199 lines
4.7 KiB
C
199 lines
4.7 KiB
C
|
/*
|
||
|
* linux/arch/v850/kernel/time.c -- Arch-dependent timer functions
|
||
|
*
|
||
|
* Copyright (C) 1991, 1992, 1995, 2001, 2002 Linus Torvalds
|
||
|
*
|
||
|
* This file contains the v850-specific time handling details.
|
||
|
* Most of the stuff is located in the machine specific files.
|
||
|
*
|
||
|
* 1997-09-10 Updated NTP code according to technical memorandum Jan '96
|
||
|
* "A Kernel Model for Precision Timekeeping" by Dave Mills
|
||
|
*/
|
||
|
|
||
|
#include <linux/config.h> /* CONFIG_HEARTBEAT */
|
||
|
#include <linux/errno.h>
|
||
|
#include <linux/kernel.h>
|
||
|
#include <linux/module.h>
|
||
|
#include <linux/param.h>
|
||
|
#include <linux/string.h>
|
||
|
#include <linux/mm.h>
|
||
|
#include <linux/interrupt.h>
|
||
|
#include <linux/time.h>
|
||
|
#include <linux/timex.h>
|
||
|
#include <linux/profile.h>
|
||
|
|
||
|
#include <asm/io.h>
|
||
|
|
||
|
#include "mach.h"
|
||
|
|
||
|
u64 jiffies_64 = INITIAL_JIFFIES;
|
||
|
|
||
|
EXPORT_SYMBOL(jiffies_64);
|
||
|
|
||
|
#define TICK_SIZE (tick_nsec / 1000)
|
||
|
|
||
|
/*
|
||
|
* Scheduler clock - returns current time in nanosec units.
|
||
|
*/
|
||
|
unsigned long long sched_clock(void)
|
||
|
{
|
||
|
return (unsigned long long)jiffies * (1000000000 / HZ);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* timer_interrupt() needs to keep up the real-time clock,
|
||
|
* as well as call the "do_timer()" routine every clocktick
|
||
|
*/
|
||
|
static irqreturn_t timer_interrupt (int irq, void *dummy, struct pt_regs *regs)
|
||
|
{
|
||
|
#if 0
|
||
|
/* last time the cmos clock got updated */
|
||
|
static long last_rtc_update=0;
|
||
|
#endif
|
||
|
|
||
|
/* may need to kick the hardware timer */
|
||
|
if (mach_tick)
|
||
|
mach_tick ();
|
||
|
|
||
|
do_timer (regs);
|
||
|
#ifndef CONFIG_SMP
|
||
|
update_process_times(user_mode(regs));
|
||
|
#endif
|
||
|
profile_tick(CPU_PROFILING, regs);
|
||
|
#if 0
|
||
|
/*
|
||
|
* If we have an externally synchronized Linux clock, then update
|
||
|
* CMOS clock accordingly every ~11 minutes. Set_rtc_mmss() has to be
|
||
|
* called as close as possible to 500 ms before the new second starts.
|
||
|
*/
|
||
|
if ((time_status & STA_UNSYNC) == 0 &&
|
||
|
xtime.tv_sec > last_rtc_update + 660 &&
|
||
|
(xtime.tv_nsec / 1000) >= 500000 - ((unsigned) TICK_SIZE) / 2 &&
|
||
|
(xtime.tv_nsec / 1000) <= 500000 + ((unsigned) TICK_SIZE) / 2) {
|
||
|
if (set_rtc_mmss (xtime.tv_sec) == 0)
|
||
|
last_rtc_update = xtime.tv_sec;
|
||
|
else
|
||
|
last_rtc_update = xtime.tv_sec - 600; /* do it again in 60 s */
|
||
|
}
|
||
|
#ifdef CONFIG_HEARTBEAT
|
||
|
/* use power LED as a heartbeat instead -- much more useful
|
||
|
for debugging -- based on the version for PReP by Cort */
|
||
|
/* acts like an actual heart beat -- ie thump-thump-pause... */
|
||
|
if (mach_heartbeat) {
|
||
|
static unsigned cnt = 0, period = 0, dist = 0;
|
||
|
|
||
|
if (cnt == 0 || cnt == dist)
|
||
|
mach_heartbeat ( 1 );
|
||
|
else if (cnt == 7 || cnt == dist+7)
|
||
|
mach_heartbeat ( 0 );
|
||
|
|
||
|
if (++cnt > period) {
|
||
|
cnt = 0;
|
||
|
/* The hyperbolic function below modifies the heartbeat period
|
||
|
* length in dependency of the current (5min) load. It goes
|
||
|
* through the points f(0)=126, f(1)=86, f(5)=51,
|
||
|
* f(inf)->30. */
|
||
|
period = ((672<<FSHIFT)/(5*avenrun[0]+(7<<FSHIFT))) + 30;
|
||
|
dist = period / 4;
|
||
|
}
|
||
|
}
|
||
|
#endif /* CONFIG_HEARTBEAT */
|
||
|
#endif /* 0 */
|
||
|
|
||
|
return IRQ_HANDLED;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* This version of gettimeofday has near microsecond resolution.
|
||
|
*/
|
||
|
void do_gettimeofday (struct timeval *tv)
|
||
|
{
|
||
|
#if 0 /* DAVIDM later if possible */
|
||
|
extern volatile unsigned long lost_ticks;
|
||
|
unsigned long lost;
|
||
|
#endif
|
||
|
unsigned long flags;
|
||
|
unsigned long usec, sec;
|
||
|
unsigned long seq;
|
||
|
|
||
|
do {
|
||
|
seq = read_seqbegin_irqsave(&xtime_lock, flags);
|
||
|
|
||
|
#if 0
|
||
|
usec = mach_gettimeoffset ? mach_gettimeoffset () : 0;
|
||
|
#else
|
||
|
usec = 0;
|
||
|
#endif
|
||
|
#if 0 /* DAVIDM later if possible */
|
||
|
lost = lost_ticks;
|
||
|
if (lost)
|
||
|
usec += lost * (1000000/HZ);
|
||
|
#endif
|
||
|
sec = xtime.tv_sec;
|
||
|
usec += xtime.tv_nsec / 1000;
|
||
|
} while (read_seqretry_irqrestore(&xtime_lock, seq, flags));
|
||
|
|
||
|
while (usec >= 1000000) {
|
||
|
usec -= 1000000;
|
||
|
sec++;
|
||
|
}
|
||
|
|
||
|
tv->tv_sec = sec;
|
||
|
tv->tv_usec = usec;
|
||
|
}
|
||
|
|
||
|
EXPORT_SYMBOL(do_gettimeofday);
|
||
|
|
||
|
int do_settimeofday(struct timespec *tv)
|
||
|
{
|
||
|
if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC)
|
||
|
return -EINVAL;
|
||
|
|
||
|
write_seqlock_irq (&xtime_lock);
|
||
|
|
||
|
/* This is revolting. We need to set the xtime.tv_nsec
|
||
|
* correctly. However, the value in this location is
|
||
|
* is value at the last tick.
|
||
|
* Discover what correction gettimeofday
|
||
|
* would have done, and then undo it!
|
||
|
*/
|
||
|
#if 0
|
||
|
tv->tv_nsec -= mach_gettimeoffset() * 1000;
|
||
|
#endif
|
||
|
|
||
|
while (tv->tv_nsec < 0) {
|
||
|
tv->tv_nsec += NSEC_PER_SEC;
|
||
|
tv->tv_sec--;
|
||
|
}
|
||
|
|
||
|
xtime.tv_sec = tv->tv_sec;
|
||
|
xtime.tv_nsec = tv->tv_nsec;
|
||
|
|
||
|
time_adjust = 0; /* stop active adjtime () */
|
||
|
time_status |= STA_UNSYNC;
|
||
|
time_maxerror = NTP_PHASE_LIMIT;
|
||
|
time_esterror = NTP_PHASE_LIMIT;
|
||
|
|
||
|
write_sequnlock_irq (&xtime_lock);
|
||
|
clock_was_set();
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
EXPORT_SYMBOL(do_settimeofday);
|
||
|
|
||
|
static int timer_dev_id;
|
||
|
static struct irqaction timer_irqaction = {
|
||
|
timer_interrupt,
|
||
|
SA_INTERRUPT,
|
||
|
CPU_MASK_NONE,
|
||
|
"timer",
|
||
|
&timer_dev_id,
|
||
|
NULL
|
||
|
};
|
||
|
|
||
|
void time_init (void)
|
||
|
{
|
||
|
mach_gettimeofday (&xtime);
|
||
|
mach_sched_init (&timer_irqaction);
|
||
|
}
|