kernel-ark/fs/btrfs/ordered-data.c

647 lines
17 KiB
C
Raw Normal View History

/*
* Copyright (C) 2007 Oracle. All rights reserved.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public
* License v2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public
* License along with this program; if not, write to the
* Free Software Foundation, Inc., 59 Temple Place - Suite 330,
* Boston, MA 021110-1307, USA.
*/
#include <linux/gfp.h>
#include <linux/slab.h>
#include <linux/blkdev.h>
#include <linux/writeback.h>
#include <linux/pagevec.h>
#include "ctree.h"
#include "transaction.h"
#include "btrfs_inode.h"
#include "extent_io.h"
static u64 entry_end(struct btrfs_ordered_extent *entry)
{
if (entry->file_offset + entry->len < entry->file_offset)
return (u64)-1;
return entry->file_offset + entry->len;
}
static struct rb_node *tree_insert(struct rb_root *root, u64 file_offset,
struct rb_node *node)
{
struct rb_node ** p = &root->rb_node;
struct rb_node * parent = NULL;
struct btrfs_ordered_extent *entry;
while(*p) {
parent = *p;
entry = rb_entry(parent, struct btrfs_ordered_extent, rb_node);
if (file_offset < entry->file_offset)
p = &(*p)->rb_left;
else if (file_offset >= entry_end(entry))
p = &(*p)->rb_right;
else
return parent;
}
rb_link_node(node, parent, p);
rb_insert_color(node, root);
return NULL;
}
static struct rb_node *__tree_search(struct rb_root *root, u64 file_offset,
struct rb_node **prev_ret)
{
struct rb_node * n = root->rb_node;
struct rb_node *prev = NULL;
struct rb_node *test;
struct btrfs_ordered_extent *entry;
struct btrfs_ordered_extent *prev_entry = NULL;
while(n) {
entry = rb_entry(n, struct btrfs_ordered_extent, rb_node);
prev = n;
prev_entry = entry;
if (file_offset < entry->file_offset)
n = n->rb_left;
else if (file_offset >= entry_end(entry))
n = n->rb_right;
else
return n;
}
if (!prev_ret)
return NULL;
while(prev && file_offset >= entry_end(prev_entry)) {
test = rb_next(prev);
if (!test)
break;
prev_entry = rb_entry(test, struct btrfs_ordered_extent,
rb_node);
if (file_offset < entry_end(prev_entry))
break;
prev = test;
}
if (prev)
prev_entry = rb_entry(prev, struct btrfs_ordered_extent,
rb_node);
while(prev && file_offset < entry_end(prev_entry)) {
test = rb_prev(prev);
if (!test)
break;
prev_entry = rb_entry(test, struct btrfs_ordered_extent,
rb_node);
prev = test;
}
*prev_ret = prev;
return NULL;
}
static int offset_in_entry(struct btrfs_ordered_extent *entry, u64 file_offset)
{
if (file_offset < entry->file_offset ||
entry->file_offset + entry->len <= file_offset)
return 0;
return 1;
}
static inline struct rb_node *tree_search(struct btrfs_ordered_inode_tree *tree,
u64 file_offset)
{
struct rb_root *root = &tree->tree;
struct rb_node *prev;
struct rb_node *ret;
struct btrfs_ordered_extent *entry;
if (tree->last) {
entry = rb_entry(tree->last, struct btrfs_ordered_extent,
rb_node);
if (offset_in_entry(entry, file_offset))
return tree->last;
}
ret = __tree_search(root, file_offset, &prev);
if (!ret)
ret = prev;
if (ret)
tree->last = ret;
return ret;
}
/* allocate and add a new ordered_extent into the per-inode tree.
* file_offset is the logical offset in the file
*
* start is the disk block number of an extent already reserved in the
* extent allocation tree
*
* len is the length of the extent
*
* This also sets the EXTENT_ORDERED bit on the range in the inode.
*
* The tree is given a single reference on the ordered extent that was
* inserted.
*/
int btrfs_add_ordered_extent(struct inode *inode, u64 file_offset,
u64 start, u64 len)
{
struct btrfs_ordered_inode_tree *tree;
struct rb_node *node;
struct btrfs_ordered_extent *entry;
tree = &BTRFS_I(inode)->ordered_tree;
entry = kzalloc(sizeof(*entry), GFP_NOFS);
if (!entry)
return -ENOMEM;
mutex_lock(&tree->mutex);
entry->file_offset = file_offset;
entry->start = start;
entry->len = len;
/* one ref for the tree */
atomic_set(&entry->refs, 1);
init_waitqueue_head(&entry->wait);
INIT_LIST_HEAD(&entry->list);
node = tree_insert(&tree->tree, file_offset,
&entry->rb_node);
if (node) {
entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
atomic_inc(&entry->refs);
}
set_extent_ordered(&BTRFS_I(inode)->io_tree, file_offset,
entry_end(entry) - 1, GFP_NOFS);
mutex_unlock(&tree->mutex);
BUG_ON(node);
return 0;
}
/*
* Add a struct btrfs_ordered_sum into the list of checksums to be inserted
* when an ordered extent is finished. If the list covers more than one
* ordered extent, it is split across multiples.
*/
int btrfs_add_ordered_sum(struct inode *inode,
struct btrfs_ordered_extent *entry,
struct btrfs_ordered_sum *sum)
{
struct btrfs_ordered_inode_tree *tree;
tree = &BTRFS_I(inode)->ordered_tree;
mutex_lock(&tree->mutex);
list_add_tail(&sum->list, &entry->list);
mutex_unlock(&tree->mutex);
return 0;
}
/*
* this is used to account for finished IO across a given range
* of the file. The IO should not span ordered extents. If
* a given ordered_extent is completely done, 1 is returned, otherwise
* 0.
*
* test_and_set_bit on a flag in the struct btrfs_ordered_extent is used
* to make sure this function only returns 1 once for a given ordered extent.
*/
int btrfs_dec_test_ordered_pending(struct inode *inode,
u64 file_offset, u64 io_size)
{
struct btrfs_ordered_inode_tree *tree;
struct rb_node *node;
struct btrfs_ordered_extent *entry;
struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
int ret;
tree = &BTRFS_I(inode)->ordered_tree;
mutex_lock(&tree->mutex);
clear_extent_ordered(io_tree, file_offset, file_offset + io_size - 1,
GFP_NOFS);
node = tree_search(tree, file_offset);
if (!node) {
ret = 1;
goto out;
}
entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
if (!offset_in_entry(entry, file_offset)) {
ret = 1;
goto out;
}
ret = test_range_bit(io_tree, entry->file_offset,
entry->file_offset + entry->len - 1,
EXTENT_ORDERED, 0);
if (ret == 0)
ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
out:
mutex_unlock(&tree->mutex);
return ret == 0;
}
/*
* used to drop a reference on an ordered extent. This will free
* the extent if the last reference is dropped
*/
int btrfs_put_ordered_extent(struct btrfs_ordered_extent *entry)
{
struct list_head *cur;
struct btrfs_ordered_sum *sum;
if (atomic_dec_and_test(&entry->refs)) {
while(!list_empty(&entry->list)) {
cur = entry->list.next;
sum = list_entry(cur, struct btrfs_ordered_sum, list);
list_del(&sum->list);
kfree(sum);
}
kfree(entry);
}
return 0;
}
/*
* remove an ordered extent from the tree. No references are dropped
* but, anyone waiting on this extent is woken up.
*/
int btrfs_remove_ordered_extent(struct inode *inode,
struct btrfs_ordered_extent *entry)
{
struct btrfs_ordered_inode_tree *tree;
struct rb_node *node;
tree = &BTRFS_I(inode)->ordered_tree;
mutex_lock(&tree->mutex);
node = &entry->rb_node;
rb_erase(node, &tree->tree);
tree->last = NULL;
set_bit(BTRFS_ORDERED_COMPLETE, &entry->flags);
mutex_unlock(&tree->mutex);
wake_up(&entry->wait);
return 0;
}
/*
* Used to start IO or wait for a given ordered extent to finish.
*
* If wait is one, this effectively waits on page writeback for all the pages
* in the extent, and it waits on the io completion code to insert
* metadata into the btree corresponding to the extent
*/
void btrfs_start_ordered_extent(struct inode *inode,
struct btrfs_ordered_extent *entry,
int wait)
{
u64 start = entry->file_offset;
u64 end = start + entry->len - 1;
/*
* pages in the range can be dirty, clean or writeback. We
* start IO on any dirty ones so the wait doesn't stall waiting
* for pdflush to find them
*/
btrfs_fdatawrite_range(inode->i_mapping, start, end, WB_SYNC_NONE);
if (wait)
wait_event(entry->wait, test_bit(BTRFS_ORDERED_COMPLETE,
&entry->flags));
}
/*
* Used to wait on ordered extents across a large range of bytes.
*/
void btrfs_wait_ordered_range(struct inode *inode, u64 start, u64 len)
{
u64 end;
u64 orig_end;
u64 wait_end;
struct btrfs_ordered_extent *ordered;
if (start + len < start) {
orig_end = INT_LIMIT(loff_t);
} else {
orig_end = start + len - 1;
if (orig_end > INT_LIMIT(loff_t))
orig_end = INT_LIMIT(loff_t);
}
wait_end = orig_end;
again:
/* start IO across the range first to instantiate any delalloc
* extents
*/
btrfs_fdatawrite_range(inode->i_mapping, start, orig_end, WB_SYNC_NONE);
btrfs_wait_on_page_writeback_range(inode->i_mapping,
start >> PAGE_CACHE_SHIFT,
orig_end >> PAGE_CACHE_SHIFT);
end = orig_end;
while(1) {
ordered = btrfs_lookup_first_ordered_extent(inode, end);
if (!ordered) {
break;
}
if (ordered->file_offset > orig_end) {
btrfs_put_ordered_extent(ordered);
break;
}
if (ordered->file_offset + ordered->len < start) {
btrfs_put_ordered_extent(ordered);
break;
}
btrfs_start_ordered_extent(inode, ordered, 1);
end = ordered->file_offset;
btrfs_put_ordered_extent(ordered);
if (end == 0 || end == start)
break;
end--;
}
if (test_range_bit(&BTRFS_I(inode)->io_tree, start, orig_end,
EXTENT_ORDERED | EXTENT_DELALLOC, 0)) {
printk("inode %lu still ordered or delalloc after wait "
"%llu %llu\n", inode->i_ino,
(unsigned long long)start,
(unsigned long long)orig_end);
goto again;
}
}
/*
* find an ordered extent corresponding to file_offset. return NULL if
* nothing is found, otherwise take a reference on the extent and return it
*/
struct btrfs_ordered_extent *btrfs_lookup_ordered_extent(struct inode *inode,
u64 file_offset)
{
struct btrfs_ordered_inode_tree *tree;
struct rb_node *node;
struct btrfs_ordered_extent *entry = NULL;
tree = &BTRFS_I(inode)->ordered_tree;
mutex_lock(&tree->mutex);
node = tree_search(tree, file_offset);
if (!node)
goto out;
entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
if (!offset_in_entry(entry, file_offset))
entry = NULL;
if (entry)
atomic_inc(&entry->refs);
out:
mutex_unlock(&tree->mutex);
return entry;
}
/*
* lookup and return any extent before 'file_offset'. NULL is returned
* if none is found
*/
struct btrfs_ordered_extent *
btrfs_lookup_first_ordered_extent(struct inode * inode, u64 file_offset)
{
struct btrfs_ordered_inode_tree *tree;
struct rb_node *node;
struct btrfs_ordered_extent *entry = NULL;
tree = &BTRFS_I(inode)->ordered_tree;
mutex_lock(&tree->mutex);
node = tree_search(tree, file_offset);
if (!node)
goto out;
entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
atomic_inc(&entry->refs);
out:
mutex_unlock(&tree->mutex);
return entry;
}
/*
* After an extent is done, call this to conditionally update the on disk
* i_size. i_size is updated to cover any fully written part of the file.
*/
int btrfs_ordered_update_i_size(struct inode *inode,
struct btrfs_ordered_extent *ordered)
{
struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree;
struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
u64 disk_i_size;
u64 new_i_size;
u64 i_size_test;
struct rb_node *node;
struct btrfs_ordered_extent *test;
mutex_lock(&tree->mutex);
disk_i_size = BTRFS_I(inode)->disk_i_size;
/*
* if the disk i_size is already at the inode->i_size, or
* this ordered extent is inside the disk i_size, we're done
*/
if (disk_i_size >= inode->i_size ||
ordered->file_offset + ordered->len <= disk_i_size) {
goto out;
}
/*
* we can't update the disk_isize if there are delalloc bytes
* between disk_i_size and this ordered extent
*/
if (test_range_bit(io_tree, disk_i_size,
ordered->file_offset + ordered->len - 1,
EXTENT_DELALLOC, 0)) {
goto out;
}
/*
* walk backward from this ordered extent to disk_i_size.
* if we find an ordered extent then we can't update disk i_size
* yet
*/
node = &ordered->rb_node;
while(1) {
node = rb_prev(node);
if (!node)
break;
test = rb_entry(node, struct btrfs_ordered_extent, rb_node);
if (test->file_offset + test->len <= disk_i_size)
break;
if (test->file_offset >= inode->i_size)
break;
if (test->file_offset >= disk_i_size)
goto out;
}
new_i_size = min_t(u64, entry_end(ordered), i_size_read(inode));
/*
* at this point, we know we can safely update i_size to at least
* the offset from this ordered extent. But, we need to
* walk forward and see if ios from higher up in the file have
* finished.
*/
node = rb_next(&ordered->rb_node);
i_size_test = 0;
if (node) {
/*
* do we have an area where IO might have finished
* between our ordered extent and the next one.
*/
test = rb_entry(node, struct btrfs_ordered_extent, rb_node);
if (test->file_offset > entry_end(ordered)) {
i_size_test = test->file_offset - 1;
}
} else {
i_size_test = i_size_read(inode);
}
/*
* i_size_test is the end of a region after this ordered
* extent where there are no ordered extents. As long as there
* are no delalloc bytes in this area, it is safe to update
* disk_i_size to the end of the region.
*/
if (i_size_test > entry_end(ordered) &&
!test_range_bit(io_tree, entry_end(ordered), i_size_test,
EXTENT_DELALLOC, 0)) {
new_i_size = min_t(u64, i_size_test, i_size_read(inode));
}
BTRFS_I(inode)->disk_i_size = new_i_size;
out:
mutex_unlock(&tree->mutex);
return 0;
}
/*
* search the ordered extents for one corresponding to 'offset' and
* try to find a checksum. This is used because we allow pages to
* be reclaimed before their checksum is actually put into the btree
*/
int btrfs_find_ordered_sum(struct inode *inode, u64 offset, u32 *sum)
{
struct btrfs_ordered_sum *ordered_sum;
struct btrfs_sector_sum *sector_sums;
struct btrfs_ordered_extent *ordered;
struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree;
struct list_head *cur;
unsigned long num_sectors;
unsigned long i;
u32 sectorsize = BTRFS_I(inode)->root->sectorsize;
int ret = 1;
ordered = btrfs_lookup_ordered_extent(inode, offset);
if (!ordered)
return 1;
mutex_lock(&tree->mutex);
list_for_each_prev(cur, &ordered->list) {
ordered_sum = list_entry(cur, struct btrfs_ordered_sum, list);
if (offset >= ordered_sum->file_offset) {
num_sectors = ordered_sum->len / sectorsize;
sector_sums = ordered_sum->sums;
for (i = 0; i < num_sectors; i++) {
if (sector_sums[i].offset == offset) {
*sum = sector_sums[i].sum;
ret = 0;
goto out;
}
}
}
}
out:
mutex_unlock(&tree->mutex);
return ret;
}
/**
* taken from mm/filemap.c because it isn't exported
*
* __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
* @mapping: address space structure to write
* @start: offset in bytes where the range starts
* @end: offset in bytes where the range ends (inclusive)
* @sync_mode: enable synchronous operation
*
* Start writeback against all of a mapping's dirty pages that lie
* within the byte offsets <start, end> inclusive.
*
* If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
* opposed to a regular memory cleansing writeback. The difference between
* these two operations is that if a dirty page/buffer is encountered, it must
* be waited upon, and not just skipped over.
*/
int btrfs_fdatawrite_range(struct address_space *mapping, loff_t start,
loff_t end, int sync_mode)
{
struct writeback_control wbc = {
.sync_mode = sync_mode,
.nr_to_write = mapping->nrpages * 2,
.range_start = start,
.range_end = end,
.for_writepages = 1,
};
return btrfs_writepages(mapping, &wbc);
}
/**
* taken from mm/filemap.c because it isn't exported
*
* wait_on_page_writeback_range - wait for writeback to complete
* @mapping: target address_space
* @start: beginning page index
* @end: ending page index
*
* Wait for writeback to complete against pages indexed by start->end
* inclusive
*/
int btrfs_wait_on_page_writeback_range(struct address_space *mapping,
pgoff_t start, pgoff_t end)
{
struct pagevec pvec;
int nr_pages;
int ret = 0;
pgoff_t index;
if (end < start)
return 0;
pagevec_init(&pvec, 0);
index = start;
while ((index <= end) &&
(nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
PAGECACHE_TAG_WRITEBACK,
min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
unsigned i;
for (i = 0; i < nr_pages; i++) {
struct page *page = pvec.pages[i];
/* until radix tree lookup accepts end_index */
if (page->index > end)
continue;
wait_on_page_writeback(page);
if (PageError(page))
ret = -EIO;
}
pagevec_release(&pvec);
cond_resched();
}
/* Check for outstanding write errors */
if (test_and_clear_bit(AS_ENOSPC, &mapping->flags))
ret = -ENOSPC;
if (test_and_clear_bit(AS_EIO, &mapping->flags))
ret = -EIO;
return ret;
}