It's used both for client and server hosts; we can't do nlmclnt_release_host()
on failure exits, since the host might need nlmsvc_release_host(), with BUG_ON()
for calling the wrong one. Makes life simpler for callers, actually...
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
lockd: server returns status 50331648
it's quite hard to understand that number in this message is 3 in big endian
Signed-off-by: Vasily Averin <vvs@sw.ru>
Signed-off-by: Trond Myklebust <Trond.Myklebust@netapp.com>
If the NLM daemon is killed on the NFS server, we can currently end up
hanging forever on an 'unlock' request, instead of aborting. Basically,
if the rpcbind request fails, or the server keeps returning garbage, we
really want to quit instead of retrying.
Tested-by: Vasily Averin <vvs@sw.ru>
Signed-off-by: Trond Myklebust <Trond.Myklebust@netapp.com>
Cc: stable@kernel.org
NFS clients don't need the garbage collection processing that is
performed on nlm_host structures. The client picks up an nlm_host at
mount time and holds a reference to it until the file system is
unmounted.
Servers, on the other hand, don't have a precise way to tell when an
nlm_host is no longer being used, so zero refcount nlm_host entries
are left to expire in the cache after a time.
Basically there's nothing holding a reference to an nlm_host between
individual server-side NLM requests, but we can't afford the expense
of recreating them for every new NLM request from a client. The
nlm_host cache adds some lifetime hysteresis to entries in the cache
so the next time a particular nlm_host is needed, it's likely to be
discovered by a lookup rather than created from whole cloth.
With the new implementation, client nlm_host cache items are no longer
garbage collected, and are destroyed directly by a new release
function specialized for client entries, nlmclnt_release_host(). They
are cached in their own data structure, and have their own lookup
logic, simplified and specialized for client nlm_host entries.
However, the client nlm_host cache still shares reboot recovery logic
with the server nlm_host cache. The NSM "peer rebooted" downcall for
clients and servers still come through the same RPC call. This is a
legacy formal API that would be difficult to alter, and besides, the
user space NSM implementation can't tell the difference between peers
that are clients or servers.
For this reason, the client cache continues to share the
nlm_host_mutex (and reboot recovery logic) with the server cache.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: Trond Myklebust <Trond.Myklebust@netapp.com>
The nlm_release_call() function is invoked from both the server and
the client side. We're about to introduce a distinct server- and
client-side nlm_release_host(), so nlm_release_call() must first be
split into a client-side and a server-side version.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: Trond Myklebust <Trond.Myklebust@netapp.com>
The big kernel lock has been removed from all these files at some point,
leaving only the #include.
Remove this too as a cleanup.
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This patch removes all calls to lock_kernel() from the client. This patch
should be applied after the "fs/lock.c prepare for BKL removal" patch submitted
by Arnd Bergmann on September 18.
Signed-off-by: Bryan Schumaker <bjschuma@netapp.com>
Signed-off-by: Trond Myklebust <Trond.Myklebust@netapp.com>
percpu.h is included by sched.h and module.h and thus ends up being
included when building most .c files. percpu.h includes slab.h which
in turn includes gfp.h making everything defined by the two files
universally available and complicating inclusion dependencies.
percpu.h -> slab.h dependency is about to be removed. Prepare for
this change by updating users of gfp and slab facilities include those
headers directly instead of assuming availability. As this conversion
needs to touch large number of source files, the following script is
used as the basis of conversion.
http://userweb.kernel.org/~tj/misc/slabh-sweep.py
The script does the followings.
* Scan files for gfp and slab usages and update includes such that
only the necessary includes are there. ie. if only gfp is used,
gfp.h, if slab is used, slab.h.
* When the script inserts a new include, it looks at the include
blocks and try to put the new include such that its order conforms
to its surrounding. It's put in the include block which contains
core kernel includes, in the same order that the rest are ordered -
alphabetical, Christmas tree, rev-Xmas-tree or at the end if there
doesn't seem to be any matching order.
* If the script can't find a place to put a new include (mostly
because the file doesn't have fitting include block), it prints out
an error message indicating which .h file needs to be added to the
file.
The conversion was done in the following steps.
1. The initial automatic conversion of all .c files updated slightly
over 4000 files, deleting around 700 includes and adding ~480 gfp.h
and ~3000 slab.h inclusions. The script emitted errors for ~400
files.
2. Each error was manually checked. Some didn't need the inclusion,
some needed manual addition while adding it to implementation .h or
embedding .c file was more appropriate for others. This step added
inclusions to around 150 files.
3. The script was run again and the output was compared to the edits
from #2 to make sure no file was left behind.
4. Several build tests were done and a couple of problems were fixed.
e.g. lib/decompress_*.c used malloc/free() wrappers around slab
APIs requiring slab.h to be added manually.
5. The script was run on all .h files but without automatically
editing them as sprinkling gfp.h and slab.h inclusions around .h
files could easily lead to inclusion dependency hell. Most gfp.h
inclusion directives were ignored as stuff from gfp.h was usually
wildly available and often used in preprocessor macros. Each
slab.h inclusion directive was examined and added manually as
necessary.
6. percpu.h was updated not to include slab.h.
7. Build test were done on the following configurations and failures
were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my
distributed build env didn't work with gcov compiles) and a few
more options had to be turned off depending on archs to make things
build (like ipr on powerpc/64 which failed due to missing writeq).
* x86 and x86_64 UP and SMP allmodconfig and a custom test config.
* powerpc and powerpc64 SMP allmodconfig
* sparc and sparc64 SMP allmodconfig
* ia64 SMP allmodconfig
* s390 SMP allmodconfig
* alpha SMP allmodconfig
* um on x86_64 SMP allmodconfig
8. percpu.h modifications were reverted so that it could be applied as
a separate patch and serve as bisection point.
Given the fact that I had only a couple of failures from tests on step
6, I'm fairly confident about the coverage of this conversion patch.
If there is a breakage, it's likely to be something in one of the arch
headers which should be easily discoverable easily on most builds of
the specific arch.
Signed-off-by: Tejun Heo <tj@kernel.org>
Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
* Remove smp_lock.h from files which don't need it (including some headers!)
* Add smp_lock.h to files which do need it
* Make smp_lock.h include conditional in hardirq.h
It's needed only for one kernel_locked() usage which is under CONFIG_PREEMPT
This will make hardirq.h inclusion cheaper for every PREEMPT=n config
(which includes allmodconfig/allyesconfig, BTW)
Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When rpc.statd starts up in user space at boot time, it attempts to
write the latest NSM local state number into
/proc/sys/fs/nfs/nsm_local_state.
If lockd.ko isn't loaded yet (as is the case in most configurations),
that file doesn't exist, thus the kernel's NSM state remains set to
its initial value of zero during lockd operation.
This is a problem because rpc.statd and lockd use the NSM state number
to prevent repeated lock recovery on rebooted hosts. If lockd sends
a zero NSM state, but then a delayed SM_NOTIFY with a real NSM state
number is received, there is no way for lockd or rpc.statd to
distinguish that stale SM_NOTIFY from an actual reboot. Thus lock
recovery could be performed after the rebooted host has already
started reclaiming locks, and those locks will be lost.
We could change /etc/init.d/nfslock so it always modprobes lockd.ko
before starting rpc.statd. However, if lockd.ko is ever unloaded
and reloaded, we are back at square one, since the NSM state is not
preserved across an unload/reload cycle. This may happen frequently
on clients that use automounter. A period of NFS inactivity causes
lockd.ko to be unloaded, and the kernel loses its NSM state setting.
Instead, let's use the fact that rpc.statd plants the local system's
NSM state in every SM_MON (and SM_UNMON) reply. lockd performs a
synchronous SM_MON upcall to the local rpc.statd _before_ sending its
first NLM request to a new remote. This would permit rpc.statd to
provide the current NSM state to lockd, even after lockd.ko had been
unloaded and reloaded.
Note that NLMPROC_LOCK arguments are constructed before the
nsm_monitor() call, so we have to rearrange argument construction very
slightly to make this all work out.
And, the kernel appears to treat NSM state as a u32 (see struct
nlm_args and nsm_res). Make nsm_local_state a u32 as well, to ensure
we don't get bogus comparison results.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: Trond Myklebust <Trond.Myklebust@netapp.com>
Clean up: The include/linux/lockd/sm_inter.h header is nearly empty
now. Remove it.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: J. Bruce Fields <bfields@citi.umich.edu>
The nsm_monitor() function already generates a printk(KERN_NOTICE) if
the SM_MON upcall fails, so the similar printk() in the nlmclnt_lock()
function is redundant.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: J. Bruce Fields <bfields@citi.umich.edu>
Fix nlm_fopen() to return NLM_FAILED (or NLM_LCK_DENIED_NOLOCKS) instead
of NLM_LCK_DENIED. The latter means the lock request failed because of a
conflicting lock (i.e. a temporary error), which is wrong in this case.
Also fix the client to return ENOLCK instead of EAGAIN if a blocking lock
request returns with NLM_LOCK_DENIED.
Signed-off-by: Miklos Szeredi <mszeredi@suse.cz>
Cc: Trond Myklebust <trond.myklebust@fys.uio.no>
Cc: "J. Bruce Fields" <bfields@fieldses.org>
Cc: Matthew Wilcox <matthew@wil.cx>
Cc: David Teigland <teigland@redhat.com>
Cc: Christoph Hellwig <hch@lst.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Push it into those callback functions that actually need it.
Note that all the NFS operations use their own locking, so don't need the
BKL. Ditto for the rpcbind client.
Signed-off-by: Trond Myklebust <Trond.Myklebust@netapp.com>
fcntl(F_GETLK) on an nfs client incorrectly returns
the values for the conflicting lock. fl_len value is
always 1.
If the conflicting lock is (0, 4095) the F_GETLK
request for (1024, 10) returns (0, 1), which doesn't
even cover the requested range, and is quite confusing.
The fix is trivial, set fl_end from the fl_end value
recieved from the nfs server.
Signed-off-by: Felix Blyakher <felixb@sgi.com>
Signed-off-by: "J. Bruce Fields" <bfields@citi.umich.edu>
Signed-off-by: Trond Myklebust <Trond.Myklebust@netapp.com>
__FUNCTION__ is gcc-specific, use __func__
Signed-off-by: Harvey Harrison <harvey.harrison@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Now that we've added the 'generic' credentials (that are independent of the
rpc_client) to the nfs_open_context, we can use those in the NLM client to
ensure that the lock/unlock requests are authenticated to whoever
originally opened the file.
Signed-off-by: Trond Myklebust <Trond.Myklebust@netapp.com>
We shouldn't remove the lock from the list of blocked locks until the
CANCEL call has completed since we may be racing with a GRANTED callback.
Also ensure that we send an UNLOCK if the CANCEL request failed. Normally
that should only happen if the process gets hit with a fatal signal.
Signed-off-by: Trond Myklebust <Trond.Myklebust@netapp.com>
Currently, it returns success as long as the RPC call was sent. We'd like
to know if the CANCEL operation succeeded on the server.
Signed-off-by: Trond Myklebust <Trond.Myklebust@netapp.com>
Peter Staubach comments:
> In the course of investigating testing failures in the locking phase of
> the Connectathon testsuite, I discovered a couple of things. One was
> that one of the tests in the locking tests was racy when it didn't seem
> to need to be and two, that the NFS client asynchronously releases locks
> when a process is exiting.
...
> The Single UNIX Specification Version 3 specifies that: "All locks
> associated with a file for a given process shall be removed when a file
> descriptor for that file is closed by that process or the process holding
> that file descriptor terminates.".
>
> This does not specify whether those locks must be released prior to the
> completion of the exit processing for the process or not. However,
> general assumptions seem to be that those locks will be released. This
> leads to more deterministic behavior under normal circumstances.
The following patch converts the NFSv2/v3 locking code to use the same
mechanism as NFSv4 for sending asynchronous RPC calls and then waiting for
them to complete. This ensures that the UNLOCK and CANCEL RPC calls will
complete even if the user interrupts the call, yet satisfies the
above request for synchronous behaviour on process exit.
Signed-off-by: Trond Myklebust <Trond.Myklebust@netapp.com>
When we replace the existing synchronous RPC calls with asynchronous calls,
the reference count will be needed in order to allow us to examine the
result of the RPC call.
Signed-off-by: Trond Myklebust <Trond.Myklebust@netapp.com>
Also fix up nlmclnt_lock() so that it doesn't pass modified versions of
fl->fl_flags to nlmclnt_cancel() and other helpers.
Signed-off-by: Trond Myklebust <Trond.Myklebust@netapp.com>
Now that each NFS mount point caches its own nlm_host structure, it can be
passed to nlmclnt_proc() for each lock request. By pinning an nlm_host for
each mount point, we trade the overhead of looking up or creating a fresh
nlm_host struct during every NLM procedure call for a little extra memory.
We also restrict the nlmclnt_proc symbol to limit the use of this call to
in-tree modules.
Note that nlm_lookup_host() (just removed from the client's per-request
NLM processing) could also trigger an nlm_host garbage collection. Now
client-side nlm_host garbage collection occurs only during NFS mount
processing. Since the NFS client now holds a reference on these nlm_host
structures, they wouldn't have been affected by garbage collection
anyway.
Given that nlm_lookup_host() reorders the global nlm_host chain after
every successful lookup, and that a garbage collection could be triggered
during the call, we've removed a significant amount of per-NLM-request
CPU processing overhead.
Sidebar: there are only a few remaining references to the internals of
NFS inodes in the client-side NLM code. The only references I found are
related to extracting or comparing the inode's file handle via NFS_FH().
One is in nlmclnt_grant(); the other is in nlmclnt_setlockargs().
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: Trond Myklebust <Trond.Myklebust@netapp.com>
Remove includes of <linux/smp_lock.h> where it is not used/needed.
Suggested by Al Viro.
Builds cleanly on x86_64, i386, alpha, ia64, powerpc, sparc,
sparc64, and arm (all 59 defconfigs).
Signed-off-by: Randy Dunlap <randy.dunlap@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
rpc_call_async() will always call rpc_release_calldata(), so it is an
error for __nlm_async_call() to do so as well.
Signed-off-by: Trond Myklebust <Trond.Myklebust@netapp.com>
Annotated, all places switched to keeping status net-endian.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Acked-by: Trond Myklebust <Trond.Myklebust@netapp.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Move process freezing functions from include/linux/sched.h to freezer.h, so
that modifications to the freezer or the kernel configuration don't require
recompiling just about everything.
[akpm@osdl.org: fix ueagle driver]
Signed-off-by: Nigel Cunningham <nigel@suspend2.net>
Cc: "Rafael J. Wysocki" <rjw@sisk.pl>
Cc: Pavel Machek <pavel@ucw.cz>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
The tk_pid field is an unsigned short. The proper print format specifier for
that type is %5u, not %4d.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: Trond Myklebust <Trond.Myklebust@netapp.com>
The way we incremented the NLM cookie in nlmclnt_next_cookie was not thread
safe. This patch changes the counter to an atomic_t
Signed-off-by: Olaf Kirch <okir@suse.de>
Signed-off-by: Neil Brown <neilb@suse.de>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
This patch adds the peer's hostname (and name length) to all calls to
nlm*_lookup_host functions. A subsequent patch will make use of these (is
requested by a sysctl).
Signed-off-by: Olaf Kirch <okir@suse.de>
Signed-off-by: Neil Brown <neilb@suse.de>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
This patch moves all checks of the h_monitored flag into the
nsm_monitor/unmonitor functions. A subsequent patch will replace the
mechanism by which we mark a host as being monitored.
There is still one occurence of h_monitored outside of mon.c and that is in
clntlock.c where we respond to a reboot. The subsequent patch will modify
this too.
Signed-off-by: Olaf Kirch <okir@suse.de>
Signed-off-by: Neil Brown <neilb@suse.de>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Replace references to system_utsname to the per-process uts namespace
where appropriate. This includes things like uname.
Changes: Per Eric Biederman's comments, use the per-process uts namespace
for ELF_PLATFORM, sunrpc, and parts of net/ipv4/ipconfig.c
[jdike@addtoit.com: UML fix]
[clg@fr.ibm.com: cleanup]
[akpm@osdl.org: build fix]
Signed-off-by: Serge E. Hallyn <serue@us.ibm.com>
Cc: Kirill Korotaev <dev@openvz.org>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: Herbert Poetzl <herbert@13thfloor.at>
Cc: Andrey Savochkin <saw@sw.ru>
Signed-off-by: Cedric Le Goater <clg@fr.ibm.com>
Cc: Jeff Dike <jdike@addtoit.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Hide the details of how the RPC client stores remote peer addresses from
the Network Lock Manager.
Test plan:
Destructive testing (unplugging the network temporarily). Connectathon
with UDP and TCP.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: Trond Myklebust <Trond.Myklebust@netapp.com>
Use FL_ACCESS flag to test and/or wait for local locks before we try
requesting a lock from the server
Signed-off-by: Trond Myklebust <Trond.Myklebust@netapp.com>
Use the new behaviour of {flock,posix}_file_lock(F_UNLCK) to determine if
we held a lock, and only send the RPC request to the server if this was the
case.
Signed-off-by: Trond Myklebust <Trond.Myklebust@netapp.com>
Currently it is possible for a task to remove its locks at the same time as
the NLM recovery thread is trying to recover them. This quickly leads to an
Oops.
Protect the locks using an rw semaphore while they are being recovered.
Signed-off-by: Trond Myklebust <Trond.Myklebust@netapp.com>
The struct file_lock does not carry a properly initialised lock,
so don't copy it as if it were.
Signed-off-by: Trond Myklebust <Trond.Myklebust@netapp.com>