kernel-ark/drivers/usb/class/usb-midi.c

2155 lines
53 KiB
C
Raw Normal View History

/*
usb-midi.c -- USB-MIDI driver
Copyright (C) 2001
NAGANO Daisuke <breeze.nagano@nifty.ne.jp>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
This driver is based on:
- 'Universal Serial Bus Device Class Definition for MIDI Device'
- linux/drivers/sound/es1371.c, linux/drivers/usb/audio.c
- alsa/lowlevel/pci/cs64xx.c
- umidi.c for NetBSD
*/
/* ------------------------------------------------------------------------- */
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/list.h>
#include <linux/slab.h>
#include <linux/usb.h>
#include <linux/poll.h>
#include <linux/sound.h>
#include <linux/init.h>
#include <asm/semaphore.h>
#include "usb-midi.h"
/* ------------------------------------------------------------------------- */
/* More verbose on syslog */
#undef MIDI_DEBUG
#define MIDI_IN_BUFSIZ 1024
#define HAVE_SUPPORT_USB_MIDI_CLASS
#undef HAVE_SUPPORT_ALSA
/* ------------------------------------------------------------------------- */
static int singlebyte = 0;
module_param(singlebyte, int, 0);
MODULE_PARM_DESC(singlebyte,"Enable sending MIDI messages with single message packet");
static int maxdevices = 4;
module_param(maxdevices, int, 0);
MODULE_PARM_DESC(maxdevices,"Max number of allocatable MIDI device");
static int uvendor = -1;
module_param(uvendor, int, 0);
MODULE_PARM_DESC(uvendor, "The USB Vendor ID of a semi-compliant interface");
static int uproduct = -1;
module_param(uproduct, int, 0);
MODULE_PARM_DESC(uproduct, "The USB Product ID of a semi-compliant interface");
static int uinterface = -1;
module_param(uinterface, int, 0);
MODULE_PARM_DESC(uinterface, "The Interface number of a semi-compliant interface");
static int ualt = -1;
module_param(ualt, int, 0);
MODULE_PARM_DESC(ualt, "The optional alternative setting of a semi-compliant interface");
static int umin = -1;
module_param(umin, int, 0);
MODULE_PARM_DESC(umin, "The input endpoint of a semi-compliant interface");
static int umout = -1;
module_param(umout, int, 0);
MODULE_PARM_DESC(umout, "The output endpoint of a semi-compliant interface");
static int ucable = -1;
module_param(ucable, int, 0);
MODULE_PARM_DESC(ucable, "The cable number used for a semi-compliant interface");
/** Note -- the usb_string() returns only Latin-1 characters.
* (unicode chars <= 255). To support Japanese, a unicode16LE-to-EUC or
* unicode16LE-to-JIS routine is needed to wrap around usb_get_string().
**/
static unsigned short ulangid = 0x0409; /** 0x0411 for Japanese **/
module_param(ulangid, ushort, 0);
MODULE_PARM_DESC(ulangid, "The optional preferred USB Language ID for all devices");
MODULE_AUTHOR("NAGANO Daisuke <breeze.nagano@nifty.ne.jp>");
MODULE_DESCRIPTION("USB-MIDI driver");
MODULE_LICENSE("GPL");
/* ------------------------------------------------------------------------- */
/** MIDIStreaming Class-Specific Interface Descriptor Subtypes **/
#define MS_DESCRIPTOR_UNDEFINED 0
#define MS_HEADER 1
#define MIDI_IN_JACK 2
#define MIDI_OUT_JACK 3
/* Spec reads: ELEMENT */
#define ELEMENT_DESCRIPTOR 4
#define MS_HEADER_LENGTH 7
/** MIDIStreaming Class-Specific Endpoint Descriptor Subtypes **/
#define DESCRIPTOR_UNDEFINED 0
/* Spec reads: MS_GENERAL */
#define MS_GENERAL_ENDPOINT 1
/** MIDIStreaming MIDI IN and OUT Jack Types **/
#define JACK_TYPE_UNDEFINED 0
/* Spec reads: EMBEDDED */
#define EMBEDDED_JACK 1
/* Spec reads: EXTERNAL */
#define EXTERNAL_JACK 2
/* structure summary
usb_midi_state usb_device
| |
*| *| per ep
in_ep out_ep
| |
*| *| per cable
min mout
| | (cable to device pairing magic)
| |
usb_midi_dev dev_id (major,minor) == file->private_data
*/
/* usb_midi_state: corresponds to a USB-MIDI module */
struct usb_midi_state {
struct list_head mididev;
struct usb_device *usbdev;
struct list_head midiDevList;
struct list_head inEndpointList;
struct list_head outEndpointList;
spinlock_t lock;
unsigned int count; /* usage counter */
};
/* midi_out_endpoint: corresponds to an output endpoint */
struct midi_out_endpoint {
struct list_head list;
struct usb_device *usbdev;
int endpoint;
spinlock_t lock;
wait_queue_head_t wait;
unsigned char *buf;
int bufWrPtr;
int bufSize;
struct urb *urb;
};
/* midi_in_endpoint: corresponds to an input endpoint */
struct midi_in_endpoint {
struct list_head list;
struct usb_device *usbdev;
int endpoint;
spinlock_t lock;
wait_queue_head_t wait;
struct usb_mididev *cables[16]; // cables open for read
int readers; // number of cables open for read
struct urb *urb;
unsigned char *recvBuf;
int recvBufSize;
int urbSubmitted; //FIXME: == readers > 0
};
/* usb_mididev: corresponds to a logical device */
struct usb_mididev {
struct list_head list;
struct usb_midi_state *midi;
int dev_midi;
mode_t open_mode;
struct {
struct midi_in_endpoint *ep;
int cableId;
// as we are pushing data from usb_bulk_read to usb_midi_read,
// we need a larger, cyclic buffer here.
unsigned char buf[MIDI_IN_BUFSIZ];
int bufRdPtr;
int bufWrPtr;
int bufRemains;
} min;
struct {
struct midi_out_endpoint *ep;
int cableId;
unsigned char buf[3];
int bufPtr;
int bufRemains;
int isInExclusive;
unsigned char lastEvent;
} mout;
int singlebyte;
};
/** Map the high nybble of MIDI voice messages to number of Message bytes.
* High nyble ranges from 0x8 to 0xe
*/
static int remains_80e0[] = {
3, /** 0x8X Note Off **/
3, /** 0x9X Note On **/
3, /** 0xAX Poly-key pressure **/
3, /** 0xBX Control Change **/
2, /** 0xCX Program Change **/
2, /** 0xDX Channel pressure **/
3 /** 0xEX PitchBend Change **/
};
/** Map the messages to a number of Message bytes.
*
**/
static int remains_f0f6[] = {
0, /** 0xF0 **/
2, /** 0XF1 **/
3, /** 0XF2 **/
2, /** 0XF3 **/
2, /** 0XF4 (Undefined by MIDI Spec, and subject to change) **/
2, /** 0XF5 (Undefined by MIDI Spec, and subject to change) **/
1 /** 0XF6 **/
};
/** Map the messages to a CIN (Code Index Number).
*
**/
static int cin_f0ff[] = {
4, /** 0xF0 System Exclusive Message Start (special cases may be 6 or 7) */
2, /** 0xF1 **/
3, /** 0xF2 **/
2, /** 0xF3 **/
2, /** 0xF4 **/
2, /** 0xF5 **/
5, /** 0xF6 **/
5, /** 0xF7 End of System Exclusive Message (May be 6 or 7) **/
5, /** 0xF8 **/
5, /** 0xF9 **/
5, /** 0xFA **/
5, /** 0xFB **/
5, /** 0xFC **/
5, /** 0xFD **/
5, /** 0xFE **/
5 /** 0xFF **/
};
/** Map MIDIStreaming Event packet Code Index Number (low nybble of byte 0)
* to the number of bytes of valid MIDI data.
*
* CIN of 0 and 1 are NOT USED in MIDIStreaming 1.0.
*
**/
static int cin_to_len[] = {
0, 0, 2, 3,
3, 1, 2, 3,
3, 3, 3, 3,
2, 2, 3, 1
};
/* ------------------------------------------------------------------------- */
static struct list_head mididevs = LIST_HEAD_INIT(mididevs);
static DECLARE_MUTEX(open_sem);
static DECLARE_WAIT_QUEUE_HEAD(open_wait);
/* ------------------------------------------------------------------------- */
static void usb_write_callback(struct urb *urb, struct pt_regs *regs)
{
struct midi_out_endpoint *ep = (struct midi_out_endpoint *)urb->context;
if ( waitqueue_active( &ep->wait ) )
wake_up_interruptible( &ep->wait );
}
static int usb_write( struct midi_out_endpoint *ep, unsigned char *buf, int len )
{
struct usb_device *d;
int pipe;
int ret = 0;
int status;
int maxretry = 50;
DECLARE_WAITQUEUE(wait,current);
init_waitqueue_head(&ep->wait);
d = ep->usbdev;
pipe = usb_sndbulkpipe(d, ep->endpoint);
usb_fill_bulk_urb( ep->urb, d, pipe, (unsigned char*)buf, len,
usb_write_callback, ep );
status = usb_submit_urb(ep->urb, GFP_KERNEL);
if (status) {
printk(KERN_ERR "usbmidi: Cannot submit urb (%d)\n",status);
ret = -EIO;
goto error;
}
add_wait_queue( &ep->wait, &wait );
set_current_state( TASK_INTERRUPTIBLE );
while( ep->urb->status == -EINPROGRESS ) {
if ( maxretry-- < 0 ) {
printk(KERN_ERR "usbmidi: usb_bulk_msg timed out\n");
ret = -ETIME;
break;
}
interruptible_sleep_on_timeout( &ep->wait, 10 );
}
set_current_state( TASK_RUNNING );
remove_wait_queue( &ep->wait, &wait );
error:
return ret;
}
/** Copy data from URB to In endpoint buf.
* Discard if CIN == 0 or CIN = 1.
*
*
**/
static void usb_bulk_read(struct urb *urb, struct pt_regs *regs)
{
struct midi_in_endpoint *ep = (struct midi_in_endpoint *)(urb->context);
unsigned char *data = urb->transfer_buffer;
int i, j, wake;
if ( !ep->urbSubmitted ) {
return;
}
if ( (urb->status == 0) && (urb->actual_length > 0) ) {
wake = 0;
spin_lock( &ep->lock );
for(j = 0; j < urb->actual_length; j += 4) {
int cin = (data[j]>>0)&0xf;
int cab = (data[j]>>4)&0xf;
struct usb_mididev *cable = ep->cables[cab];
if ( cable ) {
int len = cin_to_len[cin]; /** length of MIDI data **/
for (i = 0; i < len; i++) {
cable->min.buf[cable->min.bufWrPtr] = data[1+i+j];
cable->min.bufWrPtr = (cable->min.bufWrPtr+1)%MIDI_IN_BUFSIZ;
if (cable->min.bufRemains < MIDI_IN_BUFSIZ)
cable->min.bufRemains += 1;
else /** need to drop data **/
cable->min.bufRdPtr += (cable->min.bufRdPtr+1)%MIDI_IN_BUFSIZ;
wake = 1;
}
}
}
spin_unlock ( &ep->lock );
if ( wake ) {
wake_up( &ep->wait );
}
}
/* urb->dev must be reinitialized on 2.4.x kernels */
urb->dev = ep->usbdev;
urb->actual_length = 0;
usb_submit_urb(urb, GFP_ATOMIC);
}
/* ------------------------------------------------------------------------- */
/* This routine must be called with spin_lock */
/** Wrapper around usb_write().
* This routine must be called with spin_lock held on ep.
* Called by midiWrite(), putOneMidiEvent(), and usb_midi_write();
**/
static int flush_midi_buffer( struct midi_out_endpoint *ep )
{
int ret=0;
if ( ep->bufWrPtr > 0 ) {
ret = usb_write( ep, ep->buf, ep->bufWrPtr );
ep->bufWrPtr = 0;
}
return ret;
}
/* ------------------------------------------------------------------------- */
/** Given a MIDI Event, determine size of data to be attached to
* USB-MIDI packet.
* Returns 1, 2 or 3.
* Called by midiWrite();
* Uses remains_80e0 and remains_f0f6;
**/
static int get_remains(int event)
{
int ret;
if ( event < 0x80 ) {
ret = 1;
} else if ( event < 0xf0 ) {
ret = remains_80e0[((event-0x80)>>4)&0x0f];
} else if ( event < 0xf7 ) {
ret = remains_f0f6[event-0xf0];
} else {
ret = 1;
}
return ret;
}
/** Given the output MIDI data in the output buffer, computes a reasonable
* CIN.
* Called by putOneMidiEvent().
**/
static int get_CIN( struct usb_mididev *m )
{
int cin;
if ( m->mout.buf[0] == 0xf7 ) {
cin = 5;
}
else if ( m->mout.buf[1] == 0xf7 ) {
cin = 6;
}
else if ( m->mout.buf[2] == 0xf7 ) {
cin = 7;
}
else {
if ( m->mout.isInExclusive == 1 ) {
cin = 4;
} else if ( m->mout.buf[0] < 0x80 ) {
/** One byte that we know nothing about. **/
cin = 0xF;
} else if ( m->mout.buf[0] < 0xf0 ) {
/** MIDI Voice messages 0x8X to 0xEX map to cin 0x8 to 0xE. **/
cin = (m->mout.buf[0]>>4)&0x0f;
}
else {
/** Special lookup table exists for real-time events. **/
cin = cin_f0ff[m->mout.buf[0]-0xf0];
}
}
return cin;
}
/* ------------------------------------------------------------------------- */
/** Move data to USB endpoint buffer.
*
**/
static int put_one_midi_event(struct usb_mididev *m)
{
int cin;
unsigned long flags;
struct midi_out_endpoint *ep = m->mout.ep;
int ret=0;
cin = get_CIN( m );
if ( cin > 0x0f || cin < 0 ) {
return -EINVAL;
}
spin_lock_irqsave( &ep->lock, flags );
ep->buf[ep->bufWrPtr++] = (m->mout.cableId<<4) | cin;
ep->buf[ep->bufWrPtr++] = m->mout.buf[0];
ep->buf[ep->bufWrPtr++] = m->mout.buf[1];
ep->buf[ep->bufWrPtr++] = m->mout.buf[2];
if ( ep->bufWrPtr >= ep->bufSize ) {
ret = flush_midi_buffer( ep );
}
spin_unlock_irqrestore( &ep->lock, flags);
m->mout.buf[0] = m->mout.buf[1] = m->mout.buf[2] = 0;
m->mout.bufPtr = 0;
return ret;
}
/** Write the MIDI message v on the midi device.
* Called by usb_midi_write();
* Responsible for packaging a MIDI data stream into USB-MIDI packets.
**/
static int midi_write( struct usb_mididev *m, int v )
{
unsigned long flags;
struct midi_out_endpoint *ep = m->mout.ep;
int ret=0;
unsigned char c = (unsigned char)v;
unsigned char sysrt_buf[4];
if ( m->singlebyte != 0 ) {
/** Simple code to handle the single-byte USB-MIDI protocol. */
spin_lock_irqsave( &ep->lock, flags );
if ( ep->bufWrPtr+4 > ep->bufSize ) {
ret = flush_midi_buffer( ep );
if ( !ret ) {
spin_unlock_irqrestore( &ep->lock, flags );
return ret;
}
}
ep->buf[ep->bufWrPtr++] = (m->mout.cableId<<4) | 0x0f; /* single byte */
ep->buf[ep->bufWrPtr++] = c;
ep->buf[ep->bufWrPtr++] = 0;
ep->buf[ep->bufWrPtr++] = 0;
if ( ep->bufWrPtr >= ep->bufSize ) {
ret = flush_midi_buffer( ep );
}
spin_unlock_irqrestore( &ep->lock, flags );
return ret;
}
/** Normal USB-MIDI protocol begins here. */
if ( c > 0xf7 ) { /* system: Realtime messages */
/** Realtime messages are written IMMEDIATELY. */
sysrt_buf[0] = (m->mout.cableId<<4) | 0x0f;
sysrt_buf[1] = c;
sysrt_buf[2] = 0;
sysrt_buf[3] = 0;
spin_lock_irqsave( &ep->lock, flags );
ret = usb_write( ep, sysrt_buf, 4 );
spin_unlock_irqrestore( &ep->lock, flags );
/* m->mout.lastEvent = 0; */
return ret;
}
if ( c >= 0x80 ) {
if ( c < 0xf0 ) {
m->mout.lastEvent = c;
m->mout.isInExclusive = 0;
m->mout.bufRemains = get_remains(c);
} else if ( c == 0xf0 ) {
/* m->mout.lastEvent = 0; */
m->mout.isInExclusive = 1;
m->mout.bufRemains = get_remains(c);
} else if ( c == 0xf7 && m->mout.isInExclusive == 1 ) {
/* m->mout.lastEvent = 0; */
m->mout.isInExclusive = 0;
m->mout.bufRemains = 1;
} else if ( c > 0xf0 ) {
/* m->mout.lastEvent = 0; */
m->mout.isInExclusive = 0;
m->mout.bufRemains = get_remains(c);
}
} else if ( m->mout.bufRemains == 0 && m->mout.isInExclusive == 0 ) {
if ( m->mout.lastEvent == 0 ) {
return 0; /* discard, waiting for the first event */
}
/** track status **/
m->mout.buf[0] = m->mout.lastEvent;
m->mout.bufPtr = 1;
m->mout.bufRemains = get_remains(m->mout.lastEvent)-1;
}
m->mout.buf[m->mout.bufPtr++] = c;
m->mout.bufRemains--;
if ( m->mout.bufRemains == 0 || m->mout.bufPtr >= 3) {
ret = put_one_midi_event(m);
}
return ret;
}
/* ------------------------------------------------------------------------- */
/** Basic operation on /dev/midiXX as registered through struct file_operations.
*
* Basic contract: Used to change the current read/write position in a file.
* On success, the non-negative position is reported.
* On failure, the negative of an error code is reported.
*
* Because a MIDIStream is not a file, all seek operations are doomed to fail.
*
**/
static loff_t usb_midi_llseek(struct file *file, loff_t offset, int origin)
{
/** Tell user you cannot seek on a PIPE-like device. **/
return -ESPIPE;
}
/** Basic operation on /dev/midiXX as registered through struct file_operations.
*
* Basic contract: Block until count bytes have been read or an error occurs.
*
**/
static ssize_t usb_midi_read(struct file *file, char __user *buffer, size_t count, loff_t *ppos)
{
struct usb_mididev *m = (struct usb_mididev *)file->private_data;
struct midi_in_endpoint *ep = m->min.ep;
ssize_t ret;
DECLARE_WAITQUEUE(wait, current);
if ( !access_ok(VERIFY_READ, buffer, count) ) {
return -EFAULT;
}
if ( count == 0 ) {
return 0;
}
add_wait_queue( &ep->wait, &wait );
ret = 0;
while( count > 0 ) {
int cnt;
int d = (int)count;
cnt = m->min.bufRemains;
if ( cnt > d ) {
cnt = d;
}
if ( cnt <= 0 ) {
if ( file->f_flags & O_NONBLOCK ) {
if (!ret)
ret = -EAGAIN;
break;
}
__set_current_state(TASK_INTERRUPTIBLE);
schedule();
if (signal_pending(current)) {
if(!ret)
ret=-ERESTARTSYS;
break;
}
continue;
}
{
int i;
unsigned long flags; /* used to synchronize access to the endpoint */
spin_lock_irqsave( &ep->lock, flags );
for (i = 0; i < cnt; i++) {
if ( copy_to_user( buffer+i, m->min.buf+m->min.bufRdPtr, 1 ) ) {
if ( !ret )
ret = -EFAULT;
break;
}
m->min.bufRdPtr = (m->min.bufRdPtr+1)%MIDI_IN_BUFSIZ;
m->min.bufRemains -= 1;
}
spin_unlock_irqrestore( &ep->lock, flags );
}
count-=cnt;
buffer+=cnt;
ret+=cnt;
break;
}
remove_wait_queue( &ep->wait, &wait );
set_current_state(TASK_RUNNING);
return ret;
}
/** Basic operation on /dev/midiXX as registered through struct file_operations.
*
* Basic Contract: Take MIDI data byte-by-byte and pass it to
* writeMidi() which packages MIDI data into USB-MIDI stream.
* Then flushMidiData() is called to ensure all bytes have been written
* in a timely fashion.
*
**/
static ssize_t usb_midi_write(struct file *file, const char __user *buffer, size_t count, loff_t *ppos)
{
struct usb_mididev *m = (struct usb_mididev *)file->private_data;
ssize_t ret;
unsigned long int flags;
if ( !access_ok(VERIFY_READ, buffer, count) ) {
return -EFAULT;
}
if ( count == 0 ) {
return 0;
}
ret = 0;
while( count > 0 ) {
unsigned char c;
if (copy_from_user((unsigned char *)&c, buffer, 1)) {
if ( ret == 0 )
ret = -EFAULT;
break;
}
if( midi_write(m, (int)c) ) {
if ( ret == 0 )
ret = -EFAULT;
break;
}
count--;
buffer++;
ret++;
}
spin_lock_irqsave( &m->mout.ep->lock, flags );
if ( flush_midi_buffer(m->mout.ep) < 0 ) {
ret = -EFAULT;
}
spin_unlock_irqrestore( &m->mout.ep->lock, flags );
return ret;
}
/** Basic operation on /dev/midiXX as registered through struct file_operations.
*
* Basic contract: Wait (spin) until ready to read or write on the file.
*
**/
static unsigned int usb_midi_poll(struct file *file, struct poll_table_struct *wait)
{
struct usb_mididev *m = (struct usb_mididev *)file->private_data;
struct midi_in_endpoint *iep = m->min.ep;
struct midi_out_endpoint *oep = m->mout.ep;
unsigned long flags;
unsigned int mask = 0;
if ( file->f_mode & FMODE_READ ) {
poll_wait( file, &iep->wait, wait );
spin_lock_irqsave( &iep->lock, flags );
if ( m->min.bufRemains > 0 )
mask |= POLLIN | POLLRDNORM;
spin_unlock_irqrestore( &iep->lock, flags );
}
if ( file->f_mode & FMODE_WRITE ) {
poll_wait( file, &oep->wait, wait );
spin_lock_irqsave( &oep->lock, flags );
if ( oep->bufWrPtr < oep->bufSize )
mask |= POLLOUT | POLLWRNORM;
spin_unlock_irqrestore( &oep->lock, flags );
}
return mask;
}
/** Basic operation on /dev/midiXX as registered through struct file_operations.
*
* Basic contract: This is always the first operation performed on the
* device node. If no method is defined, the open succeeds without any
* notification given to the module.
*
**/
static int usb_midi_open(struct inode *inode, struct file *file)
{
int minor = iminor(inode);
DECLARE_WAITQUEUE(wait, current);
struct usb_midi_state *s;
struct usb_mididev *m;
unsigned long flags;
int succeed = 0;
#if 0
printk(KERN_INFO "usb-midi: Open minor= %d.\n", minor);
#endif
for(;;) {
down(&open_sem);
list_for_each_entry(s, &mididevs, mididev) {
list_for_each_entry(m, &s->midiDevList, list) {
if ( !((m->dev_midi ^ minor) & ~0xf) )
goto device_found;
}
}
up(&open_sem);
return -ENODEV;
device_found:
if ( !s->usbdev ) {
up(&open_sem);
return -EIO;
}
if ( !(m->open_mode & file->f_mode) ) {
break;
}
if ( file->f_flags & O_NONBLOCK ) {
up(&open_sem);
return -EBUSY;
}
__set_current_state(TASK_INTERRUPTIBLE);
add_wait_queue( &open_wait, &wait );
up(&open_sem);
schedule();
remove_wait_queue( &open_wait, &wait );
if ( signal_pending(current) ) {
return -ERESTARTSYS;
}
}
file->private_data = m;
spin_lock_irqsave( &s->lock, flags );
if ( !(m->open_mode & (FMODE_READ | FMODE_WRITE)) ) {
//FIXME: intented semantics unclear here
m->min.bufRdPtr = 0;
m->min.bufWrPtr = 0;
m->min.bufRemains = 0;
spin_lock_init(&m->min.ep->lock);
m->mout.bufPtr = 0;
m->mout.bufRemains = 0;
m->mout.isInExclusive = 0;
m->mout.lastEvent = 0;
spin_lock_init(&m->mout.ep->lock);
}
if ( (file->f_mode & FMODE_READ) && m->min.ep != NULL ) {
unsigned long int flagsep;
spin_lock_irqsave( &m->min.ep->lock, flagsep );
m->min.ep->cables[m->min.cableId] = m;
m->min.ep->readers += 1;
m->min.bufRdPtr = 0;
m->min.bufWrPtr = 0;
m->min.bufRemains = 0;
spin_unlock_irqrestore( &m->min.ep->lock, flagsep );
if ( !(m->min.ep->urbSubmitted)) {
/* urb->dev must be reinitialized on 2.4.x kernels */
m->min.ep->urb->dev = m->min.ep->usbdev;
if ( usb_submit_urb(m->min.ep->urb, GFP_ATOMIC) ) {
printk(KERN_ERR "usbmidi: Cannot submit urb for MIDI-IN\n");
}
m->min.ep->urbSubmitted = 1;
}
m->open_mode |= FMODE_READ;
succeed = 1;
}
if ( (file->f_mode & FMODE_WRITE) && m->mout.ep != NULL ) {
m->mout.bufPtr = 0;
m->mout.bufRemains = 0;
m->mout.isInExclusive = 0;
m->mout.lastEvent = 0;
m->open_mode |= FMODE_WRITE;
succeed = 1;
}
spin_unlock_irqrestore( &s->lock, flags );
s->count++;
up(&open_sem);
/** Changed to prevent extra increments to USE_COUNT. **/
if (!succeed) {
return -EBUSY;
}
#if 0
printk(KERN_INFO "usb-midi: Open Succeeded. minor= %d.\n", minor);
#endif
return nonseekable_open(inode, file); /** Success. **/
}
/** Basic operation on /dev/midiXX as registered through struct file_operations.
*
* Basic contract: Close an opened file and deallocate anything we allocated.
* Like open(), this can be missing. If open set file->private_data,
* release() must clear it.
*
**/
static int usb_midi_release(struct inode *inode, struct file *file)
{
struct usb_mididev *m = (struct usb_mididev *)file->private_data;
struct usb_midi_state *s = (struct usb_midi_state *)m->midi;
#if 0
printk(KERN_INFO "usb-midi: Close.\n");
#endif
down(&open_sem);
if ( m->open_mode & FMODE_WRITE ) {
m->open_mode &= ~FMODE_WRITE;
usb_kill_urb( m->mout.ep->urb );
}
if ( m->open_mode & FMODE_READ ) {
unsigned long int flagsep;
spin_lock_irqsave( &m->min.ep->lock, flagsep );
m->min.ep->cables[m->min.cableId] = NULL; // discard cable
m->min.ep->readers -= 1;
m->open_mode &= ~FMODE_READ;
if ( m->min.ep->readers == 0 &&
m->min.ep->urbSubmitted ) {
m->min.ep->urbSubmitted = 0;
usb_kill_urb(m->min.ep->urb);
}
spin_unlock_irqrestore( &m->min.ep->lock, flagsep );
}
s->count--;
up(&open_sem);
wake_up(&open_wait);
file->private_data = NULL;
return 0;
}
static struct file_operations usb_midi_fops = {
.owner = THIS_MODULE,
.llseek = usb_midi_llseek,
.read = usb_midi_read,
.write = usb_midi_write,
.poll = usb_midi_poll,
.open = usb_midi_open,
.release = usb_midi_release,
};
/* ------------------------------------------------------------------------- */
/** Returns filled midi_in_endpoint structure or null on failure.
*
* Parameters:
* d - a usb_device
* endPoint - An usb endpoint in the range 0 to 15.
* Called by allocUsbMidiDev();
*
**/
static struct midi_in_endpoint *alloc_midi_in_endpoint( struct usb_device *d, int endPoint )
{
struct midi_in_endpoint *ep;
int bufSize;
int pipe;
endPoint &= 0x0f; /* Silently force endPoint to lie in range 0 to 15. */
pipe = usb_rcvbulkpipe( d, endPoint );
bufSize = usb_maxpacket( d, pipe, 0 );
/* usb_pipein() = ! usb_pipeout() = true for an in Endpoint */
ep = (struct midi_in_endpoint *)kmalloc(sizeof(struct midi_in_endpoint), GFP_KERNEL);
if ( !ep ) {
printk(KERN_ERR "usbmidi: no memory for midi in-endpoint\n");
return NULL;
}
memset( ep, 0, sizeof(struct midi_in_endpoint) );
// this sets cables[] and readers to 0, too.
// for (i=0; i<16; i++) ep->cables[i] = 0; // discard cable
// ep->readers = 0;
ep->endpoint = endPoint;
ep->recvBuf = (unsigned char *)kmalloc(sizeof(unsigned char)*(bufSize), GFP_KERNEL);
if ( !ep->recvBuf ) {
printk(KERN_ERR "usbmidi: no memory for midi in-endpoint buffer\n");
kfree(ep);
return NULL;
}
ep->urb = usb_alloc_urb(0, GFP_KERNEL); /* no ISO */
if ( !ep->urb ) {
printk(KERN_ERR "usbmidi: no memory for midi in-endpoint urb\n");
kfree(ep->recvBuf);
kfree(ep);
return NULL;
}
usb_fill_bulk_urb( ep->urb, d,
usb_rcvbulkpipe(d, endPoint),
(unsigned char *)ep->recvBuf, bufSize,
usb_bulk_read, ep );
/* ep->bufRdPtr = 0; */
/* ep->bufWrPtr = 0; */
/* ep->bufRemains = 0; */
/* ep->urbSubmitted = 0; */
ep->recvBufSize = bufSize;
init_waitqueue_head(&ep->wait);
return ep;
}
static int remove_midi_in_endpoint( struct midi_in_endpoint *min )
{
usb_kill_urb( min->urb );
usb_free_urb( min->urb );
kfree( min->recvBuf );
kfree( min );
return 0;
}
/** Returns filled midi_out_endpoint structure or null on failure.
*
* Parameters:
* d - a usb_device
* endPoint - An usb endpoint in the range 0 to 15.
* Called by allocUsbMidiDev();
*
**/
static struct midi_out_endpoint *alloc_midi_out_endpoint( struct usb_device *d, int endPoint )
{
struct midi_out_endpoint *ep = NULL;
int pipe;
int bufSize;
endPoint &= 0x0f;
pipe = usb_sndbulkpipe( d, endPoint );
bufSize = usb_maxpacket( d, pipe, 1 );
ep = (struct midi_out_endpoint *)kmalloc(sizeof(struct midi_out_endpoint), GFP_KERNEL);
if ( !ep ) {
printk(KERN_ERR "usbmidi: no memory for midi out-endpoint\n");
return NULL;
}
memset( ep, 0, sizeof(struct midi_out_endpoint) );
ep->endpoint = endPoint;
ep->buf = (unsigned char *)kmalloc(sizeof(unsigned char)*bufSize, GFP_KERNEL);
if ( !ep->buf ) {
printk(KERN_ERR "usbmidi: no memory for midi out-endpoint buffer\n");
kfree(ep);
return NULL;
}
ep->urb = usb_alloc_urb(0, GFP_KERNEL); /* no ISO */
if ( !ep->urb ) {
printk(KERN_ERR "usbmidi: no memory for midi out-endpoint urb\n");
kfree(ep->buf);
kfree(ep);
return NULL;
}
ep->bufSize = bufSize;
/* ep->bufWrPtr = 0; */
init_waitqueue_head(&ep->wait);
return ep;
}
static int remove_midi_out_endpoint( struct midi_out_endpoint *mout )
{
usb_kill_urb( mout->urb );
usb_free_urb( mout->urb );
kfree( mout->buf );
kfree( mout );
return 0;
}
/** Returns a filled usb_mididev structure, registered as a Linux MIDI device.
*
* Returns null if memory is not available or the device cannot be registered.
* Called by allocUsbMidiDev();
*
**/
static struct usb_mididev *allocMidiDev(
struct usb_midi_state *s,
struct midi_in_endpoint *min,
struct midi_out_endpoint *mout,
int inCableId,
int outCableId )
{
struct usb_mididev *m;
m = (struct usb_mididev *)kmalloc(sizeof(struct usb_mididev), GFP_KERNEL);
if (!m) {
printk(KERN_ERR "usbmidi: no memory for midi device\n");
return NULL;
}
memset(m, 0, sizeof(struct usb_mididev));
if ((m->dev_midi = register_sound_midi(&usb_midi_fops, -1)) < 0) {
printk(KERN_ERR "usbmidi: cannot register midi device\n");
kfree(m);
return NULL;
}
m->midi = s;
/* m->open_mode = 0; */
if ( min ) {
m->min.ep = min;
m->min.ep->usbdev = s->usbdev;
m->min.cableId = inCableId;
}
/* m->min.bufPtr = 0; */
/* m->min.bufRemains = 0; */
if ( mout ) {
m->mout.ep = mout;
m->mout.ep->usbdev = s->usbdev;
m->mout.cableId = outCableId;
}
/* m->mout.bufPtr = 0; */
/* m->mout.bufRemains = 0; */
/* m->mout.isInExclusive = 0; */
/* m->mout.lastEvent = 0; */
m->singlebyte = singlebyte;
return m;
}
static void release_midi_device( struct usb_midi_state *s )
{
struct usb_mididev *m;
struct midi_in_endpoint *min;
struct midi_out_endpoint *mout;
if ( s->count > 0 ) {
up(&open_sem);
return;
}
up( &open_sem );
wake_up( &open_wait );
while(!list_empty(&s->inEndpointList)) {
min = list_entry(s->inEndpointList.next, struct midi_in_endpoint, list);
list_del(&min->list);
remove_midi_in_endpoint(min);
}
while(!list_empty(&s->outEndpointList)) {
mout = list_entry(s->outEndpointList.next, struct midi_out_endpoint, list);
list_del(&mout->list);
remove_midi_out_endpoint(mout);
}
while(!list_empty(&s->midiDevList)) {
m = list_entry(s->midiDevList.next, struct usb_mididev, list);
list_del(&m->list);
kfree(m);
}
kfree(s);
return;
}
/* ------------------------------------------------------------------------- */
/** Utility routine to find a descriptor in a dump of many descriptors.
* Returns start of descriptor or NULL if not found.
* descStart pointer to list of interfaces.
* descLength length (in bytes) of dump
* after (ignored if NULL) this routine returns only descriptors after "after"
* dtype (mandatory) The descriptor type.
* iface (ignored if -1) returns descriptor at/following given interface
* altSetting (ignored if -1) returns descriptor at/following given altSetting
*
*
* Called by parseDescriptor(), find_csinterface_descriptor();
*
*/
static void *find_descriptor( void *descStart, unsigned int descLength, void *after, unsigned char dtype, int iface, int altSetting )
{
unsigned char *p, *end, *next;
int interfaceNumber = -1, altSet = -1;
p = descStart;
end = p + descLength;
for( ; p < end; ) {
if ( p[0] < 2 )
return NULL;
next = p + p[0];
if ( next > end )
return NULL;
if ( p[1] == USB_DT_INTERFACE ) {
if ( p[0] < USB_DT_INTERFACE_SIZE )
return NULL;
interfaceNumber = p[2];
altSet = p[3];
}
if ( p[1] == dtype &&
( !after || ( p > (unsigned char *)after) ) &&
( ( iface == -1) || (iface == interfaceNumber) ) &&
( (altSetting == -1) || (altSetting == altSet) )) {
return p;
}
p = next;
}
return NULL;
}
/** Utility to find a class-specific interface descriptor.
* dsubtype is a descriptor subtype
* Called by parseDescriptor();
**/
static void *find_csinterface_descriptor(void *descStart, unsigned int descLength, void *after, u8 dsubtype, int iface, int altSetting)
{
unsigned char *p;
p = find_descriptor( descStart, descLength, after, USB_DT_CS_INTERFACE, iface, altSetting );
while ( p ) {
if ( p[0] >= 3 && p[2] == dsubtype )
return p;
p = find_descriptor( descStart, descLength, p, USB_DT_CS_INTERFACE,
iface, altSetting );
}
return NULL;
}
/** The magic of making a new usb_midi_device from config happens here.
*
* The caller is responsible for free-ing this return value (if not NULL).
*
**/
static struct usb_midi_device *parse_descriptor( struct usb_device *d, unsigned char *buffer, int bufSize, unsigned int ifnum , unsigned int altSetting, int quirks)
{
struct usb_midi_device *u;
unsigned char *p1;
unsigned char *p2;
unsigned char *next;
int iep, oep;
int length;
unsigned long longBits;
int pins, nbytes, offset, shift, jack;
#ifdef HAVE_JACK_STRINGS
/** Jacks can have associated names. **/
unsigned char jack2string[256];
#endif
u = NULL;
/* find audiocontrol interface */
p1 = find_csinterface_descriptor( buffer, bufSize, NULL,
MS_HEADER, ifnum, altSetting);
if ( !p1 ) {
goto error_end;
}
if ( p1[0] < MS_HEADER_LENGTH ) {
goto error_end;
}
/* Assume success. Since the device corresponds to USB-MIDI spec, we assume
that the rest of the USB 2.0 spec is obeyed. */
u = (struct usb_midi_device *)kmalloc( sizeof(struct usb_midi_device), GFP_KERNEL );
if ( !u ) {
return NULL;
}
u->deviceName = NULL;
u->idVendor = le16_to_cpu(d->descriptor.idVendor);
u->idProduct = le16_to_cpu(d->descriptor.idProduct);
u->interface = ifnum;
u->altSetting = altSetting;
u->in[0].endpoint = -1;
u->in[0].cableId = -1;
u->out[0].endpoint = -1;
u->out[0].cableId = -1;
printk(KERN_INFO "usb-midi: Found MIDIStreaming device corresponding to Release %d.%02d of spec.\n",
(p1[4] >> 4) * 10 + (p1[4] & 0x0f ),
(p1[3] >> 4) * 10 + (p1[3] & 0x0f )
);
length = p1[5] | (p1[6] << 8);
#ifdef HAVE_JACK_STRINGS
memset(jack2string, 0, sizeof(unsigned char) * 256);
#endif
length -= p1[0];
for (p2 = p1 + p1[0]; length > 0; p2 = next) {
next = p2 + p2[0];
length -= p2[0];
if (p2[0] < 2 )
break;
if (p2[1] != USB_DT_CS_INTERFACE)
break;
if (p2[2] == MIDI_IN_JACK && p2[0] >= 6 ) {
jack = p2[4];
#ifdef HAVE_JACK_STRINGS
jack2string[jack] = p2[5];
#endif
printk(KERN_INFO "usb-midi: Found IN Jack 0x%02x %s\n",
jack, (p2[3] == EMBEDDED_JACK)?"EMBEDDED":"EXTERNAL" );
} else if ( p2[2] == MIDI_OUT_JACK && p2[0] >= 6) {
pins = p2[5];
if ( p2[0] < (6 + 2 * pins) )
continue;
jack = p2[4];
#ifdef HAVE_JACK_STRINGS
jack2string[jack] = p2[5 + 2 * pins];
#endif
printk(KERN_INFO "usb-midi: Found OUT Jack 0x%02x %s, %d pins\n",
jack, (p2[3] == EMBEDDED_JACK)?"EMBEDDED":"EXTERNAL", pins );
} else if ( p2[2] == ELEMENT_DESCRIPTOR && p2[0] >= 10) {
pins = p2[4];
if ( p2[0] < (9 + 2 * pins ) )
continue;
nbytes = p2[8 + 2 * pins ];
if ( p2[0] < (10 + 2 * pins + nbytes) )
continue;
longBits = 0L;
for ( offset = 0, shift = 0; offset < nbytes && offset < 8; offset ++, shift += 8) {
longBits |= ((long)(p2[9 + 2 * pins + offset])) << shift;
}
jack = p2[3];
#ifdef HAVE_JACK_STRINGS
jack2string[jack] = p2[9 + 2 * pins + nbytes];
#endif
printk(KERN_INFO "usb-midi: Found ELEMENT 0x%02x, %d/%d pins in/out, bits: 0x%016lx\n",
jack, pins, (int)(p2[5 + 2 * pins]), (long)longBits );
} else {
}
}
iep=0;
oep=0;
if (quirks==0) {
/* MIDISTREAM */
p2 = NULL;
for (p1 = find_descriptor(buffer, bufSize, NULL, USB_DT_ENDPOINT,
ifnum, altSetting ); p1; p1 = next ) {
next = find_descriptor(buffer, bufSize, p1, USB_DT_ENDPOINT,
ifnum, altSetting );
p2 = find_descriptor(buffer, bufSize, p1, USB_DT_CS_ENDPOINT,
ifnum, altSetting );
if ( p2 && next && ( p2 > next ) )
p2 = NULL;
if ( p1[0] < 9 || !p2 || p2[0] < 4 )
continue;
if ( (p1[2] & 0x80) == 0x80 ) {
if ( iep < 15 ) {
pins = p2[3]; /* not pins -- actually "cables" */
if ( pins > 16 )
pins = 16;
u->in[iep].endpoint = p1[2];
u->in[iep].cableId = ( 1 << pins ) - 1;
if ( u->in[iep].cableId )
iep ++;
if ( iep < 15 ) {
u->in[iep].endpoint = -1;
u->in[iep].cableId = -1;
}
}
} else {
if ( oep < 15 ) {
pins = p2[3]; /* not pins -- actually "cables" */
if ( pins > 16 )
pins = 16;
u->out[oep].endpoint = p1[2];
u->out[oep].cableId = ( 1 << pins ) - 1;
if ( u->out[oep].cableId )
oep ++;
if ( oep < 15 ) {
u->out[oep].endpoint = -1;
u->out[oep].cableId = -1;
}
}
}
}
} else if (quirks==1) {
/* YAMAHA quirks */
for (p1 = find_descriptor(buffer, bufSize, NULL, USB_DT_ENDPOINT,
ifnum, altSetting ); p1; p1 = next ) {
next = find_descriptor(buffer, bufSize, p1, USB_DT_ENDPOINT,
ifnum, altSetting );
if ( p1[0] < 7 )
continue;
if ( (p1[2] & 0x80) == 0x80 ) {
if ( iep < 15 ) {
pins = iep+1;
if ( pins > 16 )
pins = 16;
u->in[iep].endpoint = p1[2];
u->in[iep].cableId = ( 1 << pins ) - 1;
if ( u->in[iep].cableId )
iep ++;
if ( iep < 15 ) {
u->in[iep].endpoint = -1;
u->in[iep].cableId = -1;
}
}
} else {
if ( oep < 15 ) {
pins = oep+1;
u->out[oep].endpoint = p1[2];
u->out[oep].cableId = ( 1 << pins ) - 1;
if ( u->out[oep].cableId )
oep ++;
if ( oep < 15 ) {
u->out[oep].endpoint = -1;
u->out[oep].cableId = -1;
}
}
}
}
}
if ( !iep && ! oep ) {
goto error_end;
}
return u;
error_end:
kfree(u);
return NULL;
}
/* ------------------------------------------------------------------------- */
/** Returns number between 0 and 16.
*
**/
static int on_bits( unsigned short v )
{
int i;
int ret=0;
for ( i=0 ; i<16 ; i++ ) {
if ( v & (1<<i) )
ret++;
}
return ret;
}
/** USB-device will be interrogated for altSetting.
*
* Returns negative on error.
* Called by allocUsbMidiDev();
*
**/
static int get_alt_setting( struct usb_device *d, int ifnum )
{
int alts, alt=0;
struct usb_interface *iface;
struct usb_host_interface *interface;
struct usb_endpoint_descriptor *ep;
int epin, epout;
int i;
iface = usb_ifnum_to_if( d, ifnum );
alts = iface->num_altsetting;
for ( alt=0 ; alt<alts ; alt++ ) {
interface = &iface->altsetting[alt];
epin = -1;
epout = -1;
for ( i=0 ; i<interface->desc.bNumEndpoints ; i++ ) {
ep = &interface->endpoint[i].desc;
if ( (ep->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) != USB_ENDPOINT_XFER_BULK ) {
continue;
}
if ( (ep->bEndpointAddress & USB_DIR_IN) && epin < 0 ) {
epin = i;
} else if ( epout < 0 ) {
epout = i;
}
if ( epin >= 0 && epout >= 0 ) {
return interface->desc.bAlternateSetting;
}
}
}
return -ENODEV;
}
/* ------------------------------------------------------------------------- */
/** Returns 0 if successful in allocating and registering internal structures.
* Returns negative on failure.
* Calls allocMidiDev which additionally registers /dev/midiXX devices.
* Writes messages on success to indicate which /dev/midiXX is which physical
* endpoint.
*
**/
static int alloc_usb_midi_device( struct usb_device *d, struct usb_midi_state *s, struct usb_midi_device *u )
{
struct usb_mididev **mdevs=NULL;
struct midi_in_endpoint *mins[15], *min;
struct midi_out_endpoint *mouts[15], *mout;
int inDevs=0, outDevs=0;
int inEndpoints=0, outEndpoints=0;
int inEndpoint, outEndpoint;
int inCableId, outCableId;
int i;
int devices = 0;
int alt = 0;
/* Obtain altSetting or die.. */
alt = u->altSetting;
if ( alt < 0 ) {
alt = get_alt_setting( d, u->interface );
}
if ( alt < 0 )
return -ENXIO;
/* Configure interface */
if ( usb_set_interface( d, u->interface, alt ) < 0 ) {
return -ENXIO;
}
for ( i = 0 ; i < 15 ; i++ ) {
mins[i] = NULL;
mouts[i] = NULL;
}
/* Begin Allocation */
while( inEndpoints < 15
&& inDevs < maxdevices
&& u->in[inEndpoints].cableId >= 0 ) {
inDevs += on_bits((unsigned short)u->in[inEndpoints].cableId);
mins[inEndpoints] = alloc_midi_in_endpoint( d, u->in[inEndpoints].endpoint );
if ( mins[inEndpoints] == NULL )
goto error_end;
inEndpoints++;
}
while( outEndpoints < 15
&& outDevs < maxdevices
&& u->out[outEndpoints].cableId >= 0 ) {
outDevs += on_bits((unsigned short)u->out[outEndpoints].cableId);
mouts[outEndpoints] = alloc_midi_out_endpoint( d, u->out[outEndpoints].endpoint );
if ( mouts[outEndpoints] == NULL )
goto error_end;
outEndpoints++;
}
devices = inDevs > outDevs ? inDevs : outDevs;
devices = maxdevices > devices ? devices : maxdevices;
/* obtain space for device name (iProduct) if not known. */
if ( ! u->deviceName ) {
mdevs = (struct usb_mididev **)
kmalloc(sizeof(struct usb_mididevs *)*devices
+ sizeof(char) * 256, GFP_KERNEL);
} else {
mdevs = (struct usb_mididev **)
kmalloc(sizeof(struct usb_mididevs *)*devices, GFP_KERNEL);
}
if ( !mdevs ) {
/* devices = 0; */
/* mdevs = NULL; */
goto error_end;
}
for ( i=0 ; i<devices ; i++ ) {
mdevs[i] = NULL;
}
/* obtain device name (iProduct) if not known. */
if ( ! u->deviceName ) {
u->deviceName = (char *) (mdevs + devices);
if ( ! d->have_langid && d->descriptor.iProduct) {
alt = usb_get_string(d, 0, 0, u->deviceName, 250);
if (alt < 0) {
printk(KERN_INFO "error getting string descriptor 0 (error=%d)\n", alt);
} else if (u->deviceName[0] < 4) {
printk(KERN_INFO "string descriptor 0 too short (length = %d)\n", alt);
} else {
printk(KERN_INFO "string descriptor 0 found (length = %d)\n", alt);
for(; alt >= 4; alt -= 2) {
i = u->deviceName[alt-2] | (u->deviceName[alt-1]<< 8);
printk(KERN_INFO "usb-midi: langid(%d) 0x%04x\n",
(alt-4) >> 1, i);
if ( ( ( i ^ ulangid ) & 0xff ) == 0 ) {
d->have_langid = 1;
d->string_langid = i;
printk(KERN_INFO "usb-midi: langid(match) 0x%04x\n", i);
if ( i == ulangid )
break;
}
}
}
}
u->deviceName[0] = (char) 0;
if (d->descriptor.iProduct) {
printk(KERN_INFO "usb-midi: fetchString(%d)\n", d->descriptor.iProduct);
alt = usb_string(d, d->descriptor.iProduct, u->deviceName, 255);
if( alt < 0 ) {
u->deviceName[0] = (char) 0;
}
printk(KERN_INFO "usb-midi: fetchString = %d\n", alt);
}
/* Failsafe */
if ( !u->deviceName[0] ) {
if (le16_to_cpu(d->descriptor.idVendor) == USB_VENDOR_ID_ROLAND ) {
strcpy(u->deviceName, "Unknown Roland");
} else if (le16_to_cpu(d->descriptor.idVendor) == USB_VENDOR_ID_STEINBERG ) {
strcpy(u->deviceName, "Unknown Steinberg");
} else if (le16_to_cpu(d->descriptor.idVendor) == USB_VENDOR_ID_YAMAHA ) {
strcpy(u->deviceName, "Unknown Yamaha");
} else {
strcpy(u->deviceName, "Unknown");
}
}
}
inEndpoint = 0; inCableId = -1;
outEndpoint = 0; outCableId = -1;
for ( i=0 ; i<devices ; i++ ) {
for ( inCableId ++ ;
inEndpoint <15
&& mins[inEndpoint]
&& !(u->in[inEndpoint].cableId & (1<<inCableId)) ;
inCableId++ ) {
if ( inCableId >= 16 ) {
inEndpoint ++;
inCableId = 0;
}
}
min = mins[inEndpoint];
for ( outCableId ++ ;
outEndpoint <15
&& mouts[outEndpoint]
&& !(u->out[outEndpoint].cableId & (1<<outCableId)) ;
outCableId++ ) {
if ( outCableId >= 16 ) {
outEndpoint ++;
outCableId = 0;
}
}
mout = mouts[outEndpoint];
mdevs[i] = allocMidiDev( s, min, mout, inCableId, outCableId );
if ( mdevs[i] == NULL )
goto error_end;
}
/* Success! */
for ( i=0 ; i<devices ; i++ ) {
list_add_tail( &mdevs[i]->list, &s->midiDevList );
}
for ( i=0 ; i<inEndpoints ; i++ ) {
list_add_tail( &mins[i]->list, &s->inEndpointList );
}
for ( i=0 ; i<outEndpoints ; i++ ) {
list_add_tail( &mouts[i]->list, &s->outEndpointList );
}
printk(KERN_INFO "usbmidi: found [ %s ] (0x%04x:0x%04x), attached:\n", u->deviceName, u->idVendor, u->idProduct );
for ( i=0 ; i<devices ; i++ ) {
int dm = (mdevs[i]->dev_midi-2)>>4;
if ( mdevs[i]->mout.ep != NULL && mdevs[i]->min.ep != NULL ) {
printk(KERN_INFO "usbmidi: /dev/midi%02d: in (ep:%02x cid:%2d bufsiz:%2d) out (ep:%02x cid:%2d bufsiz:%2d)\n",
dm,
mdevs[i]->min.ep->endpoint|USB_DIR_IN, mdevs[i]->min.cableId, mdevs[i]->min.ep->recvBufSize,
mdevs[i]->mout.ep->endpoint, mdevs[i]->mout.cableId, mdevs[i]->mout.ep->bufSize);
} else if ( mdevs[i]->min.ep != NULL ) {
printk(KERN_INFO "usbmidi: /dev/midi%02d: in (ep:%02x cid:%2d bufsiz:%02d)\n",
dm,
mdevs[i]->min.ep->endpoint|USB_DIR_IN, mdevs[i]->min.cableId, mdevs[i]->min.ep->recvBufSize);
} else if ( mdevs[i]->mout.ep != NULL ) {
printk(KERN_INFO "usbmidi: /dev/midi%02d: out (ep:%02x cid:%2d bufsiz:%02d)\n",
dm,
mdevs[i]->mout.ep->endpoint, mdevs[i]->mout.cableId, mdevs[i]->mout.ep->bufSize);
}
}
kfree(mdevs);
return 0;
error_end:
if ( mdevs != NULL ) {
for ( i=0 ; i<devices ; i++ ) {
if ( mdevs[i] != NULL ) {
unregister_sound_midi( mdevs[i]->dev_midi );
kfree(mdevs[i]);
}
}
kfree(mdevs);
}
for ( i=0 ; i<15 ; i++ ) {
if ( mins[i] != NULL ) {
remove_midi_in_endpoint( mins[i] );
}
if ( mouts[i] != NULL ) {
remove_midi_out_endpoint( mouts[i] );
}
}
return -ENOMEM;
}
/* ------------------------------------------------------------------------- */
/** Attempt to scan YAMAHA's device descriptor and detect correct values of
* them.
* Return 0 on succes, negative on failure.
* Called by usb_midi_probe();
**/
static int detect_yamaha_device( struct usb_device *d,
struct usb_interface *iface, unsigned int ifnum,
struct usb_midi_state *s)
{
struct usb_host_interface *interface;
struct usb_midi_device *u;
unsigned char *buffer;
int bufSize;
int i;
int alts=-1;
int ret;
if (le16_to_cpu(d->descriptor.idVendor) != USB_VENDOR_ID_YAMAHA) {
return -EINVAL;
}
for ( i=0 ; i < iface->num_altsetting; i++ ) {
interface = iface->altsetting + i;
if ( interface->desc.bInterfaceClass != 255 ||
interface->desc.bInterfaceSubClass != 0 )
continue;
alts = interface->desc.bAlternateSetting;
}
if ( alts == -1 ) {
return -EINVAL;
}
printk(KERN_INFO "usb-midi: Found YAMAHA USB-MIDI device on dev %04x:%04x, iface %d\n",
le16_to_cpu(d->descriptor.idVendor),
le16_to_cpu(d->descriptor.idProduct), ifnum);
i = d->actconfig - d->config;
buffer = d->rawdescriptors[i];
bufSize = le16_to_cpu(d->actconfig->desc.wTotalLength);
u = parse_descriptor( d, buffer, bufSize, ifnum, alts, 1);
if ( u == NULL ) {
return -EINVAL;
}
ret = alloc_usb_midi_device( d, s, u );
kfree(u);
return ret;
}
/** Scan table of known devices which are only partially compliant with
* the MIDIStreaming specification.
* Called by usb_midi_probe();
*
**/
static int detect_vendor_specific_device( struct usb_device *d, unsigned int ifnum, struct usb_midi_state *s )
{
struct usb_midi_device *u;
int i;
int ret = -ENXIO;
for ( i=0; i<VENDOR_SPECIFIC_USB_MIDI_DEVICES ; i++ ) {
u=&(usb_midi_devices[i]);
if ( le16_to_cpu(d->descriptor.idVendor) != u->idVendor ||
le16_to_cpu(d->descriptor.idProduct) != u->idProduct ||
ifnum != u->interface )
continue;
ret = alloc_usb_midi_device( d, s, u );
break;
}
return ret;
}
/** Attempt to match any config of an interface to a MIDISTREAMING interface.
* Returns 0 on success, negative on failure.
* Called by usb_midi_probe();
**/
static int detect_midi_subclass(struct usb_device *d,
struct usb_interface *iface, unsigned int ifnum,
struct usb_midi_state *s)
{
struct usb_host_interface *interface;
struct usb_midi_device *u;
unsigned char *buffer;
int bufSize;
int i;
int alts=-1;
int ret;
for ( i=0 ; i < iface->num_altsetting; i++ ) {
interface = iface->altsetting + i;
if ( interface->desc.bInterfaceClass != USB_CLASS_AUDIO ||
interface->desc.bInterfaceSubClass != USB_SUBCLASS_MIDISTREAMING )
continue;
alts = interface->desc.bAlternateSetting;
}
if ( alts == -1 ) {
return -EINVAL;
}
printk(KERN_INFO "usb-midi: Found MIDISTREAMING on dev %04x:%04x, iface %d\n",
le16_to_cpu(d->descriptor.idVendor),
le16_to_cpu(d->descriptor.idProduct), ifnum);
/* From USB Spec v2.0, Section 9.5.
If the class or vendor specific descriptors use the same format
as standard descriptors (e.g., start with a length byte and
followed by a type byte), they must be returned interleaved with
standard descriptors in the configuration information returned by
a GetDescriptor(Configuration) request. In this case, the class
or vendor-specific descriptors must follow a related standard
descriptor they modify or extend.
*/
i = d->actconfig - d->config;
buffer = d->rawdescriptors[i];
bufSize = le16_to_cpu(d->actconfig->desc.wTotalLength);
u = parse_descriptor( d, buffer, bufSize, ifnum, alts, 0);
if ( u == NULL ) {
return -EINVAL;
}
ret = alloc_usb_midi_device( d, s, u );
kfree(u);
return ret;
}
/** When user has requested a specific device, match it exactly.
*
* Uses uvendor, uproduct, uinterface, ualt, umin, umout and ucable.
* Called by usb_midi_probe();
*
**/
static int detect_by_hand(struct usb_device *d, unsigned int ifnum, struct usb_midi_state *s)
{
struct usb_midi_device u;
if ( le16_to_cpu(d->descriptor.idVendor) != uvendor ||
le16_to_cpu(d->descriptor.idProduct) != uproduct ||
ifnum != uinterface ) {
return -EINVAL;
}
if ( ualt < 0 )
ualt = -1;
if ( umin < 0 || umin > 15 )
umin = 0x01 | USB_DIR_IN;
if ( umout < 0 || umout > 15 )
umout = 0x01;
if ( ucable < 0 || ucable > 15 )
ucable = 0;
u.deviceName = NULL; /* A flag for alloc_usb_midi_device to get device
name from device. */
u.idVendor = uvendor;
u.idProduct = uproduct;
u.interface = uinterface;
u.altSetting = ualt;
u.in[0].endpoint = umin;
u.in[0].cableId = (1<<ucable);
u.out[0].endpoint = umout;
u.out[0].cableId = (1<<ucable);
return alloc_usb_midi_device( d, s, &u );
}
/* ------------------------------------------------------------------------- */
static int usb_midi_probe(struct usb_interface *intf,
const struct usb_device_id *id)
{
struct usb_midi_state *s;
struct usb_device *dev = interface_to_usbdev(intf);
int ifnum = intf->cur_altsetting->desc.bInterfaceNumber;
s = (struct usb_midi_state *)kmalloc(sizeof(struct usb_midi_state), GFP_KERNEL);
if ( !s )
return -ENOMEM;
memset( s, 0, sizeof(struct usb_midi_state) );
INIT_LIST_HEAD(&s->midiDevList);
INIT_LIST_HEAD(&s->inEndpointList);
INIT_LIST_HEAD(&s->outEndpointList);
s->usbdev = dev;
s->count = 0;
spin_lock_init(&s->lock);
if (
detect_by_hand( dev, ifnum, s ) &&
detect_midi_subclass( dev, intf, ifnum, s ) &&
detect_vendor_specific_device( dev, ifnum, s ) &&
detect_yamaha_device( dev, intf, ifnum, s) ) {
kfree(s);
return -EIO;
}
down(&open_sem);
list_add_tail(&s->mididev, &mididevs);
up(&open_sem);
usb_set_intfdata (intf, s);
return 0;
}
static void usb_midi_disconnect(struct usb_interface *intf)
{
struct usb_midi_state *s = usb_get_intfdata (intf);
struct usb_mididev *m;
if ( !s )
return;
if ( s == (struct usb_midi_state *)-1 ) {
return;
}
if ( !s->usbdev ) {
return;
}
down(&open_sem);
list_del(&s->mididev);
INIT_LIST_HEAD(&s->mididev);
s->usbdev = NULL;
usb_set_intfdata (intf, NULL);
list_for_each_entry(m, &s->midiDevList, list) {
wake_up(&(m->min.ep->wait));
wake_up(&(m->mout.ep->wait));
if ( m->dev_midi >= 0 ) {
unregister_sound_midi(m->dev_midi);
}
m->dev_midi = -1;
}
release_midi_device(s);
wake_up(&open_wait);
}
/* we want to look at all devices by hand */
static struct usb_device_id id_table[] = {
{.driver_info = 42},
{}
};
static struct usb_driver usb_midi_driver = {
.owner = THIS_MODULE,
.name = "midi",
.probe = usb_midi_probe,
.disconnect = usb_midi_disconnect,
.id_table = id_table,
};
/* ------------------------------------------------------------------------- */
static int __init usb_midi_init(void)
{
return usb_register(&usb_midi_driver);
}
static void __exit usb_midi_exit(void)
{
usb_deregister(&usb_midi_driver);
}
module_init(usb_midi_init) ;
module_exit(usb_midi_exit) ;
#ifdef HAVE_ALSA_SUPPORT
#define SNDRV_MAIN_OBJECT_FILE
#include "../../include/driver.h"
#include "../../include/control.h"
#include "../../include/info.h"
#include "../../include/cs46xx.h"
/* ------------------------------------------------------------------------- */
static int snd_usbmidi_input_close(snd_rawmidi_substream_t * substream)
{
return 0;
}
static int snd_usbmidi_input_open(snd_rawmidi_substream_t * substream )
{
return 0;
}
static void snd_usbmidi_input_trigger(snd_rawmidi_substream_t * substream, int up)
{
return 0;
}
/* ------------------------------------------------------------------------- */
static int snd_usbmidi_output_close(snd_rawmidi_substream_t * substream)
{
return 0;
}
static int snd_usbmidi_output_open(snd_rawmidi_substream_t * substream)
{
return 0;
}
static void snd_usb_midi_output_trigger(snd_rawmidi_substream_t * substream,
int up)
{
return 0;
}
/* ------------------------------------------------------------------------- */
static snd_rawmidi_ops_t snd_usbmidi_output =
{
.open = snd_usbmidi_output_open,
.close = snd_usbmidi_output_close,
.trigger = snd_usbmidi_output_trigger,
};
static snd_rawmidi_ops_t snd_usbmidi_input =
{
.open = snd_usbmidi_input_open,
.close = snd_usbmidi_input_close,
.trigger = snd_usbmidi_input_trigger,
};
int snd_usbmidi_midi(cs46xx_t *chip, int device, snd_rawmidi_t **rrawmidi)
{
snd_rawmidi_t *rmidi;
int err;
if (rrawmidi)
*rrawmidi = NULL;
if ((err = snd_rawmidi_new(chip->card, "USB-MIDI", device, 1, 1, &rmidi)) < 0)
return err;
strcpy(rmidi->name, "USB-MIDI");
snd_rawmidi_set_ops( rmidi, SNDRV_RAWMIDI_STREAM_OUTPUT, &snd_usbmidi_output );
snd_rawmidi_set_ops( rmidi, SNDRV_RAWMIDI_STREAM_INPUT, &snd_usbmidi_input );
rmidi->info_flags |= SNDRV_RAWMIDI_INFO_OUTPUT | SNDRV_RAWMIDI_INFO_INPUT | SNDRV_RAWMIDI_INFO_DUPLEX;
rmidi->private_data = chip;
chip->rmidi = rmidi;
if (rrawmidi)
*rrawmidi = NULL;
return 0;
}
int snd_usbmidi_create( snd_card_t * card,
struct pci_dev * pci,
usbmidi_t ** rchip )
{
usbmidi_t *chip;
int err, idx;
snd_region_t *region;
static snd_device_opt_t ops = {
.dev_free = snd_usbmidi_dev_free,
};
*rchip = NULL;
chip = snd_magic_kcalloc( usbmidi_t, 0, GFP_KERNEL );
if ( chip == NULL )
return -ENOMEM;
}
EXPORT_SYMBOL(snd_usbmidi_create);
EXPORT_SYMBOL(snd_usbmidi_midi);
#endif /* HAVE_ALSA_SUPPORT */