kernel-ark/include/asm-sparc/viking.h

254 lines
8.1 KiB
C
Raw Normal View History

/* $Id: viking.h,v 1.19 1997/04/20 14:11:48 ecd Exp $
* viking.h: Defines specific to the GNU/Viking MBUS module.
* This is SRMMU stuff.
*
* Copyright (C) 1995 David S. Miller (davem@caip.rutgers.edu)
*/
#ifndef _SPARC_VIKING_H
#define _SPARC_VIKING_H
#include <asm/asi.h>
#include <asm/mxcc.h>
#include <asm/pgtsrmmu.h>
/* Bits in the SRMMU control register for GNU/Viking modules.
*
* -----------------------------------------------------------
* |impl-vers| RSV |TC|AC|SP|BM|PC|MBM|SB|IC|DC|PSO|RSV|NF|ME|
* -----------------------------------------------------------
* 31 24 23-17 16 15 14 13 12 11 10 9 8 7 6-2 1 0
*
* TC: Tablewalk Cacheable -- 0 = Twalks are not cacheable in E-cache
* 1 = Twalks are cacheable in E-cache
*
* GNU/Viking will only cache tablewalks in the E-cache (mxcc) if present
* and never caches them internally (or so states the docs). Therefore
* for machines lacking an E-cache (ie. in MBUS mode) this bit must
* remain cleared.
*
* AC: Alternate Cacheable -- 0 = Passthru physical accesses not cacheable
* 1 = Passthru physical accesses cacheable
*
* This indicates whether accesses are cacheable when no cachable bit
* is present in the pte when the processor is in boot-mode or the
* access does not need pte's for translation (ie. pass-thru ASI's).
* "Cachable" is only referring to E-cache (if present) and not the
* on chip split I/D caches of the GNU/Viking.
*
* SP: SnooP Enable -- 0 = bus snooping off, 1 = bus snooping on
*
* This enables snooping on the GNU/Viking bus. This must be on
* for the hardware cache consistency mechanisms of the GNU/Viking
* to work at all. On non-mxcc GNU/Viking modules the split I/D
* caches will snoop regardless of whether they are enabled, this
* takes care of the case where the I or D or both caches are turned
* off yet still contain valid data. Note also that this bit does
* not affect GNU/Viking store-buffer snoops, those happen if the
* store-buffer is enabled no matter what.
*
* BM: Boot Mode -- 0 = not in boot mode, 1 = in boot mode
*
* This indicates whether the GNU/Viking is in boot-mode or not,
* if it is then all instruction fetch physical addresses are
* computed as 0xff0000000 + low 28 bits of requested address.
* GNU/Viking boot-mode does not affect data accesses. Also,
* in boot mode instruction accesses bypass the split on chip I/D
* caches, they may be cached by the GNU/MXCC if present and enabled.
*
* MBM: MBus Mode -- 0 = not in MBus mode, 1 = in MBus mode
*
* This indicated the GNU/Viking configuration present. If in
* MBUS mode, the GNU/Viking lacks a GNU/MXCC E-cache. If it is
* not then the GNU/Viking is on a module VBUS connected directly
* to a GNU/MXCC cache controller. The GNU/MXCC can be thus connected
* to either an GNU/MBUS (sun4m) or the packet-switched GNU/XBus (sun4d).
*
* SB: StoreBuffer enable -- 0 = store buffer off, 1 = store buffer on
*
* The GNU/Viking store buffer allows the chip to continue execution
* after a store even if the data cannot be placed in one of the
* caches during that cycle. If disabled, all stores operations
* occur synchronously.
*
* IC: Instruction Cache -- 0 = off, 1 = on
* DC: Data Cache -- 0 = off, 1 = 0n
*
* These bits enable the on-cpu GNU/Viking split I/D caches. Note,
* as mentioned above, these caches will snoop the bus in GNU/MBUS
* configurations even when disabled to avoid data corruption.
*
* NF: No Fault -- 0 = faults generate traps, 1 = faults don't trap
* ME: MMU enable -- 0 = mmu not translating, 1 = mmu translating
*
*/
#define VIKING_MMUENABLE 0x00000001
#define VIKING_NOFAULT 0x00000002
#define VIKING_PSO 0x00000080
#define VIKING_DCENABLE 0x00000100 /* Enable data cache */
#define VIKING_ICENABLE 0x00000200 /* Enable instruction cache */
#define VIKING_SBENABLE 0x00000400 /* Enable store buffer */
#define VIKING_MMODE 0x00000800 /* MBUS mode */
#define VIKING_PCENABLE 0x00001000 /* Enable parity checking */
#define VIKING_BMODE 0x00002000
#define VIKING_SPENABLE 0x00004000 /* Enable bus cache snooping */
#define VIKING_ACENABLE 0x00008000 /* Enable alternate caching */
#define VIKING_TCENABLE 0x00010000 /* Enable table-walks to be cached */
#define VIKING_DPENABLE 0x00040000 /* Enable the data prefetcher */
/*
* GNU/Viking Breakpoint Action Register fields.
*/
#define VIKING_ACTION_MIX 0x00001000 /* Enable multiple instructions */
/*
* GNU/Viking Cache Tags.
*/
#define VIKING_PTAG_VALID 0x01000000 /* Cache block is valid */
#define VIKING_PTAG_DIRTY 0x00010000 /* Block has been modified */
#define VIKING_PTAG_SHARED 0x00000100 /* Shared with some other cache */
#ifndef __ASSEMBLY__
static inline void viking_flush_icache(void)
{
__asm__ __volatile__("sta %%g0, [%%g0] %0\n\t"
: /* no outputs */
: "i" (ASI_M_IC_FLCLEAR)
: "memory");
}
static inline void viking_flush_dcache(void)
{
__asm__ __volatile__("sta %%g0, [%%g0] %0\n\t"
: /* no outputs */
: "i" (ASI_M_DC_FLCLEAR)
: "memory");
}
static inline void viking_unlock_icache(void)
{
__asm__ __volatile__("sta %%g0, [%0] %1\n\t"
: /* no outputs */
: "r" (0x80000000), "i" (ASI_M_IC_FLCLEAR)
: "memory");
}
static inline void viking_unlock_dcache(void)
{
__asm__ __volatile__("sta %%g0, [%0] %1\n\t"
: /* no outputs */
: "r" (0x80000000), "i" (ASI_M_DC_FLCLEAR)
: "memory");
}
static inline void viking_set_bpreg(unsigned long regval)
{
__asm__ __volatile__("sta %0, [%%g0] %1\n\t"
: /* no outputs */
: "r" (regval), "i" (ASI_M_ACTION)
: "memory");
}
static inline unsigned long viking_get_bpreg(void)
{
unsigned long regval;
__asm__ __volatile__("lda [%%g0] %1, %0\n\t"
: "=r" (regval)
: "i" (ASI_M_ACTION));
return regval;
}
static inline void viking_get_dcache_ptag(int set, int block,
unsigned long *data)
{
unsigned long ptag = ((set & 0x7f) << 5) | ((block & 0x3) << 26) |
0x80000000;
unsigned long info, page;
__asm__ __volatile__ ("ldda [%2] %3, %%g2\n\t"
"or %%g0, %%g2, %0\n\t"
"or %%g0, %%g3, %1\n\t"
: "=r" (info), "=r" (page)
: "r" (ptag), "i" (ASI_M_DATAC_TAG)
: "g2", "g3");
data[0] = info;
data[1] = page;
}
static inline void viking_mxcc_turn_off_parity(unsigned long *mregp,
unsigned long *mxcc_cregp)
{
unsigned long mreg = *mregp;
unsigned long mxcc_creg = *mxcc_cregp;
mreg &= ~(VIKING_PCENABLE);
mxcc_creg &= ~(MXCC_CTL_PARE);
__asm__ __volatile__ ("set 1f, %%g2\n\t"
"andcc %%g2, 4, %%g0\n\t"
"bne 2f\n\t"
" nop\n"
"1:\n\t"
"sta %0, [%%g0] %3\n\t"
"sta %1, [%2] %4\n\t"
"b 1f\n\t"
" nop\n\t"
"nop\n"
"2:\n\t"
"sta %0, [%%g0] %3\n\t"
"sta %1, [%2] %4\n"
"1:\n\t"
: /* no output */
: "r" (mreg), "r" (mxcc_creg),
"r" (MXCC_CREG), "i" (ASI_M_MMUREGS),
"i" (ASI_M_MXCC)
: "g2", "memory", "cc");
*mregp = mreg;
*mxcc_cregp = mxcc_creg;
}
static inline unsigned long viking_hwprobe(unsigned long vaddr)
{
unsigned long val;
vaddr &= PAGE_MASK;
/* Probe all MMU entries. */
__asm__ __volatile__("lda [%1] %2, %0\n\t"
: "=r" (val)
: "r" (vaddr | 0x400), "i" (ASI_M_FLUSH_PROBE));
if (!val)
return 0;
/* Probe region. */
__asm__ __volatile__("lda [%1] %2, %0\n\t"
: "=r" (val)
: "r" (vaddr | 0x200), "i" (ASI_M_FLUSH_PROBE));
if ((val & SRMMU_ET_MASK) == SRMMU_ET_PTE) {
vaddr &= ~SRMMU_PGDIR_MASK;
vaddr >>= PAGE_SHIFT;
return val | (vaddr << 8);
}
/* Probe segment. */
__asm__ __volatile__("lda [%1] %2, %0\n\t"
: "=r" (val)
: "r" (vaddr | 0x100), "i" (ASI_M_FLUSH_PROBE));
if ((val & SRMMU_ET_MASK) == SRMMU_ET_PTE) {
vaddr &= ~SRMMU_REAL_PMD_MASK;
vaddr >>= PAGE_SHIFT;
return val | (vaddr << 8);
}
/* Probe page. */
__asm__ __volatile__("lda [%1] %2, %0\n\t"
: "=r" (val)
: "r" (vaddr), "i" (ASI_M_FLUSH_PROBE));
return val;
}
#endif /* !__ASSEMBLY__ */
#endif /* !(_SPARC_VIKING_H) */