kernel-ark/Documentation/RCU/whatisRCU.txt

1000 lines
37 KiB
Plaintext
Raw Normal View History

Please note that the "What is RCU?" LWN series is an excellent place
to start learning about RCU:
1. What is RCU, Fundamentally? http://lwn.net/Articles/262464/
2. What is RCU? Part 2: Usage http://lwn.net/Articles/263130/
3. RCU part 3: the RCU API http://lwn.net/Articles/264090/
4. The RCU API, 2010 Edition http://lwn.net/Articles/418853/
What is RCU?
RCU is a synchronization mechanism that was added to the Linux kernel
during the 2.5 development effort that is optimized for read-mostly
situations. Although RCU is actually quite simple once you understand it,
getting there can sometimes be a challenge. Part of the problem is that
most of the past descriptions of RCU have been written with the mistaken
assumption that there is "one true way" to describe RCU. Instead,
the experience has been that different people must take different paths
to arrive at an understanding of RCU. This document provides several
different paths, as follows:
1. RCU OVERVIEW
2. WHAT IS RCU'S CORE API?
3. WHAT ARE SOME EXAMPLE USES OF CORE RCU API?
4. WHAT IF MY UPDATING THREAD CANNOT BLOCK?
5. WHAT ARE SOME SIMPLE IMPLEMENTATIONS OF RCU?
6. ANALOGY WITH READER-WRITER LOCKING
7. FULL LIST OF RCU APIs
8. ANSWERS TO QUICK QUIZZES
People who prefer starting with a conceptual overview should focus on
Section 1, though most readers will profit by reading this section at
some point. People who prefer to start with an API that they can then
experiment with should focus on Section 2. People who prefer to start
with example uses should focus on Sections 3 and 4. People who need to
understand the RCU implementation should focus on Section 5, then dive
into the kernel source code. People who reason best by analogy should
focus on Section 6. Section 7 serves as an index to the docbook API
documentation, and Section 8 is the traditional answer key.
So, start with the section that makes the most sense to you and your
preferred method of learning. If you need to know everything about
everything, feel free to read the whole thing -- but if you are really
that type of person, you have perused the source code and will therefore
never need this document anyway. ;-)
1. RCU OVERVIEW
The basic idea behind RCU is to split updates into "removal" and
"reclamation" phases. The removal phase removes references to data items
within a data structure (possibly by replacing them with references to
new versions of these data items), and can run concurrently with readers.
The reason that it is safe to run the removal phase concurrently with
readers is the semantics of modern CPUs guarantee that readers will see
either the old or the new version of the data structure rather than a
partially updated reference. The reclamation phase does the work of reclaiming
(e.g., freeing) the data items removed from the data structure during the
removal phase. Because reclaiming data items can disrupt any readers
concurrently referencing those data items, the reclamation phase must
not start until readers no longer hold references to those data items.
Splitting the update into removal and reclamation phases permits the
updater to perform the removal phase immediately, and to defer the
reclamation phase until all readers active during the removal phase have
completed, either by blocking until they finish or by registering a
callback that is invoked after they finish. Only readers that are active
during the removal phase need be considered, because any reader starting
after the removal phase will be unable to gain a reference to the removed
data items, and therefore cannot be disrupted by the reclamation phase.
So the typical RCU update sequence goes something like the following:
a. Remove pointers to a data structure, so that subsequent
readers cannot gain a reference to it.
b. Wait for all previous readers to complete their RCU read-side
critical sections.
c. At this point, there cannot be any readers who hold references
to the data structure, so it now may safely be reclaimed
(e.g., kfree()d).
Step (b) above is the key idea underlying RCU's deferred destruction.
The ability to wait until all readers are done allows RCU readers to
use much lighter-weight synchronization, in some cases, absolutely no
synchronization at all. In contrast, in more conventional lock-based
schemes, readers must use heavy-weight synchronization in order to
prevent an updater from deleting the data structure out from under them.
This is because lock-based updaters typically update data items in place,
and must therefore exclude readers. In contrast, RCU-based updaters
typically take advantage of the fact that writes to single aligned
pointers are atomic on modern CPUs, allowing atomic insertion, removal,
and replacement of data items in a linked structure without disrupting
readers. Concurrent RCU readers can then continue accessing the old
versions, and can dispense with the atomic operations, memory barriers,
and communications cache misses that are so expensive on present-day
SMP computer systems, even in absence of lock contention.
In the three-step procedure shown above, the updater is performing both
the removal and the reclamation step, but it is often helpful for an
entirely different thread to do the reclamation, as is in fact the case
in the Linux kernel's directory-entry cache (dcache). Even if the same
thread performs both the update step (step (a) above) and the reclamation
step (step (c) above), it is often helpful to think of them separately.
For example, RCU readers and updaters need not communicate at all,
but RCU provides implicit low-overhead communication between readers
and reclaimers, namely, in step (b) above.
So how the heck can a reclaimer tell when a reader is done, given
that readers are not doing any sort of synchronization operations???
Read on to learn about how RCU's API makes this easy.
2. WHAT IS RCU'S CORE API?
The core RCU API is quite small:
a. rcu_read_lock()
b. rcu_read_unlock()
c. synchronize_rcu() / call_rcu()
d. rcu_assign_pointer()
e. rcu_dereference()
There are many other members of the RCU API, but the rest can be
expressed in terms of these five, though most implementations instead
express synchronize_rcu() in terms of the call_rcu() callback API.
The five core RCU APIs are described below, the other 18 will be enumerated
later. See the kernel docbook documentation for more info, or look directly
at the function header comments.
rcu_read_lock()
void rcu_read_lock(void);
Used by a reader to inform the reclaimer that the reader is
entering an RCU read-side critical section. It is illegal
to block while in an RCU read-side critical section, though
kernels built with CONFIG_TREE_PREEMPT_RCU can preempt RCU
read-side critical sections. Any RCU-protected data structure
accessed during an RCU read-side critical section is guaranteed to
remain unreclaimed for the full duration of that critical section.
Reference counts may be used in conjunction with RCU to maintain
longer-term references to data structures.
rcu_read_unlock()
void rcu_read_unlock(void);
Used by a reader to inform the reclaimer that the reader is
exiting an RCU read-side critical section. Note that RCU
read-side critical sections may be nested and/or overlapping.
synchronize_rcu()
void synchronize_rcu(void);
Marks the end of updater code and the beginning of reclaimer
code. It does this by blocking until all pre-existing RCU
read-side critical sections on all CPUs have completed.
Note that synchronize_rcu() will -not- necessarily wait for
any subsequent RCU read-side critical sections to complete.
For example, consider the following sequence of events:
CPU 0 CPU 1 CPU 2
----------------- ------------------------- ---------------
1. rcu_read_lock()
2. enters synchronize_rcu()
3. rcu_read_lock()
4. rcu_read_unlock()
5. exits synchronize_rcu()
6. rcu_read_unlock()
To reiterate, synchronize_rcu() waits only for ongoing RCU
read-side critical sections to complete, not necessarily for
any that begin after synchronize_rcu() is invoked.
Of course, synchronize_rcu() does not necessarily return
-immediately- after the last pre-existing RCU read-side critical
section completes. For one thing, there might well be scheduling
delays. For another thing, many RCU implementations process
requests in batches in order to improve efficiencies, which can
further delay synchronize_rcu().
Since synchronize_rcu() is the API that must figure out when
readers are done, its implementation is key to RCU. For RCU
to be useful in all but the most read-intensive situations,
synchronize_rcu()'s overhead must also be quite small.
The call_rcu() API is a callback form of synchronize_rcu(),
and is described in more detail in a later section. Instead of
blocking, it registers a function and argument which are invoked
after all ongoing RCU read-side critical sections have completed.
This callback variant is particularly useful in situations where
it is illegal to block or where update-side performance is
critically important.
However, the call_rcu() API should not be used lightly, as use
of the synchronize_rcu() API generally results in simpler code.
In addition, the synchronize_rcu() API has the nice property
of automatically limiting update rate should grace periods
be delayed. This property results in system resilience in face
of denial-of-service attacks. Code using call_rcu() should limit
update rate in order to gain this same sort of resilience. See
checklist.txt for some approaches to limiting the update rate.
rcu_assign_pointer()
typeof(p) rcu_assign_pointer(p, typeof(p) v);
Yes, rcu_assign_pointer() -is- implemented as a macro, though it
would be cool to be able to declare a function in this manner.
(Compiler experts will no doubt disagree.)
The updater uses this function to assign a new value to an
RCU-protected pointer, in order to safely communicate the change
in value from the updater to the reader. This function returns
the new value, and also executes any memory-barrier instructions
required for a given CPU architecture.
Perhaps just as important, it serves to document (1) which
pointers are protected by RCU and (2) the point at which a
given structure becomes accessible to other CPUs. That said,
rcu_assign_pointer() is most frequently used indirectly, via
the _rcu list-manipulation primitives such as list_add_rcu().
rcu_dereference()
typeof(p) rcu_dereference(p);
Like rcu_assign_pointer(), rcu_dereference() must be implemented
as a macro.
The reader uses rcu_dereference() to fetch an RCU-protected
pointer, which returns a value that may then be safely
dereferenced. Note that rcu_deference() does not actually
dereference the pointer, instead, it protects the pointer for
later dereferencing. It also executes any needed memory-barrier
instructions for a given CPU architecture. Currently, only Alpha
needs memory barriers within rcu_dereference() -- on other CPUs,
it compiles to nothing, not even a compiler directive.
Common coding practice uses rcu_dereference() to copy an
RCU-protected pointer to a local variable, then dereferences
this local variable, for example as follows:
p = rcu_dereference(head.next);
return p->data;
However, in this case, one could just as easily combine these
into one statement:
return rcu_dereference(head.next)->data;
If you are going to be fetching multiple fields from the
RCU-protected structure, using the local variable is of
course preferred. Repeated rcu_dereference() calls look
ugly and incur unnecessary overhead on Alpha CPUs.
Note that the value returned by rcu_dereference() is valid
only within the enclosing RCU read-side critical section.
For example, the following is -not- legal:
rcu_read_lock();
p = rcu_dereference(head.next);
rcu_read_unlock();
x = p->address;
rcu_read_lock();
y = p->data;
rcu_read_unlock();
Holding a reference from one RCU read-side critical section
to another is just as illegal as holding a reference from
one lock-based critical section to another! Similarly,
using a reference outside of the critical section in which
it was acquired is just as illegal as doing so with normal
locking.
As with rcu_assign_pointer(), an important function of
rcu_dereference() is to document which pointers are protected by
RCU, in particular, flagging a pointer that is subject to changing
at any time, including immediately after the rcu_dereference().
And, again like rcu_assign_pointer(), rcu_dereference() is
typically used indirectly, via the _rcu list-manipulation
primitives, such as list_for_each_entry_rcu().
The following diagram shows how each API communicates among the
reader, updater, and reclaimer.
rcu_assign_pointer()
+--------+
+---------------------->| reader |---------+
| +--------+ |
| | |
| | | Protect:
| | | rcu_read_lock()
| | | rcu_read_unlock()
| rcu_dereference() | |
+---------+ | |
| updater |<---------------------+ |
+---------+ V
| +-----------+
+----------------------------------->| reclaimer |
+-----------+
Defer:
synchronize_rcu() & call_rcu()
The RCU infrastructure observes the time sequence of rcu_read_lock(),
rcu_read_unlock(), synchronize_rcu(), and call_rcu() invocations in
order to determine when (1) synchronize_rcu() invocations may return
to their callers and (2) call_rcu() callbacks may be invoked. Efficient
implementations of the RCU infrastructure make heavy use of batching in
order to amortize their overhead over many uses of the corresponding APIs.
There are no fewer than three RCU mechanisms in the Linux kernel; the
diagram above shows the first one, which is by far the most commonly used.
The rcu_dereference() and rcu_assign_pointer() primitives are used for
all three mechanisms, but different defer and protect primitives are
used as follows:
Defer Protect
a. synchronize_rcu() rcu_read_lock() / rcu_read_unlock()
call_rcu() rcu_dereference()
b. call_rcu_bh() rcu_read_lock_bh() / rcu_read_unlock_bh()
rcu_dereference_bh()
c. synchronize_sched() rcu_read_lock_sched() / rcu_read_unlock_sched()
preempt_disable() / preempt_enable()
local_irq_save() / local_irq_restore()
hardirq enter / hardirq exit
NMI enter / NMI exit
rcu_dereference_sched()
These three mechanisms are used as follows:
a. RCU applied to normal data structures.
b. RCU applied to networking data structures that may be subjected
to remote denial-of-service attacks.
c. RCU applied to scheduler and interrupt/NMI-handler tasks.
Again, most uses will be of (a). The (b) and (c) cases are important
for specialized uses, but are relatively uncommon.
3. WHAT ARE SOME EXAMPLE USES OF CORE RCU API?
This section shows a simple use of the core RCU API to protect a
global pointer to a dynamically allocated structure. More-typical
uses of RCU may be found in listRCU.txt, arrayRCU.txt, and NMI-RCU.txt.
struct foo {
int a;
char b;
long c;
};
DEFINE_SPINLOCK(foo_mutex);
struct foo *gbl_foo;
/*
* Create a new struct foo that is the same as the one currently
* pointed to by gbl_foo, except that field "a" is replaced
* with "new_a". Points gbl_foo to the new structure, and
* frees up the old structure after a grace period.
*
* Uses rcu_assign_pointer() to ensure that concurrent readers
* see the initialized version of the new structure.
*
* Uses synchronize_rcu() to ensure that any readers that might
* have references to the old structure complete before freeing
* the old structure.
*/
void foo_update_a(int new_a)
{
struct foo *new_fp;
struct foo *old_fp;
new_fp = kmalloc(sizeof(*new_fp), GFP_KERNEL);
spin_lock(&foo_mutex);
old_fp = gbl_foo;
*new_fp = *old_fp;
new_fp->a = new_a;
rcu_assign_pointer(gbl_foo, new_fp);
spin_unlock(&foo_mutex);
synchronize_rcu();
kfree(old_fp);
}
/*
* Return the value of field "a" of the current gbl_foo
* structure. Use rcu_read_lock() and rcu_read_unlock()
* to ensure that the structure does not get deleted out
* from under us, and use rcu_dereference() to ensure that
* we see the initialized version of the structure (important
* for DEC Alpha and for people reading the code).
*/
int foo_get_a(void)
{
int retval;
rcu_read_lock();
retval = rcu_dereference(gbl_foo)->a;
rcu_read_unlock();
return retval;
}
So, to sum up:
o Use rcu_read_lock() and rcu_read_unlock() to guard RCU
read-side critical sections.
o Within an RCU read-side critical section, use rcu_dereference()
to dereference RCU-protected pointers.
o Use some solid scheme (such as locks or semaphores) to
keep concurrent updates from interfering with each other.
o Use rcu_assign_pointer() to update an RCU-protected pointer.
This primitive protects concurrent readers from the updater,
-not- concurrent updates from each other! You therefore still
need to use locking (or something similar) to keep concurrent
rcu_assign_pointer() primitives from interfering with each other.
o Use synchronize_rcu() -after- removing a data element from an
RCU-protected data structure, but -before- reclaiming/freeing
the data element, in order to wait for the completion of all
RCU read-side critical sections that might be referencing that
data item.
See checklist.txt for additional rules to follow when using RCU.
And again, more-typical uses of RCU may be found in listRCU.txt,
arrayRCU.txt, and NMI-RCU.txt.
4. WHAT IF MY UPDATING THREAD CANNOT BLOCK?
In the example above, foo_update_a() blocks until a grace period elapses.
This is quite simple, but in some cases one cannot afford to wait so
long -- there might be other high-priority work to be done.
In such cases, one uses call_rcu() rather than synchronize_rcu().
The call_rcu() API is as follows:
void call_rcu(struct rcu_head * head,
void (*func)(struct rcu_head *head));
This function invokes func(head) after a grace period has elapsed.
This invocation might happen from either softirq or process context,
so the function is not permitted to block. The foo struct needs to
have an rcu_head structure added, perhaps as follows:
struct foo {
int a;
char b;
long c;
struct rcu_head rcu;
};
The foo_update_a() function might then be written as follows:
/*
* Create a new struct foo that is the same as the one currently
* pointed to by gbl_foo, except that field "a" is replaced
* with "new_a". Points gbl_foo to the new structure, and
* frees up the old structure after a grace period.
*
* Uses rcu_assign_pointer() to ensure that concurrent readers
* see the initialized version of the new structure.
*
* Uses call_rcu() to ensure that any readers that might have
* references to the old structure complete before freeing the
* old structure.
*/
void foo_update_a(int new_a)
{
struct foo *new_fp;
struct foo *old_fp;
new_fp = kmalloc(sizeof(*new_fp), GFP_KERNEL);
spin_lock(&foo_mutex);
old_fp = gbl_foo;
*new_fp = *old_fp;
new_fp->a = new_a;
rcu_assign_pointer(gbl_foo, new_fp);
spin_unlock(&foo_mutex);
call_rcu(&old_fp->rcu, foo_reclaim);
}
The foo_reclaim() function might appear as follows:
void foo_reclaim(struct rcu_head *rp)
{
struct foo *fp = container_of(rp, struct foo, rcu);
kfree(fp);
}
The container_of() primitive is a macro that, given a pointer into a
struct, the type of the struct, and the pointed-to field within the
struct, returns a pointer to the beginning of the struct.
The use of call_rcu() permits the caller of foo_update_a() to
immediately regain control, without needing to worry further about the
old version of the newly updated element. It also clearly shows the
RCU distinction between updater, namely foo_update_a(), and reclaimer,
namely foo_reclaim().
The summary of advice is the same as for the previous section, except
that we are now using call_rcu() rather than synchronize_rcu():
o Use call_rcu() -after- removing a data element from an
RCU-protected data structure in order to register a callback
function that will be invoked after the completion of all RCU
read-side critical sections that might be referencing that
data item.
Again, see checklist.txt for additional rules governing the use of RCU.
5. WHAT ARE SOME SIMPLE IMPLEMENTATIONS OF RCU?
One of the nice things about RCU is that it has extremely simple "toy"
implementations that are a good first step towards understanding the
production-quality implementations in the Linux kernel. This section
presents two such "toy" implementations of RCU, one that is implemented
in terms of familiar locking primitives, and another that more closely
resembles "classic" RCU. Both are way too simple for real-world use,
lacking both functionality and performance. However, they are useful
in getting a feel for how RCU works. See kernel/rcupdate.c for a
production-quality implementation, and see:
http://www.rdrop.com/users/paulmck/RCU
for papers describing the Linux kernel RCU implementation. The OLS'01
and OLS'02 papers are a good introduction, and the dissertation provides
more details on the current implementation as of early 2004.
5A. "TOY" IMPLEMENTATION #1: LOCKING
This section presents a "toy" RCU implementation that is based on
familiar locking primitives. Its overhead makes it a non-starter for
real-life use, as does its lack of scalability. It is also unsuitable
for realtime use, since it allows scheduling latency to "bleed" from
one read-side critical section to another.
However, it is probably the easiest implementation to relate to, so is
a good starting point.
It is extremely simple:
static DEFINE_RWLOCK(rcu_gp_mutex);
void rcu_read_lock(void)
{
read_lock(&rcu_gp_mutex);
}
void rcu_read_unlock(void)
{
read_unlock(&rcu_gp_mutex);
}
void synchronize_rcu(void)
{
write_lock(&rcu_gp_mutex);
write_unlock(&rcu_gp_mutex);
}
[You can ignore rcu_assign_pointer() and rcu_dereference() without
missing much. But here they are anyway. And whatever you do, don't
forget about them when submitting patches making use of RCU!]
#define rcu_assign_pointer(p, v) ({ \
smp_wmb(); \
(p) = (v); \
})
#define rcu_dereference(p) ({ \
typeof(p) _________p1 = p; \
smp_read_barrier_depends(); \
(_________p1); \
})
The rcu_read_lock() and rcu_read_unlock() primitive read-acquire
and release a global reader-writer lock. The synchronize_rcu()
primitive write-acquires this same lock, then immediately releases
it. This means that once synchronize_rcu() exits, all RCU read-side
critical sections that were in progress before synchronize_rcu() was
called are guaranteed to have completed -- there is no way that
synchronize_rcu() would have been able to write-acquire the lock
otherwise.
It is possible to nest rcu_read_lock(), since reader-writer locks may
be recursively acquired. Note also that rcu_read_lock() is immune
from deadlock (an important property of RCU). The reason for this is
that the only thing that can block rcu_read_lock() is a synchronize_rcu().
But synchronize_rcu() does not acquire any locks while holding rcu_gp_mutex,
so there can be no deadlock cycle.
Quick Quiz #1: Why is this argument naive? How could a deadlock
occur when using this algorithm in a real-world Linux
kernel? How could this deadlock be avoided?
5B. "TOY" EXAMPLE #2: CLASSIC RCU
This section presents a "toy" RCU implementation that is based on
"classic RCU". It is also short on performance (but only for updates) and
on features such as hotplug CPU and the ability to run in CONFIG_PREEMPT
kernels. The definitions of rcu_dereference() and rcu_assign_pointer()
are the same as those shown in the preceding section, so they are omitted.
void rcu_read_lock(void) { }
void rcu_read_unlock(void) { }
void synchronize_rcu(void)
{
int cpu;
for_each_possible_cpu(cpu)
run_on(cpu);
}
Note that rcu_read_lock() and rcu_read_unlock() do absolutely nothing.
This is the great strength of classic RCU in a non-preemptive kernel:
read-side overhead is precisely zero, at least on non-Alpha CPUs.
And there is absolutely no way that rcu_read_lock() can possibly
participate in a deadlock cycle!
The implementation of synchronize_rcu() simply schedules itself on each
CPU in turn. The run_on() primitive can be implemented straightforwardly
in terms of the sched_setaffinity() primitive. Of course, a somewhat less
"toy" implementation would restore the affinity upon completion rather
than just leaving all tasks running on the last CPU, but when I said
"toy", I meant -toy-!
So how the heck is this supposed to work???
Remember that it is illegal to block while in an RCU read-side critical
section. Therefore, if a given CPU executes a context switch, we know
that it must have completed all preceding RCU read-side critical sections.
Once -all- CPUs have executed a context switch, then -all- preceding
RCU read-side critical sections will have completed.
So, suppose that we remove a data item from its structure and then invoke
synchronize_rcu(). Once synchronize_rcu() returns, we are guaranteed
that there are no RCU read-side critical sections holding a reference
to that data item, so we can safely reclaim it.
Quick Quiz #2: Give an example where Classic RCU's read-side
overhead is -negative-.
Quick Quiz #3: If it is illegal to block in an RCU read-side
critical section, what the heck do you do in
PREEMPT_RT, where normal spinlocks can block???
6. ANALOGY WITH READER-WRITER LOCKING
Although RCU can be used in many different ways, a very common use of
RCU is analogous to reader-writer locking. The following unified
diff shows how closely related RCU and reader-writer locking can be.
@@ -13,15 +14,15 @@
struct list_head *lp;
struct el *p;
- read_lock();
- list_for_each_entry(p, head, lp) {
+ rcu_read_lock();
+ list_for_each_entry_rcu(p, head, lp) {
if (p->key == key) {
*result = p->data;
- read_unlock();
+ rcu_read_unlock();
return 1;
}
}
- read_unlock();
+ rcu_read_unlock();
return 0;
}
@@ -29,15 +30,16 @@
{
struct el *p;
- write_lock(&listmutex);
+ spin_lock(&listmutex);
list_for_each_entry(p, head, lp) {
if (p->key == key) {
- list_del(&p->list);
- write_unlock(&listmutex);
+ list_del_rcu(&p->list);
+ spin_unlock(&listmutex);
+ synchronize_rcu();
kfree(p);
return 1;
}
}
- write_unlock(&listmutex);
+ spin_unlock(&listmutex);
return 0;
}
Or, for those who prefer a side-by-side listing:
1 struct el { 1 struct el {
2 struct list_head list; 2 struct list_head list;
3 long key; 3 long key;
4 spinlock_t mutex; 4 spinlock_t mutex;
5 int data; 5 int data;
6 /* Other data fields */ 6 /* Other data fields */
7 }; 7 };
8 spinlock_t listmutex; 8 spinlock_t listmutex;
9 struct el head; 9 struct el head;
1 int search(long key, int *result) 1 int search(long key, int *result)
2 { 2 {
3 struct list_head *lp; 3 struct list_head *lp;
4 struct el *p; 4 struct el *p;
5 5
6 read_lock(); 6 rcu_read_lock();
7 list_for_each_entry(p, head, lp) { 7 list_for_each_entry_rcu(p, head, lp) {
8 if (p->key == key) { 8 if (p->key == key) {
9 *result = p->data; 9 *result = p->data;
10 read_unlock(); 10 rcu_read_unlock();
11 return 1; 11 return 1;
12 } 12 }
13 } 13 }
14 read_unlock(); 14 rcu_read_unlock();
15 return 0; 15 return 0;
16 } 16 }
1 int delete(long key) 1 int delete(long key)
2 { 2 {
3 struct el *p; 3 struct el *p;
4 4
5 write_lock(&listmutex); 5 spin_lock(&listmutex);
6 list_for_each_entry(p, head, lp) { 6 list_for_each_entry(p, head, lp) {
7 if (p->key == key) { 7 if (p->key == key) {
8 list_del(&p->list); 8 list_del_rcu(&p->list);
9 write_unlock(&listmutex); 9 spin_unlock(&listmutex);
10 synchronize_rcu();
10 kfree(p); 11 kfree(p);
11 return 1; 12 return 1;
12 } 13 }
13 } 14 }
14 write_unlock(&listmutex); 15 spin_unlock(&listmutex);
15 return 0; 16 return 0;
16 } 17 }
Either way, the differences are quite small. Read-side locking moves
to rcu_read_lock() and rcu_read_unlock, update-side locking moves from
a reader-writer lock to a simple spinlock, and a synchronize_rcu()
precedes the kfree().
However, there is one potential catch: the read-side and update-side
critical sections can now run concurrently. In many cases, this will
not be a problem, but it is necessary to check carefully regardless.
For example, if multiple independent list updates must be seen as
a single atomic update, converting to RCU will require special care.
Also, the presence of synchronize_rcu() means that the RCU version of
delete() can now block. If this is a problem, there is a callback-based
mechanism that never blocks, namely call_rcu(), that can be used in
place of synchronize_rcu().
7. FULL LIST OF RCU APIs
The RCU APIs are documented in docbook-format header comments in the
Linux-kernel source code, but it helps to have a full list of the
APIs, since there does not appear to be a way to categorize them
in docbook. Here is the list, by category.
RCU list traversal:
list_for_each_entry_rcu
hlist_for_each_entry_rcu
hlist_nulls_for_each_entry_rcu
list_for_each_continue_rcu (to be deprecated in favor of new
list_for_each_entry_continue_rcu)
RCU pointer/list update:
rcu_assign_pointer
list_add_rcu
list_add_tail_rcu
list_del_rcu
list_replace_rcu
hlist_del_rcu
hlist_add_after_rcu
hlist_add_before_rcu
hlist_add_head_rcu
hlist_replace_rcu
list_splice_init_rcu()
RCU: Critical sections Grace period Barrier
rcu_read_lock synchronize_net rcu_barrier
rcu_read_unlock synchronize_rcu
rcu_dereference synchronize_rcu_expedited
call_rcu
bh: Critical sections Grace period Barrier
rcu_read_lock_bh call_rcu_bh rcu_barrier_bh
rcu_read_unlock_bh synchronize_rcu_bh
rcu_dereference_bh synchronize_rcu_bh_expedited
sched: Critical sections Grace period Barrier
rcu_read_lock_sched synchronize_sched rcu_barrier_sched
rcu_read_unlock_sched call_rcu_sched
[preempt_disable] synchronize_sched_expedited
[and friends]
rcu_dereference_sched
SRCU: Critical sections Grace period Barrier
srcu_read_lock synchronize_srcu srcu_barrier
srcu_read_unlock call_srcu
srcu_read_lock_raw synchronize_srcu_expedited
srcu_read_unlock_raw
srcu_dereference
SRCU: Initialization/cleanup
init_srcu_struct
cleanup_srcu_struct
All: lockdep-checked RCU-protected pointer access
rcu_dereference_check
rcu_dereference_protected
rcu_access_pointer
See the comment headers in the source code (or the docbook generated
from them) for more information.
However, given that there are no fewer than four families of RCU APIs
in the Linux kernel, how do you choose which one to use? The following
list can be helpful:
a. Will readers need to block? If so, you need SRCU.
b. Is it necessary to start a read-side critical section in a
hardirq handler or exception handler, and then to complete
this read-side critical section in the task that was
interrupted? If so, you need SRCU's srcu_read_lock_raw() and
srcu_read_unlock_raw() primitives.
c. What about the -rt patchset? If readers would need to block
in an non-rt kernel, you need SRCU. If readers would block
in a -rt kernel, but not in a non-rt kernel, SRCU is not
necessary.
d. Do you need to treat NMI handlers, hardirq handlers,
and code segments with preemption disabled (whether
via preempt_disable(), local_irq_save(), local_bh_disable(),
or some other mechanism) as if they were explicit RCU readers?
If so, RCU-sched is the only choice that will work for you.
e. Do you need RCU grace periods to complete even in the face
of softirq monopolization of one or more of the CPUs? For
example, is your code subject to network-based denial-of-service
attacks? If so, you need RCU-bh.
f. Is your workload too update-intensive for normal use of
RCU, but inappropriate for other synchronization mechanisms?
If so, consider SLAB_DESTROY_BY_RCU. But please be careful!
g. Do you need read-side critical sections that are respected
even though they are in the middle of the idle loop, during
user-mode execution, or on an offlined CPU? If so, SRCU is the
only choice that will work for you.
h. Otherwise, use RCU.
Of course, this all assumes that you have determined that RCU is in fact
the right tool for your job.
8. ANSWERS TO QUICK QUIZZES
Quick Quiz #1: Why is this argument naive? How could a deadlock
occur when using this algorithm in a real-world Linux
kernel? [Referring to the lock-based "toy" RCU
algorithm.]
Answer: Consider the following sequence of events:
1. CPU 0 acquires some unrelated lock, call it
"problematic_lock", disabling irq via
spin_lock_irqsave().
2. CPU 1 enters synchronize_rcu(), write-acquiring
rcu_gp_mutex.
3. CPU 0 enters rcu_read_lock(), but must wait
because CPU 1 holds rcu_gp_mutex.
4. CPU 1 is interrupted, and the irq handler
attempts to acquire problematic_lock.
The system is now deadlocked.
One way to avoid this deadlock is to use an approach like
that of CONFIG_PREEMPT_RT, where all normal spinlocks
become blocking locks, and all irq handlers execute in
the context of special tasks. In this case, in step 4
above, the irq handler would block, allowing CPU 1 to
release rcu_gp_mutex, avoiding the deadlock.
Even in the absence of deadlock, this RCU implementation
allows latency to "bleed" from readers to other
readers through synchronize_rcu(). To see this,
consider task A in an RCU read-side critical section
(thus read-holding rcu_gp_mutex), task B blocked
attempting to write-acquire rcu_gp_mutex, and
task C blocked in rcu_read_lock() attempting to
read_acquire rcu_gp_mutex. Task A's RCU read-side
latency is holding up task C, albeit indirectly via
task B.
Realtime RCU implementations therefore use a counter-based
approach where tasks in RCU read-side critical sections
cannot be blocked by tasks executing synchronize_rcu().
Quick Quiz #2: Give an example where Classic RCU's read-side
overhead is -negative-.
Answer: Imagine a single-CPU system with a non-CONFIG_PREEMPT
kernel where a routing table is used by process-context
code, but can be updated by irq-context code (for example,
by an "ICMP REDIRECT" packet). The usual way of handling
this would be to have the process-context code disable
interrupts while searching the routing table. Use of
RCU allows such interrupt-disabling to be dispensed with.
Thus, without RCU, you pay the cost of disabling interrupts,
and with RCU you don't.
One can argue that the overhead of RCU in this
case is negative with respect to the single-CPU
interrupt-disabling approach. Others might argue that
the overhead of RCU is merely zero, and that replacing
the positive overhead of the interrupt-disabling scheme
with the zero-overhead RCU scheme does not constitute
negative overhead.
In real life, of course, things are more complex. But
even the theoretical possibility of negative overhead for
a synchronization primitive is a bit unexpected. ;-)
Quick Quiz #3: If it is illegal to block in an RCU read-side
critical section, what the heck do you do in
PREEMPT_RT, where normal spinlocks can block???
Answer: Just as PREEMPT_RT permits preemption of spinlock
critical sections, it permits preemption of RCU
read-side critical sections. It also permits
spinlocks blocking while in RCU read-side critical
sections.
Why the apparent inconsistency? Because it is it
possible to use priority boosting to keep the RCU
grace periods short if need be (for example, if running
short of memory). In contrast, if blocking waiting
for (say) network reception, there is no way to know
what should be boosted. Especially given that the
process we need to boost might well be a human being
who just went out for a pizza or something. And although
a computer-operated cattle prod might arouse serious
interest, it might also provoke serious objections.
Besides, how does the computer know what pizza parlor
the human being went to???
ACKNOWLEDGEMENTS
My thanks to the people who helped make this human-readable, including
Jon Walpole, Josh Triplett, Serge Hallyn, Suzanne Wood, and Alan Stern.
For more information, see http://www.rdrop.com/users/paulmck/RCU.