kernel-ark/drivers/pci/bus.c

286 lines
6.7 KiB
C
Raw Normal View History

/*
* drivers/pci/bus.c
*
* From setup-res.c, by:
* Dave Rusling (david.rusling@reo.mts.dec.com)
* David Mosberger (davidm@cs.arizona.edu)
* David Miller (davem@redhat.com)
* Ivan Kokshaysky (ink@jurassic.park.msu.ru)
*/
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/pci.h>
#include <linux/errno.h>
#include <linux/ioport.h>
#include <linux/proc_fs.h>
#include <linux/init.h>
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 08:04:11 +00:00
#include <linux/slab.h>
#include "pci.h"
void pci_add_resource_offset(struct list_head *resources, struct resource *res,
resource_size_t offset)
{
struct pci_host_bridge_window *window;
window = kzalloc(sizeof(struct pci_host_bridge_window), GFP_KERNEL);
if (!window) {
printk(KERN_ERR "PCI: can't add host bridge window %pR\n", res);
return;
}
window->res = res;
window->offset = offset;
list_add_tail(&window->list, resources);
}
EXPORT_SYMBOL(pci_add_resource_offset);
void pci_add_resource(struct list_head *resources, struct resource *res)
{
pci_add_resource_offset(resources, res, 0);
}
EXPORT_SYMBOL(pci_add_resource);
void pci_free_resource_list(struct list_head *resources)
{
struct pci_host_bridge_window *window, *tmp;
list_for_each_entry_safe(window, tmp, resources, list) {
list_del(&window->list);
kfree(window);
}
}
EXPORT_SYMBOL(pci_free_resource_list);
void pci_bus_add_resource(struct pci_bus *bus, struct resource *res,
unsigned int flags)
{
struct pci_bus_resource *bus_res;
bus_res = kzalloc(sizeof(struct pci_bus_resource), GFP_KERNEL);
if (!bus_res) {
dev_err(&bus->dev, "can't add %pR resource\n", res);
return;
}
bus_res->res = res;
bus_res->flags = flags;
list_add_tail(&bus_res->list, &bus->resources);
}
struct resource *pci_bus_resource_n(const struct pci_bus *bus, int n)
{
struct pci_bus_resource *bus_res;
if (n < PCI_BRIDGE_RESOURCE_NUM)
return bus->resource[n];
n -= PCI_BRIDGE_RESOURCE_NUM;
list_for_each_entry(bus_res, &bus->resources, list) {
if (n-- == 0)
return bus_res->res;
}
return NULL;
}
EXPORT_SYMBOL_GPL(pci_bus_resource_n);
void pci_bus_remove_resources(struct pci_bus *bus)
{
int i;
struct pci_bus_resource *bus_res, *tmp;
for (i = 0; i < PCI_BRIDGE_RESOURCE_NUM; i++)
bus->resource[i] = NULL;
list_for_each_entry_safe(bus_res, tmp, &bus->resources, list) {
list_del(&bus_res->list);
kfree(bus_res);
}
}
/**
* pci_bus_alloc_resource - allocate a resource from a parent bus
* @bus: PCI bus
* @res: resource to allocate
* @size: size of resource to allocate
* @align: alignment of resource to allocate
* @min: minimum /proc/iomem address to allocate
* @type_mask: IORESOURCE_* type flags
* @alignf: resource alignment function
* @alignf_data: data argument for resource alignment function
*
* Given the PCI bus a device resides on, the size, minimum address,
* alignment and type, try to find an acceptable resource allocation
* for a specific device resource.
*/
int
pci_bus_alloc_resource(struct pci_bus *bus, struct resource *res,
resource_size_t size, resource_size_t align,
resource_size_t min, unsigned int type_mask,
resource_size_t (*alignf)(void *,
const struct resource *,
resource_size_t,
resource_size_t),
void *alignf_data)
{
int i, ret = -ENOMEM;
struct resource *r;
resource_size_t max = -1;
type_mask |= IORESOURCE_IO | IORESOURCE_MEM;
/* don't allocate too high if the pref mem doesn't support 64bit*/
if (!(res->flags & IORESOURCE_MEM_64))
max = PCIBIOS_MAX_MEM_32;
pci_bus_for_each_resource(bus, r, i) {
if (!r)
continue;
/* type_mask must match */
if ((res->flags ^ r->flags) & type_mask)
continue;
/* We cannot allocate a non-prefetching resource
from a pre-fetching area */
if ((r->flags & IORESOURCE_PREFETCH) &&
!(res->flags & IORESOURCE_PREFETCH))
continue;
/* Ok, try it out.. */
ret = allocate_resource(r, res, size,
r->start ? : min,
max, align,
alignf, alignf_data);
if (ret == 0)
break;
}
return ret;
}
void __weak pcibios_resource_survey_bus(struct pci_bus *bus) { }
/**
* pci_bus_add_device - start driver for a single device
* @dev: device to add
*
* This adds add sysfs entries and start device drivers
*/
pci: do not mark exported functions as __devinit Functions marked __devinit will be removed after kernel init. But being exported they are potentially called by a module much later. So the safer choice seems to be to keep the function even in the non CONFIG_HOTPLUG case. This silence the follwoing section mismatch warnings: WARNING: drivers/built-in.o - Section mismatch: reference to .init.text:pci_bus_add_device from __ksymtab_gpl between '__ksymtab_pci_bus_add_device' (at offset 0x20) and '__ksymtab_pci_walk_bus' WARNING: drivers/built-in.o - Section mismatch: reference to .init.text:pci_create_bus from __ksymtab_gpl between '__ksymtab_pci_create_bus' (at offset 0x40) and '__ksymtab_pci_stop_bus_device' WARNING: drivers/built-in.o - Section mismatch: reference to .init.text:pci_bus_max_busnr from __ksymtab_gpl between '__ksymtab_pci_bus_max_busnr' (at offset 0xc0) and '__ksymtab_pci_assign_resource_fixed' WARNING: drivers/built-in.o - Section mismatch: reference to .init.text:pci_claim_resource from __ksymtab_gpl between '__ksymtab_pci_claim_resource' (at offset 0xe0) and '__ksymtab_pcie_port_bus_type' WARNING: drivers/built-in.o - Section mismatch: reference to .init.text:pci_bus_add_devices from __ksymtab between '__ksymtab_pci_bus_add_devices' (at offset 0x70) and '__ksymtab_pci_bus_alloc_resource' WARNING: drivers/built-in.o - Section mismatch: reference to .init.text:pci_scan_bus_parented from __ksymtab between '__ksymtab_pci_scan_bus_parented' (at offset 0x90) and '__ksymtab_pci_root_buses' WARNING: drivers/built-in.o - Section mismatch: reference to .init.text:pci_bus_assign_resources from __ksymtab between '__ksymtab_pci_bus_assign_resources' (at offset 0x4d0) and '__ksymtab_pci_bus_size_bridges' WARNING: drivers/built-in.o - Section mismatch: reference to .init.text:pci_bus_size_bridges from __ksymtab between '__ksymtab_pci_bus_size_bridges' (at offset 0x4e0) and '__ksymtab_pci_setup_cardbus' Signed-off-by: Sam Ravnborg <sam@ravnborg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
2007-03-27 05:53:30 +00:00
int pci_bus_add_device(struct pci_dev *dev)
{
int retval;
/*
* Can not put in pci_device_add yet because resources
* are not assigned yet for some devices.
*/
pci_fixup_device(pci_fixup_final, dev);
pci_create_sysfs_dev_files(dev);
dev->match_driver = true;
retval = device_attach(&dev->dev);
WARN_ON(retval < 0);
dev->is_added = 1;
return 0;
}
/**
* pci_bus_add_devices - start driver for PCI devices
* @bus: bus to check for new devices
*
* Start driver for PCI devices and add some sysfs entries.
*/
void pci_bus_add_devices(const struct pci_bus *bus)
{
struct pci_dev *dev;
struct pci_bus *child;
int retval;
list_for_each_entry(dev, &bus->devices, bus_list) {
/* Skip already-added devices */
if (dev->is_added)
continue;
retval = pci_bus_add_device(dev);
if (retval)
dev_err(&dev->dev, "Error adding device (%d)\n",
retval);
}
list_for_each_entry(dev, &bus->devices, bus_list) {
BUG_ON(!dev->is_added);
child = dev->subordinate;
if (child)
pci_bus_add_devices(child);
}
}
/** pci_walk_bus - walk devices on/under bus, calling callback.
* @top bus whose devices should be walked
* @cb callback to be called for each device found
* @userdata arbitrary pointer to be passed to callback.
*
* Walk the given bus, including any bridged devices
* on buses under this bus. Call the provided callback
* on each device found.
*
* We check the return of @cb each time. If it returns anything
* other than 0, we break out.
*
*/
void pci_walk_bus(struct pci_bus *top, int (*cb)(struct pci_dev *, void *),
void *userdata)
{
struct pci_dev *dev;
struct pci_bus *bus;
struct list_head *next;
int retval;
bus = top;
down_read(&pci_bus_sem);
next = top->devices.next;
for (;;) {
if (next == &bus->devices) {
/* end of this bus, go up or finish */
if (bus == top)
break;
next = bus->self->bus_list.next;
bus = bus->self->bus;
continue;
}
dev = list_entry(next, struct pci_dev, bus_list);
if (dev->subordinate) {
/* this is a pci-pci bridge, do its devices next */
next = dev->subordinate->devices.next;
bus = dev->subordinate;
} else
next = dev->bus_list.next;
retval = cb(dev, userdata);
if (retval)
break;
}
up_read(&pci_bus_sem);
}
EXPORT_SYMBOL_GPL(pci_walk_bus);
struct pci_bus *pci_bus_get(struct pci_bus *bus)
{
if (bus)
get_device(&bus->dev);
return bus;
}
EXPORT_SYMBOL(pci_bus_get);
void pci_bus_put(struct pci_bus *bus)
{
if (bus)
put_device(&bus->dev);
}
EXPORT_SYMBOL(pci_bus_put);
EXPORT_SYMBOL(pci_bus_alloc_resource);
EXPORT_SYMBOL_GPL(pci_bus_add_device);
EXPORT_SYMBOL(pci_bus_add_devices);