kernel-ark/drivers/net/sonic.c

742 lines
22 KiB
C
Raw Normal View History

/*
* sonic.c
*
* (C) 2005 Finn Thain
*
* Converted to DMA API, added zero-copy buffer handling, and
* (from the mac68k project) introduced dhd's support for 16-bit cards.
*
* (C) 1996,1998 by Thomas Bogendoerfer (tsbogend@alpha.franken.de)
*
* This driver is based on work from Andreas Busse, but most of
* the code is rewritten.
*
* (C) 1995 by Andreas Busse (andy@waldorf-gmbh.de)
*
* Core code included by system sonic drivers
*
* And... partially rewritten again by David Huggins-Daines in order
* to cope with screwed up Macintosh NICs that may or may not use
* 16-bit DMA.
*
* (C) 1999 David Huggins-Daines <dhd@debian.org>
*
*/
/*
* Sources: Olivetti M700-10 Risc Personal Computer hardware handbook,
* National Semiconductors data sheet for the DP83932B Sonic Ethernet
* controller, and the files "8390.c" and "skeleton.c" in this directory.
*
* Additional sources: Nat Semi data sheet for the DP83932C and Nat Semi
* Application Note AN-746, the files "lance.c" and "ibmlana.c". See also
* the NetBSD file "sys/arch/mac68k/dev/if_sn.c".
*/
/*
* Open/initialize the SONIC controller.
*
* This routine should set everything up anew at each open, even
* registers that "should" only need to be set once at boot, so that
* there is non-reboot way to recover if something goes wrong.
*/
static int sonic_open(struct net_device *dev)
{
struct sonic_local *lp = netdev_priv(dev);
int i;
if (sonic_debug > 2)
printk("sonic_open: initializing sonic driver.\n");
for (i = 0; i < SONIC_NUM_RRS; i++) {
struct sk_buff *skb = dev_alloc_skb(SONIC_RBSIZE + 2);
if (skb == NULL) {
while(i > 0) { /* free any that were allocated successfully */
i--;
dev_kfree_skb(lp->rx_skb[i]);
lp->rx_skb[i] = NULL;
}
printk(KERN_ERR "%s: couldn't allocate receive buffers\n",
dev->name);
return -ENOMEM;
}
/* align IP header unless DMA requires otherwise */
if (SONIC_BUS_SCALE(lp->dma_bitmode) == 2)
skb_reserve(skb, 2);
lp->rx_skb[i] = skb;
}
for (i = 0; i < SONIC_NUM_RRS; i++) {
dma_addr_t laddr = dma_map_single(lp->device, skb_put(lp->rx_skb[i], SONIC_RBSIZE),
SONIC_RBSIZE, DMA_FROM_DEVICE);
if (!laddr) {
while(i > 0) { /* free any that were mapped successfully */
i--;
dma_unmap_single(lp->device, lp->rx_laddr[i], SONIC_RBSIZE, DMA_FROM_DEVICE);
lp->rx_laddr[i] = (dma_addr_t)0;
}
for (i = 0; i < SONIC_NUM_RRS; i++) {
dev_kfree_skb(lp->rx_skb[i]);
lp->rx_skb[i] = NULL;
}
printk(KERN_ERR "%s: couldn't map rx DMA buffers\n",
dev->name);
return -ENOMEM;
}
lp->rx_laddr[i] = laddr;
}
/*
* Initialize the SONIC
*/
sonic_init(dev);
netif_start_queue(dev);
if (sonic_debug > 2)
printk("sonic_open: Initialization done.\n");
return 0;
}
/*
* Close the SONIC device
*/
static int sonic_close(struct net_device *dev)
{
struct sonic_local *lp = netdev_priv(dev);
int i;
if (sonic_debug > 2)
printk("sonic_close\n");
netif_stop_queue(dev);
/*
* stop the SONIC, disable interrupts
*/
SONIC_WRITE(SONIC_IMR, 0);
SONIC_WRITE(SONIC_ISR, 0x7fff);
SONIC_WRITE(SONIC_CMD, SONIC_CR_RST);
/* unmap and free skbs that haven't been transmitted */
for (i = 0; i < SONIC_NUM_TDS; i++) {
if(lp->tx_laddr[i]) {
dma_unmap_single(lp->device, lp->tx_laddr[i], lp->tx_len[i], DMA_TO_DEVICE);
lp->tx_laddr[i] = (dma_addr_t)0;
}
if(lp->tx_skb[i]) {
dev_kfree_skb(lp->tx_skb[i]);
lp->tx_skb[i] = NULL;
}
}
/* unmap and free the receive buffers */
for (i = 0; i < SONIC_NUM_RRS; i++) {
if(lp->rx_laddr[i]) {
dma_unmap_single(lp->device, lp->rx_laddr[i], SONIC_RBSIZE, DMA_FROM_DEVICE);
lp->rx_laddr[i] = (dma_addr_t)0;
}
if(lp->rx_skb[i]) {
dev_kfree_skb(lp->rx_skb[i]);
lp->rx_skb[i] = NULL;
}
}
return 0;
}
static void sonic_tx_timeout(struct net_device *dev)
{
struct sonic_local *lp = netdev_priv(dev);
int i;
/*
* put the Sonic into software-reset mode and
* disable all interrupts before releasing DMA buffers
*/
SONIC_WRITE(SONIC_IMR, 0);
SONIC_WRITE(SONIC_ISR, 0x7fff);
SONIC_WRITE(SONIC_CMD, SONIC_CR_RST);
/* We could resend the original skbs. Easier to re-initialise. */
for (i = 0; i < SONIC_NUM_TDS; i++) {
if(lp->tx_laddr[i]) {
dma_unmap_single(lp->device, lp->tx_laddr[i], lp->tx_len[i], DMA_TO_DEVICE);
lp->tx_laddr[i] = (dma_addr_t)0;
}
if(lp->tx_skb[i]) {
dev_kfree_skb(lp->tx_skb[i]);
lp->tx_skb[i] = NULL;
}
}
/* Try to restart the adaptor. */
sonic_init(dev);
lp->stats.tx_errors++;
dev->trans_start = jiffies;
netif_wake_queue(dev);
}
/*
* transmit packet
*
* Appends new TD during transmission thus avoiding any TX interrupts
* until we run out of TDs.
* This routine interacts closely with the ISR in that it may,
* set tx_skb[i]
* reset the status flags of the new TD
* set and reset EOL flags
* stop the tx queue
* The ISR interacts with this routine in various ways. It may,
* reset tx_skb[i]
* test the EOL and status flags of the TDs
* wake the tx queue
* Concurrently with all of this, the SONIC is potentially writing to
* the status flags of the TDs.
* Until some mutual exclusion is added, this code will not work with SMP. However,
* MIPS Jazz machines and m68k Macs were all uni-processor machines.
*/
static int sonic_send_packet(struct sk_buff *skb, struct net_device *dev)
{
struct sonic_local *lp = netdev_priv(dev);
dma_addr_t laddr;
int length;
int entry = lp->next_tx;
if (sonic_debug > 2)
printk("sonic_send_packet: skb=%p, dev=%p\n", skb, dev);
length = skb->len;
if (length < ETH_ZLEN) {
if (skb_padto(skb, ETH_ZLEN))
return 0;
length = ETH_ZLEN;
}
/*
* Map the packet data into the logical DMA address space
*/
laddr = dma_map_single(lp->device, skb->data, length, DMA_TO_DEVICE);
if (!laddr) {
printk(KERN_ERR "%s: failed to map tx DMA buffer.\n", dev->name);
dev_kfree_skb(skb);
return 1;
}
sonic_tda_put(dev, entry, SONIC_TD_STATUS, 0); /* clear status */
sonic_tda_put(dev, entry, SONIC_TD_FRAG_COUNT, 1); /* single fragment */
sonic_tda_put(dev, entry, SONIC_TD_PKTSIZE, length); /* length of packet */
sonic_tda_put(dev, entry, SONIC_TD_FRAG_PTR_L, laddr & 0xffff);
sonic_tda_put(dev, entry, SONIC_TD_FRAG_PTR_H, laddr >> 16);
sonic_tda_put(dev, entry, SONIC_TD_FRAG_SIZE, length);
sonic_tda_put(dev, entry, SONIC_TD_LINK,
sonic_tda_get(dev, entry, SONIC_TD_LINK) | SONIC_EOL);
/*
* Must set tx_skb[entry] only after clearing status, and
* before clearing EOL and before stopping queue
*/
wmb();
lp->tx_len[entry] = length;
lp->tx_laddr[entry] = laddr;
lp->tx_skb[entry] = skb;
wmb();
sonic_tda_put(dev, lp->eol_tx, SONIC_TD_LINK,
sonic_tda_get(dev, lp->eol_tx, SONIC_TD_LINK) & ~SONIC_EOL);
lp->eol_tx = entry;
lp->next_tx = (entry + 1) & SONIC_TDS_MASK;
if (lp->tx_skb[lp->next_tx] != NULL) {
/* The ring is full, the ISR has yet to process the next TD. */
if (sonic_debug > 3)
printk("%s: stopping queue\n", dev->name);
netif_stop_queue(dev);
/* after this packet, wait for ISR to free up some TDAs */
} else netif_start_queue(dev);
if (sonic_debug > 2)
printk("sonic_send_packet: issuing Tx command\n");
SONIC_WRITE(SONIC_CMD, SONIC_CR_TXP);
dev->trans_start = jiffies;
return 0;
}
/*
* The typical workload of the driver:
* Handle the network interface interrupts.
*/
IRQ: Maintain regs pointer globally rather than passing to IRQ handlers Maintain a per-CPU global "struct pt_regs *" variable which can be used instead of passing regs around manually through all ~1800 interrupt handlers in the Linux kernel. The regs pointer is used in few places, but it potentially costs both stack space and code to pass it around. On the FRV arch, removing the regs parameter from all the genirq function results in a 20% speed up of the IRQ exit path (ie: from leaving timer_interrupt() to leaving do_IRQ()). Where appropriate, an arch may override the generic storage facility and do something different with the variable. On FRV, for instance, the address is maintained in GR28 at all times inside the kernel as part of general exception handling. Having looked over the code, it appears that the parameter may be handed down through up to twenty or so layers of functions. Consider a USB character device attached to a USB hub, attached to a USB controller that posts its interrupts through a cascaded auxiliary interrupt controller. A character device driver may want to pass regs to the sysrq handler through the input layer which adds another few layers of parameter passing. I've build this code with allyesconfig for x86_64 and i386. I've runtested the main part of the code on FRV and i386, though I can't test most of the drivers. I've also done partial conversion for powerpc and MIPS - these at least compile with minimal configurations. This will affect all archs. Mostly the changes should be relatively easy. Take do_IRQ(), store the regs pointer at the beginning, saving the old one: struct pt_regs *old_regs = set_irq_regs(regs); And put the old one back at the end: set_irq_regs(old_regs); Don't pass regs through to generic_handle_irq() or __do_IRQ(). In timer_interrupt(), this sort of change will be necessary: - update_process_times(user_mode(regs)); - profile_tick(CPU_PROFILING, regs); + update_process_times(user_mode(get_irq_regs())); + profile_tick(CPU_PROFILING); I'd like to move update_process_times()'s use of get_irq_regs() into itself, except that i386, alone of the archs, uses something other than user_mode(). Some notes on the interrupt handling in the drivers: (*) input_dev() is now gone entirely. The regs pointer is no longer stored in the input_dev struct. (*) finish_unlinks() in drivers/usb/host/ohci-q.c needs checking. It does something different depending on whether it's been supplied with a regs pointer or not. (*) Various IRQ handler function pointers have been moved to type irq_handler_t. Signed-Off-By: David Howells <dhowells@redhat.com> (cherry picked from 1b16e7ac850969f38b375e511e3fa2f474a33867 commit)
2006-10-05 13:55:46 +00:00
static irqreturn_t sonic_interrupt(int irq, void *dev_id)
{
struct net_device *dev = dev_id;
struct sonic_local *lp = netdev_priv(dev);
int status;
if (!(status = SONIC_READ(SONIC_ISR) & SONIC_IMR_DEFAULT))
return IRQ_NONE;
do {
if (status & SONIC_INT_PKTRX) {
if (sonic_debug > 2)
printk("%s: packet rx\n", dev->name);
sonic_rx(dev); /* got packet(s) */
SONIC_WRITE(SONIC_ISR, SONIC_INT_PKTRX); /* clear the interrupt */
}
if (status & SONIC_INT_TXDN) {
int entry = lp->cur_tx;
int td_status;
int freed_some = 0;
/* At this point, cur_tx is the index of a TD that is one of:
* unallocated/freed (status set & tx_skb[entry] clear)
* allocated and sent (status set & tx_skb[entry] set )
* allocated and not yet sent (status clear & tx_skb[entry] set )
* still being allocated by sonic_send_packet (status clear & tx_skb[entry] clear)
*/
if (sonic_debug > 2)
printk("%s: tx done\n", dev->name);
while (lp->tx_skb[entry] != NULL) {
if ((td_status = sonic_tda_get(dev, entry, SONIC_TD_STATUS)) == 0)
break;
if (td_status & 0x0001) {
lp->stats.tx_packets++;
lp->stats.tx_bytes += sonic_tda_get(dev, entry, SONIC_TD_PKTSIZE);
} else {
lp->stats.tx_errors++;
if (td_status & 0x0642)
lp->stats.tx_aborted_errors++;
if (td_status & 0x0180)
lp->stats.tx_carrier_errors++;
if (td_status & 0x0020)
lp->stats.tx_window_errors++;
if (td_status & 0x0004)
lp->stats.tx_fifo_errors++;
}
/* We must free the original skb */
dev_kfree_skb_irq(lp->tx_skb[entry]);
lp->tx_skb[entry] = NULL;
/* and unmap DMA buffer */
dma_unmap_single(lp->device, lp->tx_laddr[entry], lp->tx_len[entry], DMA_TO_DEVICE);
lp->tx_laddr[entry] = (dma_addr_t)0;
freed_some = 1;
if (sonic_tda_get(dev, entry, SONIC_TD_LINK) & SONIC_EOL) {
entry = (entry + 1) & SONIC_TDS_MASK;
break;
}
entry = (entry + 1) & SONIC_TDS_MASK;
}
if (freed_some || lp->tx_skb[entry] == NULL)
netif_wake_queue(dev); /* The ring is no longer full */
lp->cur_tx = entry;
SONIC_WRITE(SONIC_ISR, SONIC_INT_TXDN); /* clear the interrupt */
}
/*
* check error conditions
*/
if (status & SONIC_INT_RFO) {
if (sonic_debug > 1)
printk("%s: rx fifo overrun\n", dev->name);
lp->stats.rx_fifo_errors++;
SONIC_WRITE(SONIC_ISR, SONIC_INT_RFO); /* clear the interrupt */
}
if (status & SONIC_INT_RDE) {
if (sonic_debug > 1)
printk("%s: rx descriptors exhausted\n", dev->name);
lp->stats.rx_dropped++;
SONIC_WRITE(SONIC_ISR, SONIC_INT_RDE); /* clear the interrupt */
}
if (status & SONIC_INT_RBAE) {
if (sonic_debug > 1)
printk("%s: rx buffer area exceeded\n", dev->name);
lp->stats.rx_dropped++;
SONIC_WRITE(SONIC_ISR, SONIC_INT_RBAE); /* clear the interrupt */
}
/* counter overruns; all counters are 16bit wide */
if (status & SONIC_INT_FAE) {
lp->stats.rx_frame_errors += 65536;
SONIC_WRITE(SONIC_ISR, SONIC_INT_FAE); /* clear the interrupt */
}
if (status & SONIC_INT_CRC) {
lp->stats.rx_crc_errors += 65536;
SONIC_WRITE(SONIC_ISR, SONIC_INT_CRC); /* clear the interrupt */
}
if (status & SONIC_INT_MP) {
lp->stats.rx_missed_errors += 65536;
SONIC_WRITE(SONIC_ISR, SONIC_INT_MP); /* clear the interrupt */
}
/* transmit error */
if (status & SONIC_INT_TXER) {
if ((SONIC_READ(SONIC_TCR) & SONIC_TCR_FU) && (sonic_debug > 2))
printk(KERN_ERR "%s: tx fifo underrun\n", dev->name);
SONIC_WRITE(SONIC_ISR, SONIC_INT_TXER); /* clear the interrupt */
}
/* bus retry */
if (status & SONIC_INT_BR) {
printk(KERN_ERR "%s: Bus retry occurred! Device interrupt disabled.\n",
dev->name);
/* ... to help debug DMA problems causing endless interrupts. */
/* Bounce the eth interface to turn on the interrupt again. */
SONIC_WRITE(SONIC_IMR, 0);
SONIC_WRITE(SONIC_ISR, SONIC_INT_BR); /* clear the interrupt */
}
/* load CAM done */
if (status & SONIC_INT_LCD)
SONIC_WRITE(SONIC_ISR, SONIC_INT_LCD); /* clear the interrupt */
} while((status = SONIC_READ(SONIC_ISR) & SONIC_IMR_DEFAULT));
return IRQ_HANDLED;
}
/*
* We have a good packet(s), pass it/them up the network stack.
*/
static void sonic_rx(struct net_device *dev)
{
struct sonic_local *lp = netdev_priv(dev);
int status;
int entry = lp->cur_rx;
while (sonic_rda_get(dev, entry, SONIC_RD_IN_USE) == 0) {
struct sk_buff *used_skb;
struct sk_buff *new_skb;
dma_addr_t new_laddr;
u16 bufadr_l;
u16 bufadr_h;
int pkt_len;
status = sonic_rda_get(dev, entry, SONIC_RD_STATUS);
if (status & SONIC_RCR_PRX) {
/* Malloc up new buffer. */
new_skb = dev_alloc_skb(SONIC_RBSIZE + 2);
if (new_skb == NULL) {
printk(KERN_ERR "%s: Memory squeeze, dropping packet.\n", dev->name);
lp->stats.rx_dropped++;
break;
}
/* provide 16 byte IP header alignment unless DMA requires otherwise */
if(SONIC_BUS_SCALE(lp->dma_bitmode) == 2)
skb_reserve(new_skb, 2);
new_laddr = dma_map_single(lp->device, skb_put(new_skb, SONIC_RBSIZE),
SONIC_RBSIZE, DMA_FROM_DEVICE);
if (!new_laddr) {
dev_kfree_skb(new_skb);
printk(KERN_ERR "%s: Failed to map rx buffer, dropping packet.\n", dev->name);
lp->stats.rx_dropped++;
break;
}
/* now we have a new skb to replace it, pass the used one up the stack */
dma_unmap_single(lp->device, lp->rx_laddr[entry], SONIC_RBSIZE, DMA_FROM_DEVICE);
used_skb = lp->rx_skb[entry];
pkt_len = sonic_rda_get(dev, entry, SONIC_RD_PKTLEN);
skb_trim(used_skb, pkt_len);
used_skb->protocol = eth_type_trans(used_skb, dev);
netif_rx(used_skb);
lp->stats.rx_packets++;
lp->stats.rx_bytes += pkt_len;
/* and insert the new skb */
lp->rx_laddr[entry] = new_laddr;
lp->rx_skb[entry] = new_skb;
bufadr_l = (unsigned long)new_laddr & 0xffff;
bufadr_h = (unsigned long)new_laddr >> 16;
sonic_rra_put(dev, entry, SONIC_RR_BUFADR_L, bufadr_l);
sonic_rra_put(dev, entry, SONIC_RR_BUFADR_H, bufadr_h);
} else {
/* This should only happen, if we enable accepting broken packets. */
lp->stats.rx_errors++;
if (status & SONIC_RCR_FAER)
lp->stats.rx_frame_errors++;
if (status & SONIC_RCR_CRCR)
lp->stats.rx_crc_errors++;
}
if (status & SONIC_RCR_LPKT) {
/*
* this was the last packet out of the current receive buffer
* give the buffer back to the SONIC
*/
lp->cur_rwp += SIZEOF_SONIC_RR * SONIC_BUS_SCALE(lp->dma_bitmode);
if (lp->cur_rwp >= lp->rra_end) lp->cur_rwp = lp->rra_laddr & 0xffff;
SONIC_WRITE(SONIC_RWP, lp->cur_rwp);
if (SONIC_READ(SONIC_ISR) & SONIC_INT_RBE) {
if (sonic_debug > 2)
printk("%s: rx buffer exhausted\n", dev->name);
SONIC_WRITE(SONIC_ISR, SONIC_INT_RBE); /* clear the flag */
}
} else
printk(KERN_ERR "%s: rx desc without RCR_LPKT. Shouldn't happen !?\n",
dev->name);
/*
* give back the descriptor
*/
sonic_rda_put(dev, entry, SONIC_RD_LINK,
sonic_rda_get(dev, entry, SONIC_RD_LINK) | SONIC_EOL);
sonic_rda_put(dev, entry, SONIC_RD_IN_USE, 1);
sonic_rda_put(dev, lp->eol_rx, SONIC_RD_LINK,
sonic_rda_get(dev, lp->eol_rx, SONIC_RD_LINK) & ~SONIC_EOL);
lp->eol_rx = entry;
lp->cur_rx = entry = (entry + 1) & SONIC_RDS_MASK;
}
/*
* If any worth-while packets have been received, netif_rx()
* has done a mark_bh(NET_BH) for us and will work on them
* when we get to the bottom-half routine.
*/
}
/*
* Get the current statistics.
* This may be called with the device open or closed.
*/
static struct net_device_stats *sonic_get_stats(struct net_device *dev)
{
struct sonic_local *lp = netdev_priv(dev);
/* read the tally counter from the SONIC and reset them */
lp->stats.rx_crc_errors += SONIC_READ(SONIC_CRCT);
SONIC_WRITE(SONIC_CRCT, 0xffff);
lp->stats.rx_frame_errors += SONIC_READ(SONIC_FAET);
SONIC_WRITE(SONIC_FAET, 0xffff);
lp->stats.rx_missed_errors += SONIC_READ(SONIC_MPT);
SONIC_WRITE(SONIC_MPT, 0xffff);
return &lp->stats;
}
/*
* Set or clear the multicast filter for this adaptor.
*/
static void sonic_multicast_list(struct net_device *dev)
{
struct sonic_local *lp = netdev_priv(dev);
unsigned int rcr;
struct dev_mc_list *dmi = dev->mc_list;
unsigned char *addr;
int i;
rcr = SONIC_READ(SONIC_RCR) & ~(SONIC_RCR_PRO | SONIC_RCR_AMC);
rcr |= SONIC_RCR_BRD; /* accept broadcast packets */
if (dev->flags & IFF_PROMISC) { /* set promiscuous mode */
rcr |= SONIC_RCR_PRO;
} else {
if ((dev->flags & IFF_ALLMULTI) || (dev->mc_count > 15)) {
rcr |= SONIC_RCR_AMC;
} else {
if (sonic_debug > 2)
printk("sonic_multicast_list: mc_count %d\n", dev->mc_count);
sonic_set_cam_enable(dev, 1); /* always enable our own address */
for (i = 1; i <= dev->mc_count; i++) {
addr = dmi->dmi_addr;
dmi = dmi->next;
sonic_cda_put(dev, i, SONIC_CD_CAP0, addr[1] << 8 | addr[0]);
sonic_cda_put(dev, i, SONIC_CD_CAP1, addr[3] << 8 | addr[2]);
sonic_cda_put(dev, i, SONIC_CD_CAP2, addr[5] << 8 | addr[4]);
sonic_set_cam_enable(dev, sonic_get_cam_enable(dev) | (1 << i));
}
SONIC_WRITE(SONIC_CDC, 16);
/* issue Load CAM command */
SONIC_WRITE(SONIC_CDP, lp->cda_laddr & 0xffff);
SONIC_WRITE(SONIC_CMD, SONIC_CR_LCAM);
}
}
if (sonic_debug > 2)
printk("sonic_multicast_list: setting RCR=%x\n", rcr);
SONIC_WRITE(SONIC_RCR, rcr);
}
/*
* Initialize the SONIC ethernet controller.
*/
static int sonic_init(struct net_device *dev)
{
unsigned int cmd;
struct sonic_local *lp = netdev_priv(dev);
int i;
/*
* put the Sonic into software-reset mode and
* disable all interrupts
*/
SONIC_WRITE(SONIC_IMR, 0);
SONIC_WRITE(SONIC_ISR, 0x7fff);
SONIC_WRITE(SONIC_CMD, SONIC_CR_RST);
/*
* clear software reset flag, disable receiver, clear and
* enable interrupts, then completely initialize the SONIC
*/
SONIC_WRITE(SONIC_CMD, 0);
SONIC_WRITE(SONIC_CMD, SONIC_CR_RXDIS);
/*
* initialize the receive resource area
*/
if (sonic_debug > 2)
printk("sonic_init: initialize receive resource area\n");
for (i = 0; i < SONIC_NUM_RRS; i++) {
u16 bufadr_l = (unsigned long)lp->rx_laddr[i] & 0xffff;
u16 bufadr_h = (unsigned long)lp->rx_laddr[i] >> 16;
sonic_rra_put(dev, i, SONIC_RR_BUFADR_L, bufadr_l);
sonic_rra_put(dev, i, SONIC_RR_BUFADR_H, bufadr_h);
sonic_rra_put(dev, i, SONIC_RR_BUFSIZE_L, SONIC_RBSIZE >> 1);
sonic_rra_put(dev, i, SONIC_RR_BUFSIZE_H, 0);
}
/* initialize all RRA registers */
lp->rra_end = (lp->rra_laddr + SONIC_NUM_RRS * SIZEOF_SONIC_RR *
SONIC_BUS_SCALE(lp->dma_bitmode)) & 0xffff;
lp->cur_rwp = (lp->rra_laddr + (SONIC_NUM_RRS - 1) * SIZEOF_SONIC_RR *
SONIC_BUS_SCALE(lp->dma_bitmode)) & 0xffff;
SONIC_WRITE(SONIC_RSA, lp->rra_laddr & 0xffff);
SONIC_WRITE(SONIC_REA, lp->rra_end);
SONIC_WRITE(SONIC_RRP, lp->rra_laddr & 0xffff);
SONIC_WRITE(SONIC_RWP, lp->cur_rwp);
SONIC_WRITE(SONIC_URRA, lp->rra_laddr >> 16);
SONIC_WRITE(SONIC_EOBC, (SONIC_RBSIZE >> 1) - (lp->dma_bitmode ? 2 : 1));
/* load the resource pointers */
if (sonic_debug > 3)
printk("sonic_init: issuing RRRA command\n");
SONIC_WRITE(SONIC_CMD, SONIC_CR_RRRA);
i = 0;
while (i++ < 100) {
if (SONIC_READ(SONIC_CMD) & SONIC_CR_RRRA)
break;
}
if (sonic_debug > 2)
printk("sonic_init: status=%x i=%d\n", SONIC_READ(SONIC_CMD), i);
/*
* Initialize the receive descriptors so that they
* become a circular linked list, ie. let the last
* descriptor point to the first again.
*/
if (sonic_debug > 2)
printk("sonic_init: initialize receive descriptors\n");
for (i=0; i<SONIC_NUM_RDS; i++) {
sonic_rda_put(dev, i, SONIC_RD_STATUS, 0);
sonic_rda_put(dev, i, SONIC_RD_PKTLEN, 0);
sonic_rda_put(dev, i, SONIC_RD_PKTPTR_L, 0);
sonic_rda_put(dev, i, SONIC_RD_PKTPTR_H, 0);
sonic_rda_put(dev, i, SONIC_RD_SEQNO, 0);
sonic_rda_put(dev, i, SONIC_RD_IN_USE, 1);
sonic_rda_put(dev, i, SONIC_RD_LINK,
lp->rda_laddr +
((i+1) * SIZEOF_SONIC_RD * SONIC_BUS_SCALE(lp->dma_bitmode)));
}
/* fix last descriptor */
sonic_rda_put(dev, SONIC_NUM_RDS - 1, SONIC_RD_LINK,
(lp->rda_laddr & 0xffff) | SONIC_EOL);
lp->eol_rx = SONIC_NUM_RDS - 1;
lp->cur_rx = 0;
SONIC_WRITE(SONIC_URDA, lp->rda_laddr >> 16);
SONIC_WRITE(SONIC_CRDA, lp->rda_laddr & 0xffff);
/*
* initialize transmit descriptors
*/
if (sonic_debug > 2)
printk("sonic_init: initialize transmit descriptors\n");
for (i = 0; i < SONIC_NUM_TDS; i++) {
sonic_tda_put(dev, i, SONIC_TD_STATUS, 0);
sonic_tda_put(dev, i, SONIC_TD_CONFIG, 0);
sonic_tda_put(dev, i, SONIC_TD_PKTSIZE, 0);
sonic_tda_put(dev, i, SONIC_TD_FRAG_COUNT, 0);
sonic_tda_put(dev, i, SONIC_TD_LINK,
(lp->tda_laddr & 0xffff) +
(i + 1) * SIZEOF_SONIC_TD * SONIC_BUS_SCALE(lp->dma_bitmode));
lp->tx_skb[i] = NULL;
}
/* fix last descriptor */
sonic_tda_put(dev, SONIC_NUM_TDS - 1, SONIC_TD_LINK,
(lp->tda_laddr & 0xffff));
SONIC_WRITE(SONIC_UTDA, lp->tda_laddr >> 16);
SONIC_WRITE(SONIC_CTDA, lp->tda_laddr & 0xffff);
lp->cur_tx = lp->next_tx = 0;
lp->eol_tx = SONIC_NUM_TDS - 1;
/*
* put our own address to CAM desc[0]
*/
sonic_cda_put(dev, 0, SONIC_CD_CAP0, dev->dev_addr[1] << 8 | dev->dev_addr[0]);
sonic_cda_put(dev, 0, SONIC_CD_CAP1, dev->dev_addr[3] << 8 | dev->dev_addr[2]);
sonic_cda_put(dev, 0, SONIC_CD_CAP2, dev->dev_addr[5] << 8 | dev->dev_addr[4]);
sonic_set_cam_enable(dev, 1);
for (i = 0; i < 16; i++)
sonic_cda_put(dev, i, SONIC_CD_ENTRY_POINTER, i);
/*
* initialize CAM registers
*/
SONIC_WRITE(SONIC_CDP, lp->cda_laddr & 0xffff);
SONIC_WRITE(SONIC_CDC, 16);
/*
* load the CAM
*/
SONIC_WRITE(SONIC_CMD, SONIC_CR_LCAM);
i = 0;
while (i++ < 100) {
if (SONIC_READ(SONIC_ISR) & SONIC_INT_LCD)
break;
}
if (sonic_debug > 2) {
printk("sonic_init: CMD=%x, ISR=%x\n, i=%d",
SONIC_READ(SONIC_CMD), SONIC_READ(SONIC_ISR), i);
}
/*
* enable receiver, disable loopback
* and enable all interrupts
*/
SONIC_WRITE(SONIC_CMD, SONIC_CR_RXEN | SONIC_CR_STP);
SONIC_WRITE(SONIC_RCR, SONIC_RCR_DEFAULT);
SONIC_WRITE(SONIC_TCR, SONIC_TCR_DEFAULT);
SONIC_WRITE(SONIC_ISR, 0x7fff);
SONIC_WRITE(SONIC_IMR, SONIC_IMR_DEFAULT);
cmd = SONIC_READ(SONIC_CMD);
if ((cmd & SONIC_CR_RXEN) == 0 || (cmd & SONIC_CR_STP) == 0)
printk(KERN_ERR "sonic_init: failed, status=%x\n", cmd);
if (sonic_debug > 2)
printk("sonic_init: new status=%x\n",
SONIC_READ(SONIC_CMD));
return 0;
}
MODULE_LICENSE("GPL");