is no functional difference from applying this patch.
Signed-off-by: Steven Whitehouse <swhiteho@redhat.com>
Convert the filesystem shrinkers to use the new API, and standardise some
of the behaviours of the shrinkers at the same time. For example,
nr_to_scan means the number of objects to scan, not the number of objects
to free.
I refactored the CIFS idmap shrinker a little - it really needs to be
broken up into a shrinker per tree and keep an item count with the tree
root so that we don't need to walk the tree every time the shrinker needs
to count the number of objects in the tree (i.e. all the time under
memory pressure).
[glommer@openvz.org: fixes for ext4, ubifs, nfs, cifs and glock. Fixes are needed mainly due to new code merged in the tree]
[assorted fixes folded in]
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Glauber Costa <glommer@openvz.org>
Acked-by: Mel Gorman <mgorman@suse.de>
Acked-by: Artem Bityutskiy <artem.bityutskiy@linux.intel.com>
Acked-by: Jan Kara <jack@suse.cz>
Acked-by: Steven Whitehouse <swhiteho@redhat.com>
Cc: Adrian Hunter <adrian.hunter@intel.com>
Cc: "Theodore Ts'o" <tytso@mit.edu>
Cc: Adrian Hunter <adrian.hunter@intel.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Artem Bityutskiy <artem.bityutskiy@linux.intel.com>
Cc: Arve Hjønnevåg <arve@android.com>
Cc: Carlos Maiolino <cmaiolino@redhat.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Chuck Lever <chuck.lever@oracle.com>
Cc: Daniel Vetter <daniel.vetter@ffwll.ch>
Cc: David Rientjes <rientjes@google.com>
Cc: Gleb Natapov <gleb@redhat.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: J. Bruce Fields <bfields@redhat.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Jerome Glisse <jglisse@redhat.com>
Cc: John Stultz <john.stultz@linaro.org>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Kent Overstreet <koverstreet@google.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Marcelo Tosatti <mtosatti@redhat.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Steven Whitehouse <swhiteho@redhat.com>
Cc: Thomas Hellstrom <thellstrom@vmware.com>
Cc: Trond Myklebust <Trond.Myklebust@netapp.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
The sysctl knob sysctl_vfs_cache_pressure is used to determine which
percentage of the shrinkable objects in our cache we should actively try
to shrink.
It works great in situations in which we have many objects (at least more
than 100), because the aproximation errors will be negligible. But if
this is not the case, specially when total_objects < 100, we may end up
concluding that we have no objects at all (total / 100 = 0, if total <
100).
This is certainly not the biggest killer in the world, but may matter in
very low kernel memory situations.
Signed-off-by: Glauber Costa <glommer@openvz.org>
Reviewed-by: Carlos Maiolino <cmaiolino@redhat.com>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Acked-by: Mel Gorman <mgorman@suse.de>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: "Theodore Ts'o" <tytso@mit.edu>
Cc: Adrian Hunter <adrian.hunter@intel.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Artem Bityutskiy <artem.bityutskiy@linux.intel.com>
Cc: Arve Hjønnevåg <arve@android.com>
Cc: Carlos Maiolino <cmaiolino@redhat.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Chuck Lever <chuck.lever@oracle.com>
Cc: Daniel Vetter <daniel.vetter@ffwll.ch>
Cc: David Rientjes <rientjes@google.com>
Cc: Gleb Natapov <gleb@redhat.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: J. Bruce Fields <bfields@redhat.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Jerome Glisse <jglisse@redhat.com>
Cc: John Stultz <john.stultz@linaro.org>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Kent Overstreet <koverstreet@google.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Marcelo Tosatti <mtosatti@redhat.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Steven Whitehouse <swhiteho@redhat.com>
Cc: Thomas Hellstrom <thellstrom@vmware.com>
Cc: Trond Myklebust <Trond.Myklebust@netapp.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
This patch fixes two regression problems that Abhi found in the
GFS2 quota code.
Signed-off-by: Bob Peterson <rpeterso@redhat.com>
Signed-off-by: Steven Whitehouse <swhiteho@redhat.com>
Pull user namespace and namespace infrastructure changes from Eric W Biederman:
"This set of changes starts with a few small enhnacements to the user
namespace. reboot support, allowing more arbitrary mappings, and
support for mounting devpts, ramfs, tmpfs, and mqueuefs as just the
user namespace root.
I do my best to document that if you care about limiting your
unprivileged users that when you have the user namespace support
enabled you will need to enable memory control groups.
There is a minor bug fix to prevent overflowing the stack if someone
creates way too many user namespaces.
The bulk of the changes are a continuation of the kuid/kgid push down
work through the filesystems. These changes make using uids and gids
typesafe which ensures that these filesystems are safe to use when
multiple user namespaces are in use. The filesystems converted for
3.9 are ceph, 9p, afs, ocfs2, gfs2, ncpfs, nfs, nfsd, and cifs. The
changes for these filesystems were a little more involved so I split
the changes into smaller hopefully obviously correct changes.
XFS is the only filesystem that remains. I was hoping I could get
that in this release so that user namespace support would be enabled
with an allyesconfig or an allmodconfig but it looks like the xfs
changes need another couple of days before it they are ready."
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/ebiederm/user-namespace: (93 commits)
cifs: Enable building with user namespaces enabled.
cifs: Convert struct cifs_ses to use a kuid_t and a kgid_t
cifs: Convert struct cifs_sb_info to use kuids and kgids
cifs: Modify struct smb_vol to use kuids and kgids
cifs: Convert struct cifsFileInfo to use a kuid
cifs: Convert struct cifs_fattr to use kuid and kgids
cifs: Convert struct tcon_link to use a kuid.
cifs: Modify struct cifs_unix_set_info_args to hold a kuid_t and a kgid_t
cifs: Convert from a kuid before printing current_fsuid
cifs: Use kuids and kgids SID to uid/gid mapping
cifs: Pass GLOBAL_ROOT_UID and GLOBAL_ROOT_GID to keyring_alloc
cifs: Use BUILD_BUG_ON to validate uids and gids are the same size
cifs: Override unmappable incoming uids and gids
nfsd: Enable building with user namespaces enabled.
nfsd: Properly compare and initialize kuids and kgids
nfsd: Store ex_anon_uid and ex_anon_gid as kuids and kgids
nfsd: Modify nfsd4_cb_sec to use kuids and kgids
nfsd: Handle kuids and kgids in the nfs4acl to posix_acl conversion
nfsd: Convert nfsxdr to use kuids and kgids
nfsd: Convert nfs3xdr to use kuids and kgids
...
Where kuid_t values are compared use uid_eq and where kgid_t values
are compared use gid_eq. This is unfortunately necessary because
of the type safety that keeps someone from accidentally mixing
kuids and kgids with other types.
Cc: Steven Whitehouse <swhiteho@redhat.com>
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
Remove the QUOTA_USER and QUOTA_GRUP defines. Remove
the last vestigal users of QUOTA_USER and QUOTA_GROUP.
Now that struct kqid is used throughout the gfs2 quota
code the need there is to use QUOTA_USER and QUOTA_GROUP
and the defines are just extraneous and confusing.
Cc: Steven Whitehouse <swhiteho@redhat.com>
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
- Change qd_id in struct gfs2_qutoa_data to struct kqid.
- Remove the now unnecessary QDF_USER bit field in qd_flags.
- Propopoage this change through the code generally making
things simpler along the way.
Cc: Steven Whitehouse <swhiteho@redhat.com>
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
- In quota_refresh_user_store convert the user supplied uid
into a kqid and pass it to gfs2_quota_refresh.
- In quota_refresh_group_store convert the user supplied gid
into a kqid and pass it to gfs2_quota_refresh.
Cc: Steven Whitehouse <swhiteho@redhat.com>
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
Both qd_alloc and qd2offset perform the exact same computation
to get an index from a gfs2_quota_data. Make life a little
simpler and factor out this index computation.
Cc: Steven Whitehouse <swhiteho@redhat.com>
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
When a quota is queried return the uid or the gid in the mapped into
the caller's user namespace. In addition perform the munged version
of the mapping so that instead of -1 a value that does not map is
reported as the overflowuid or the overflowgid.
Cc: Steven Whitehouse <swhiteho@redhat.com>
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
Split NO_QUOTA_CHANGE into NO_UID_QUTOA_CHANGE and NO_GID_QUTOA_CHANGE
so the constants may be well typed.
Cc: Steven Whitehouse <swhiteho@redhat.com>
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
In set_dqblk it is an error to look at fdq->d_id or fdq->d_flags.
Userspace quota applications do not set these fields when calling
quotactl(Q_XSETQLIM,...), and the kernel does not set those fields
when quota_setquota calls set_dqblk.
gfs2 never looks at fdq->d_id or fdq->d_flags after checking
to see if they match the id and type supplied to set_dqblk.
No other linux filesystem in set_dqblk looks at either fdq->d_id
or fdq->d_flags.
Therefore remove these bogus checks from gfs2 and allow normal
quota setting applications to work.
Cc: Steven Whitehouse <swhiteho@redhat.com>
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
There is little common content in gfs2_trans_add_bh() between the data
and meta classes by the time that the functions which it calls are
taken into account. The intent here is to split this into two
separate functions. Stage one is to introduce gfs2_trans_add_data()
and gfs2_trans_add_meta() and update the callers accordingly.
Later patches will then pull in the content of gfs2_trans_add_bh()
and its dependent functions in order to clean up the code in this
area.
Signed-off-by: Steven Whitehouse <swhiteho@redhat.com>
The lksb struct already contains a pointer to the lvb,
so another directly from the glock struct is not needed.
Signed-off-by: David Teigland <teigland@redhat.com>
Signed-off-by: Steven Whitehouse <swhiteho@redhat.com>