-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2.0.19 (GNU/Linux)
iQEcBAABAgAGBQJR0K2gAAoJEHm+PkMAQRiGWsEH+gMZSN1qRm34hZ82q1Tx7HvL
Eb/Gsl3Qw/7G2TlTqgjBUs36IdqV9O2cui/aa3/TfXvdvrx+0GlhRkEwQPc+ygcO
Mvoyoke4tT4+4jVFdCg1J8avREsa28/6oaHs0ZZxuVmJBBLTJH7aXaNsGn6eU1q9
9+p798MQis6naIiPC63somlZcCIiBhsuWCPWpEfLMn8G1HWAFTM3xXIbNBqe/brS
bmIOfhomlIZ5dcdaXGvjtP3+KJhkNDwhkPC4tVYu8JqqgSlrE+a+EGyEuuGqKk10
U+swiqyuD31uBI9ga54u/2FzSqDiAu6YOcMXevjo/m3g9XLdYbYLvN+nvN8alCQ=
=Ob6Z
-----END PGP SIGNATURE-----
Merge tag 'v3.10' into next
Merge 3.10 in order to get some of the last minute powerpc
changes, resolve conflicts and add additional fixes on top
of them.
This will be later used by powerpc THP support. In powerpc we want to use
pgtable for storing the hash index values. So instead of adding them to
mm_context list, we would like to store them in the second half of pmd
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Reviewed-by: Andrea Arcangeli <aarcange@redhat.com>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
This fixes a race where a cpu may re-load a tlb from a stale tsb right
after it has been flushed by a remote function call.
I still see some instability when stressing the system with parallel
kernel builds while creating memory pressure by writing to
/proc/sys/vm/nr_hugepages, but this patch improves the stability
significantly.
Signed-off-by: Dave Kleikamp <dave.kleikamp@oracle.com>
Acked-by: Bob Picco <bob.picco@oracle.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
As reported by Dave Kleikamp, when we emit cross calls to do batched
TLB flush processing we have a race because we do not synchronize on
the sibling cpus completing the cross call.
So meanwhile the TLB batch can be reset (tb->tlb_nr set to zero, etc.)
and either flushes are missed or flushes will flush the wrong
addresses.
Fix this by using generic infrastructure to synchonize on the
completion of the cross call.
This first required getting the flush_tlb_pending() call out from
switch_to() which operates with locks held and interrupts disabled.
The problem is that smp_call_function_many() cannot be invoked with
IRQs disabled and this is explicitly checked for with WARN_ON_ONCE().
We get the batch processing outside of locked IRQ disabled sections by
using some ideas from the powerpc port. Namely, we only batch inside
of arch_{enter,leave}_lazy_mmu_mode() calls. If we're not in such a
region, we flush TLBs synchronously.
1) Get rid of xcall_flush_tlb_pending and per-cpu type
implementations.
2) Do TLB batch cross calls instead via:
smp_call_function_many()
tlb_pending_func()
__flush_tlb_pending()
3) Batch only in lazy mmu sequences:
a) Add 'active' member to struct tlb_batch
b) Define __HAVE_ARCH_ENTER_LAZY_MMU_MODE
c) Set 'active' in arch_enter_lazy_mmu_mode()
d) Run batch and clear 'active' in arch_leave_lazy_mmu_mode()
e) Check 'active' in tlb_batch_add_one() and do a synchronous
flush if it's clear.
4) Add infrastructure for synchronous TLB page flushes.
a) Implement __flush_tlb_page and per-cpu variants, patch
as needed.
b) Likewise for xcall_flush_tlb_page.
c) Implement smp_flush_tlb_page() to invoke the cross-call.
d) Wire up global_flush_tlb_page() to the right routine based
upon CONFIG_SMP
5) It turns out that singleton batches are very common, 2 out of every
3 batch flushes have only a single entry in them.
The batch flush waiting is very expensive, both because of the poll
on sibling cpu completeion, as well as because passing the tlb batch
pointer to the sibling cpus invokes a shared memory dereference.
Therefore, in flush_tlb_pending(), if there is only one entry in
the batch perform a completely asynchronous global_flush_tlb_page()
instead.
Reported-by: Dave Kleikamp <dave.kleikamp@oracle.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Acked-by: Dave Kleikamp <dave.kleikamp@oracle.com>
If our first THP installation for an MM is via the set_pmd_at() done
during khugepaged's collapsing we'll end up in tsb_grow() trying to do
a GFP_KERNEL allocation with several locks held.
Simply using GFP_ATOMIC in this situation is not the best option
because we really can't have this fail, so we'd really like to keep
this an order 0 GFP_KERNEL allocation if possible.
Also, doing the TSB allocation from khugepaged is a really bad idea
because we'll allocate it potentially from the wrong NUMA node in that
context.
So what we do is defer the hugepage TSB allocation until the first TLB
miss we take on a hugepage. This is slightly tricky because we have
to handle two unusual cases:
1) Taking the first hugepage TLB miss in the window trap handler.
We'll call the winfix_trampoline when that is detected.
2) An initial TSB allocation via TLB miss races with a hugetlb
fault on another cpu running the same MM. We handle this by
unconditionally loading the TSB we see into the current cpu
even if it's non-NULL at hugetlb_setup time.
Reported-by: Meelis Roos <mroos@ut.ee>
Signed-off-by: David S. Miller <davem@davemloft.net>
This is relatively easy since PMD's now cover exactly 4MB of memory.
Our PMD entries are 32-bits each, so we use a special encoding. The
lowest bit, PMD_ISHUGE, determines the interpretation. This is possible
because sparc64's page tables are purely software entities so we can use
whatever encoding scheme we want. We just have to make the TLB miss
assembler page table walkers aware of the layout.
set_pmd_at() works much like set_pte_at() but it has to operate in two
page from a table of non-huge PTEs, so we have to queue up TLB flushes
based upon what mappings are valid in the PTE table. In the second regime
we are going from huge-page to non-huge-page, and in that case we need
only queue up a single TLB flush to push out the huge page mapping.
We still have 5 bits remaining in the huge PMD encoding so we can very
likely support any new pieces of THP state tracking that might get added
in the future.
With lots of help from Johannes Weiner.
Signed-off-by: David S. Miller <davem@davemloft.net>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Gerald Schaefer <gerald.schaefer@de.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Rework the sparc mmu_gather usage to conform to the new world order :-)
Sparc mmu_gather does two things:
- tracks vaddrs to unhash
- tracks pages to free
Split these two things like powerpc has done and keep the vaddrs
in per-cpu data structures and flush them on context switch.
The remaining bits can then use the generic mmu_gather.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Acked-by: David Miller <davem@davemloft.net>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Russell King <rmk@arm.linux.org.uk>
Cc: Paul Mundt <lethal@linux-sh.org>
Cc: Jeff Dike <jdike@addtoit.com>
Cc: Richard Weinberger <richard@nod.at>
Cc: Tony Luck <tony.luck@intel.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Nick Piggin <npiggin@kernel.dk>
Cc: Namhyung Kim <namhyung@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
- move all sparc64/mm/ files to arch/sparc/mm/
- commonly named files are named _64.c
- add files to sparc/mm/Makefile preserving link order
- delete now unused sparc64/mm/Makefile
- sparc64 now finds mm/ in sparc
Signed-off-by: Sam Ravnborg <sam@ravnborg.org>
Signed-off-by: David S. Miller <davem@davemloft.net>